+ All Categories
Home > Documents > Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in,...

Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in,...

Date post: 08-Jan-2018
Category:
Upload: hortense-page
View: 246 times
Download: 0 times
Share this document with a friend
Description:
3 A priority queue ADT Here is one possible ADT: PriorityQueue() : a constructor void add(Comparable o) : inserts o into the priority queue Comparable removeLeast() : removes and returns the least element Comparable getLeast() : returns (but does not remove) the least element boolean isEmpty() : returns true iff empty int size() : returns the number of elements void clear() : discards all elements
36
Chapter 13 Priority Queues
Transcript
Page 1: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Chapter 13 Priority Queues

Page 2: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

2

Priority queue

A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out

The “smallest” element is the first one removed (You could also define a largest-in-first-out priority queue)

The definition of “smallest” is up to the programmer (for example, you might define it by implementing Comparator or Comparable)

If there are several “smallest” elements, the implementer must decide which to remove first

Remove any “smallest” element (don’t care which) Remove the first one added

Page 3: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

3

A priority queue ADT Here is one possible ADT:

PriorityQueue(): a constructor void add(Comparable o): inserts o into the priority queue Comparable removeLeast(): removes and returns the least

element Comparable getLeast(): returns (but does not remove) the

least element boolean isEmpty(): returns true iff empty int size(): returns the number of elements void clear(): discards all elements

Page 4: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

4

Evaluating implementations When we choose a data structure, it is important to look

at usage patterns If we load an array once and do thousands of searches on it,

we want to make searching fast—so we would probably sort the array

If we load a huge array and expect to do only a few searches, we probably don’t want to spend time sorting the array

For almost all uses of a queue (including a priority queue), we eventually remove everything that we add

Hence, when we analyze a priority queue, neither “add” nor “remove” is more important—we need to look at the timing for “add + remove”

Page 5: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

5

Array implementations A priority queue could be implemented as an unsorted

array (with a count of elements) Adding an element would take O(1) time (why?) Removing an element would take O(n) time (why?) Hence, adding and removing an element takes O(n) time This is an inefficient representation

A priority queue could be implemented as a sorted array (again, with a count of elements) Adding an element would take O(n) time (why?) Removing an element would take O(1) time (why?) Hence, adding and removing an element takes O(n) time Again, this is inefficient

Page 6: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

6

Linked list implementations A priority queue could be implemented as an unsorted

linked list Adding an element would take O(1) time (why?) Removing an element would take O(n) time (why?)

A priority queue could be implemented as a sorted linked list Adding an element would take O(n) time (why?) Removing an element would take O(1) time (why?)

As with array representations, adding and removing an element takes O(n) time Again, these are inefficient implementations

Page 7: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

7

Binary tree implementations

A priority queue could be represented as a (not necessarily balanced) binary search tree Insertion times would range from O(log n) to O(n) (why?) Removal times would range from O(log n) to O(n) (why?)

A priority queue could be represented as a balanced binary search tree Insertion and removal could destroy the balance We need an algorithm to rebalance the binary tree Good rebalancing algorithms require only O(log n) time,

but are complicated

Page 8: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

8

Heap implementation A priority queue can be implemented as a heap In order to do this, we have to define the heap property

In Heapsort, a node has the heap property if it is at least as large as its children (for a MAX heap)

For a priority queue, we will define a node to have the heap property if it is as least as small as its children (since we are using smaller numbers to represent higher priorities) – i.e. a MIN heap

12

8 3Heapsort: Blue node has the MAX heap property

3

8 12Priority queue: Blue node has the MIN heap property

Page 9: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

9

Array representation of a heap

Left child of node i is 2*i + 1, right child is 2*i + 2 Unless the computation yields a value larger than lastIndex, in

which case there is no such child Parent of node i is (i – 1)/2

Unless i == 0

12

1418

6

8

3

3 12 6 18 14 8 0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

Page 10: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

10

Using the heap To add an element:

Increase lastIndex and put the new value there Reheap the newly added node

This is called up-heap bubbling or percolating up Up-heap bubbling requires O(log n) time

To remove an element: Remove the element at location 0 Move the element at location lastIndex to location 0, and decrement

lastIndex Reheap the new root node (the one now at location 0)

This is called down-heap bubbling or percolating down Down-heap bubbling requires O(log n) time

Thus, it requires O(log n) time to add and remove an element

Page 11: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

11

Comments A priority queue is a data structure that is designed to

return elements in order of priority Efficiency is usually measured as the sum of the time

it takes to add and to remove an element Simple implementations take O(n) time Heap implementations take O(log n) time Balanced binary tree implementations take O(log n) time Binary tree implementations, without regard to balance, can

take O(n) (linear) time Thus, for any sort of heavy-duty use, heap or balanced

binary tree implementations are better

Page 12: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

12

Java 5 java.util.PriorityQueue Java 5 finally has a PriorityQueue class, based on heaps

PriorityQueue<E> queue = new PriorityQueue<E>();

boolean add(E o) boolean remove(Object o)

boolean offer(E o) E peek() boolean poll()

void clear() int size()

Page 13: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

13

Heaps

A heap is a binary tree with properties:1. It is complete

• Each level of tree completely filled• Except possibly bottom level (nodes in left most

positions)

2. It satisfies heap-order property• Data in each node >= data in children

Page 14: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

14

Heaps

• Which of the following are MAX heaps?

A B C

Page 15: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

15

Implementing a Heap

• Use an array or vector• Number the nodes from top to bottom

– Number nodes on each row from left to right• Store data in ith node in ith location of array

(vector)

Page 16: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

16

Implementing a Heap

• Note the placement of the nodes in the array (note the array cells start at 1 not 0, unlike our implementation)

Page 17: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

17

Implementing a Heap(note array starts at 1 here)

• In an array implementation children of ith node are at myArray[2*i] and

myArray[2*i+1]• Parent of the ith node is at

mayArray[i/2]

Page 18: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

18

Basic Heap Operations

• Constructor– Set mySize to 0, allocate array

• Empty– Check value of mySize

• Retrieve max item– Return root of the binary tree, myArray[1]

Page 19: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

19

Basic Heap Operations

• Delete max item– Max item is the root, replace with last node in

tree

– Then interchange root with larger of two children– Continue this with the resulting sub-tree(s)

Result called a semiheap

Page 20: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

20

Percolate Down Algorithm(for an array starting at 1—your handout has pseudocode for 0

based array)

1. Set c = 2 * r2. While r <= n do following

a. If c < n and myArray[c] < myArray[c + 1]Increment c by 1

b. If myArray[r] < myArray[c]i. Swap myArray[r] and myArray[c]ii. set r = ciii. Set c = 2 * c

else Terminate repetitionEnd while

Page 21: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

21

Basic Heap Operations

• Insert an item– Amounts to a percolate up routine– Place new item at end of array

– Interchange with parent so long as it is greater than its parent

Page 22: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Percolate Upfor 0-based array

• PercolateUp(int leaf)• Set p = parent index of leaf• Set value = data at leaf index• While leaf > 0 AND value < parent value

– Change the leaf data to parent’s data– Set leaf index = parent index– Set p = new parent index of leaf

• Set data at final leaf position to value

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

22

Page 23: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

23

Heapsort

• Given a list of numbers in an array– Stored in a complete binary tree

• Convert to a heap– Begin at last node not a leaf– Apply percolated down to this subtree– Continue

Page 24: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

24

Heapsort

• Algorithm for converting a complete binary tree to a heap – called "heapify"For r = n/2 down to 1:

Apply percolate_down to the subtreein myArray[r] , … myArray[n]

End for• Puts largest element at root

Page 25: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

25

Heapsort• Now swap element 1 (root of tree) with last

element

– This puts largest element in correct location• Use percolate down on remaining sublist

– Converts from semi-heap to heap

Page 26: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

26

Heapsort

• Again swap root with rightmost leaf

• Continue this process with shrinking sublist

Page 27: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

27

Heapsort Algorithm

1. Consider x as a complete binary tree, use heapify to convert this tree to a heap

2. for i = n down to 2:a. Interchange x[1] and x[i] (puts largest element at end)b. Apply percolate_down to convert binary tree corresponding to sublist in x[1] .. x[i-1]

Page 28: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

28

Heap Algorithms in STL

• Found in the <algorithm> library–make_heap() heapify–push_heap() insert–pop_heap() delete–sort_heap() heapsort

• Note program which illustrates these operations, Fig. 13.1

Page 29: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

29

Priority Queue• A collection of data elements

– Items stored in order by priority– Higher priority items removed ahead of lower

• Operations– Constructor– Insert– Find, remove smallest/largest (priority) element– Replace – Change priority– Delete an item– Join two priority queues into a larger one

Page 30: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

30

Priority Queue

• Implementation possibilities– As a list (array, vector, linked list)– As an ordered list– Best is to use a heap

Basic operations have O(log2n) time

• Java priority queue class uses heap

Page 31: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

OSsim.java

• Simulates a (very slow!) "operating system" • Each minute one task is processed• Each minute 0, 1 or 2 tasks arrive

– placed in PriorityQueue<Task> PQ– to be processed in a future minute

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

31

Page 32: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

OSsim Animation• Trace Table

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

32

PQ

Minute Task Dequeue'd

Wait Time

numArrivals

Tasks Enqueue'd

1 - - 2 new Task(0,1)new Task(1,1)

(0,1)(1,1)

Page 33: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

OSsim Animation• Trace Table

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

33

PQ

Minute Task Dequeue'd

Wait Time

numArrivals

Tasks Enqueue'd

1

2

-

(0,1)

-

1

2

2

new Task(0,1)new Task(1,1)new Task(0,2)new Task(0,2)

(0,2)(0,2)(1,1)

Page 34: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

OSsim Animation• Trace Table

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

34

PQ

Minute Task Dequeue'd

Wait Time

numArrivals

Tasks Enqueue'd

1

2

3

-

(0,1)

(0,2)

-

1

1

2

2

1

new Task(0,1)new Task(1,1)new Task(0,2)new Task(0,2)new Task(1,3)

(0,2)(1,1)(1,3)

Page 35: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

OSsim Animation• Trace Table

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

35

PQ

Minute Task Dequeue'd

Wait Time

numArrivals

Tasks Enqueue'd

1

2

3

4

-

(0,1)

(0,2)

(0,2)

-

1

1

1

2

2

1

0

new Task(0,1)new Task(1,1)new Task(0,2)new Task(0,2)new Task(1,3)

-

(1,1)(1,3)

Page 36: Chapter 13 Priority Queues. 2 Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-in-first-out The “smallest”

OSsim Animation• Trace Table

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3

36

PQ

Minute Task Dequeue'd

Wait Time

numArrivals

Tasks Enqueue'd

1

2

3

4

5

-

(0,1)

(0,2)

(0,2)

(1,1)

-

1

1

1

4

2

2

1

0

0

new Task(0,1)new Task(1,1)new Task(0,2)new Task(0,2)new Task(1,3)

-

-

(1,3)


Recommended