+ All Categories
Home > Documents > Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria 15.1Phylogenetic Overview...

Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria 15.1Phylogenetic Overview...

Date post: 31-Dec-2015
Category:
Upload: ann-walters
View: 228 times
Download: 0 times
Share this document with a friend
99
Chapter 15 (1) Bacteria: The Proteobacteria
Transcript
Page 1: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Chapter 15 (1)

Bacteria:The Proteobacteria

Page 2: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

I. The Phylogeny of Bacteria

15.1 Phylogenetic Overview of Bacteria

Page 3: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Major Lineages (Phyla) of Bacteria

Page 4: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.1 Phylogenetic Overview of Bacteria

Proteobacteria

A major lineage (phyla) of Bacteria

Includes many of the most commonly encountered bacteria

Most metabolically diverse of all Bacteria

e.g., chemolithotrophy, chemoorganotrophy, phototrophy

Morphologically diverse

Divided into five classes

Alpha-, Beta-, Delta-, Gamma-, Epsilon-

Page 5: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Major Genera of Proteobacteria

Page 6: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Major Genera of Proteobacteria

Page 7: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

II. Phototrophs, Chemolithotrophs, and Methanotrophs

15.2 Purple Phototrophic Bacteria

15.3 The Nitrifying Bacteria

15.4 Sulfur- and Iron-Oxidizing Bacteria

15.5 Hydrogen-Oxidizing Bacteria

15.6 Methanotrophs and Methylotrophs

Page 8: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.2 Purple Phototrophic Bacteria

Purple Phototrophic Bacteria

Carry out anoxygenic photosynthesis; no O2 evolved

Morphologically diverse group

Genera fall within the Alpha-, Beta-, or

Gammaproteobacteria

Contain bacteriochlorophylls and carotenoid pigments

Produce intracytoplasmic photosynthetic membranes

with varying morphologies

- allow the bacteria to increase pigment content

- originate from invaginations of cytoplasmic membrane

Page 9: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Liquid Cultures of Phototrophic Purple Bacteria

Carotenoidless mutant

Rhodospirillum rubrum Rhodobacter sphaeroides

Lacks one of the carotenoids

Rhodopila globiformis

Page 10: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Membrane Systems of Phototrophic Purple Bacteria

Ectothiorhodospira mobilis

Allochromatium vinosum

Page 11: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Purple Sulfur Bacteria

Use hydrogen sulfide (H2S) as an electron donor for

CO2 reduction in photosynthesis

Sulfide oxidized to elemental sulfur (So) that is stored

as globules either inside or outside cells

Sulfur later disappears as it is oxidized to sulfate (SO42-)

Page 12: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Photomicrographs of Purple Sulfur Bacteria

Chromatium okenii Thiospirillum jenense

Thiopedia rosea Ectothiorhodospira mobilis

Page 13: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Purple Sulfur Bacteria (cont’d)

Many can also use other reduced sulfur compounds,

such as thiosulfate (S2O32-)

All are Gammaproteobacteria

Found in illuminated anoxic zones of lakes and other

aquatic habitats where H2S accumulates, as well as

sulfur springs

Page 14: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera and Characteristics of Purple Sulfur Bacteria

Page 15: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera and Characteristics of Purple Sulfur Bacteria

Page 16: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera and Characteristics of Purple Sulfur Bacteria

Page 17: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Blooms of Purple Sulfur Bacteria

Lamprocystis roseopersicina Algae (Spirogyra)

Chromatium sp.

Thiocystis sp.

Page 18: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Purple Nonsulfur Bacteria

Originally thought organisms were unable to use sulfide as

an electron donor for CO2 reduction, now know most can

Most can grow aerobically in the dark as

chemoorganotrophs

Some can also grow anaerobically in the dark using

fermentative or anaerobic respiration

Most can grow photoheterotrophically using light as an

energy source and organic compounds as a carbon source

All in Alpha- and Betaproteobacteria

Page 19: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Representatives of Purple Nonsulfur Bacteria

Phaeospirillum fulvum Rhodoblastus acidophilus Rhodobacter sphaeoides

Page 20: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Representatives of Purple Nonsulfur Bacteria

Rhodopila globiformis Rhodocyclus purpureus Rhodomicrobium vannielii

Page 21: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera and Characteristics of Purple Nonsulfur Bacteria

Page 22: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera and Characteristics of Purple Nonsulfur Bacteria

Page 23: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.3 The Nitrifying Bacteria

Nitrifying Bacteria

Able to grow chemolithotrophically at the expense of

reduced inorganic nitrogen compounds

Found in Alpha-, Beta-, Gamma-, and Deltaproteobacteria

Nitrification (oxidation of ammonia to nitrate) occurs as two

separate reactions by different groups of bacteria

Ammonia oxidizers (nitrosifyers) (e.g., Nitrosococcus)

Nitrite oxidizer (e.g., Nitrobacter)

Page 24: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Photomicrographs of Nitrosifyer Nitrosococcus oceani

Phase-contrast micrograph Electron micrograph

Page 25: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Photomicrographs of the Nitrifyer Nitrobacter winogradskyi

Phase-contrast micrograph Electron micrograph

Page 26: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Nitrifying Bacteria (cont’d)

Many species have internal membrane systems that

house key enzymes in nitrification

Ammonia monooxygenase: oxidizes NH3 to NH2OH

Nitrite oxidase: oxidizes NO2- to NO3

-

* Hydroxylamine oxidoreductase

- oxidizes NH2OH to NO2-

- attached to the periplasmic face of cytoplasmic

membrane

Page 27: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Nitrifying Bacteria (cont’d)

Widespread in soil and water

Highest numbers in habitats with large amounts of

ammonia

i.e., sites with extensive protein decomposition and sewage

treatment facilities

Most are obligate chemolithotrophs and aerobes

One exception is anammox organisms, which oxidize

ammonia anaerobically (NH4+ + NO2

- → N2 + 2H2O)

Page 28: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Characteristics of the Nitrifying Bacteria

Page 29: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.4 Sulfur- and Iron-Oxidizing Bacteria

Sulfur-Oxidizing Bacteria

Grow chemolithotrophically on reduced sulfur

compounds

Two broad classes

Neutrophiles

Acidophiles

Some acidophiles able to use ferrous iron (Fe2+)

Page 30: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Sulfur-Oxidizing Bacteria (cont’d)

Thiobacillus and close relatives are best studied

Rod-shaped

Sulfur compounds most commonly used as electron

donors are H2S, So, S2O32-; generates sulfuric acid

Achromatium

Common in freshwater sediments

Spherical cells

Pylogenetically related to purple bacteria Chromatium

Page 31: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

* Some obligate chemolithotrophs possess special

structures that house Calvin cycle enyzmes

(carboxysomes)

Page 32: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Nonfilamentous Sulfur Chemolithotrophs

Halothiobacillus neapolitanus

Achromatium sp.

carboxysomes

Elemental sulfur

Calcium carbonate(CaCO3)

Page 33: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Sulfur-Oxidizing Bacteria (cont’d)

Beggiatoa

Filamentous, gliding bacteria

Found in habitats rich in H2S

e.g., sulfur springs, decaying seaweed beds, mud layers

of lakes, sewage polluted waters, and hydrothermal vents

Most grow mixotrophically

with reduced sulfur compounds as electron donors

and organic compounds as carbon sources ( lack ∵

Calvin cycle enzymes)

Page 34: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Filamentous Sulfur-Oxidizing Bacteria

Beggiatoa sp.

Page 35: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Sulfur-Oxidizing Bacteria (cont’d)

Thioploca

Large, filamentous sulfur-oxidizing bacteria that form cell

bundles surrounded by a common sheath

Thick mats found on ocean floor off Chile and Peru

Couple anoxic oxidation of H2S with reduction of NO3- to

NH4+

Page 36: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Cells of a Large Marine Thioploca Species

Thioploca sp.

Page 37: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Sulfur-Oxidizing Bacteria (cont’d)

Thiothrix

Filamentous sulfur-oxidizing bacteria in which filaments

group together at their ends by a holdfast to form

cellular arrangements called rosettes

Obligate aerobic mixotrophs

Page 38: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Thiothrix

Page 39: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Physiological Characteristics of Sulfur Oxidizers

Page 40: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.5 Hydrogen-Oxidizing Bacteria

Hydrogen-Oxidizing Bacteria:

Most can grow autotrophically with H2 as sole electron

donor and O2 as electron acceptor (“knallgas” reaction)

Both gram-negative and gram-positive representatives

known

Contain one or more hydrogenase enzymes that

function to bind H2 and use it to either produce ATP or

for reducing power for autotrophic growth

Page 41: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Hydrogen-Oxidizing Bacteria (cont’d)

Most are facultative chemolithotrophs and can grow

chemoorganotrophically

Some can grow on carbon monoxide (CO) as electron

donor (carboxydotrophs; carboxydobacteria)

Page 42: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Hydrogen Bacteria

Ralstonia eutropha

Page 43: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Characteristics of Common Hydrogen-Oxidizing Bacteria

Page 44: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.6 Methanotrophs and Methylotrophs

Methylotrophs

Organisms that can grow using carbon compounds

that lack C-C bonds

Most are also methanotrophs

Page 45: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Methanotrophs

Use CH4 and a few other one-carbon (C1) compounds

as electron donors and source of carbon

Widespread in soil and water

Obligate aerobes

Morphologically diverse

Page 46: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Substrates Used by Methylotrophic Bacteria

Page 47: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

C1 metabolism of methanotrophs

Methane monooxygenase

Incorporates an atom of oxygen from O2 into methane to

produce methanol

Methanotrophs contain large amounts of sterols

Page 48: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Classification of methanotrophs

Two major groups

Type I

Type II

Contain extensive internal membrane systems for

methane oxidation

Page 49: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Electron Micrographs of Methanotrophs

Methylosinus sp. (type II) Methylococcus capsulatus (type I)

Page 50: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Type I methanotrophs

Assimilate C1 compounds via the ribulose

monophosphate cycle

Gammaproteobacteria

Membranes arranged as bundles of disc-shaped

vesicles

Lack complete citric acid cycle

Obligate methylotrophs

Page 51: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Type II methanotrophs

Assimilate C1 compounds via the serine pathway

Alphaproteobacteria

Paired membranes that run along periphery of cell

Page 52: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Some Characteristics of Methanotrophic Bacteria

Page 53: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Ecolony and Isolation of Methanotrophs

Widespread in aquatic and terrestrial environments

Methane monooxygenase also oxidizes ammonia;

competitive interaction between substrates

Certain marine mussels have symbiotic relationships

with methanotrophs

Page 54: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Methanotrophic Symbionts of Marine Mussels

Page 55: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

III. Aerobic and Facultatively Aerobic Chemoorganotrophs

15.7 Pseudomonas and the Pseudomonads

15.8 Acetic Acid Bacteria

15.9 Free-Living Aerobic Nitrogen-Fixing Bacteria

15.10 Neisseria, Chromobacterium, and Relatives

15.11 Enteric Bacteria

15.12 Vibrio, Alivibrio, and Photobacterium

15.13 Rickettsias

Page 56: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.7 Pseudomonas and the Pseudomonads

All genera within the pseudomonad group are

Straight or curved rods with polar flagella

Chemoorganotrophs

Obligate aerobes

Page 57: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Typical Pseudomonad Colonies and Cell Morphology

Burkholderia cepacia

Page 58: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Typical Pseudomonad Colonies and Cell Morphology

Pseudomonas sp.

Page 59: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Characteristics of Pseudomonads

Page 60: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Species of the genus Pseudomonas and related

genera can be defined on the basis of phylogeny and

physiological characteristics

Page 61: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Subgroups and Characteristics of Pseudomonads

Page 62: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Pseudomonads

Nutritionally versatile

Ecologically important organisms in water and soil

Some species are pathogenic

Includes human opportunistic pathogens and plant

pathogens

Page 63: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Pathogenic Pseudomonads

Page 64: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Zymomonas

Genus of large, gram-negative rods that carry out

vigorous fermentation of sugars to ethanol

Used in production of fermented beverages

Sugar metabolism: Entner-Doudoroff pathway

Page 65: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.8 Acetic Acid Bacteria

Acetic Acid Bacteria

Organisms that carry out incomplete oxidation of

alcohols and sugars

Leads to the accumulation of organic acids as end

products

Motile rods

Aerobic

High tolerance to acidic conditions

Page 66: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Copyright © 2009 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Acetic Acid Bacteria (cont’d)

Commonly found in alcoholic juices

Used in production of vinegar

Some can synthesize cellulose (Acetobacter xylinum)

Colonies can be identified on CaCO3 agar plates

containing ethanol

Acetobacter: peritrichously flagellated, overoxidizer

Gluconobacter: polarly flagellated, underoxidized

Page 67: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Colonies of Acetobacter aceti on Calcium Carbonate Agar

Page 68: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.9 Free-Living Aerobic Nitrogen-Fixing Bacteria

A variety of soil microbes are capable of fixing N2

aerobically

Page 69: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera of Free-Living Aerobic Nitrogen-Fixing Bacteria

Page 70: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera of Free-Living Aerobic Nitrogen-Fixing Bacteria

Page 71: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Genera of Free-Living Aerobic Nitrogen-Fixing Bacteria

Page 72: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

The major genera of bacteria capable of fixing N2

nonsymbiotically are Azotobacter, Azospirillium,

and Beijerinckia

Azotobacter are large, obligately aerobic rods; can

form resting structures (cysts)

All genera produce extensive capsules or slime layers;

believed to be important in protecting nitrogenase from

O2

Page 73: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Azotobacter vinelandii

Vegitive cells Cysts

Page 74: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Examples of Slime Production by Nitrogen2-fixing Bacteria

Derxia gummosa

Page 75: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Examples of Slime Production by Nitrogen2-fixing Bacteria

Beijerinckia sp.

Page 76: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Additional genera of free-living N2 fixers include

acid-tolerant microbes

e.g., Beijerinckia and Derxia

Page 77: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Two Genera of Acid-Tolerant, Nitrogen2-fixing Bacteria

Beijerinckia indica Derxia gummosa

Contain a large globules of poly-β-hydroxybutyrate at each end

Page 78: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.10 Neisseria, Chromobacterium, and Relatives

Neisseria, Chromobacterium, and their relatives can

be isolated from animals, and some species of this

group are pathogenic

Page 79: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Characteristics of the Genera of Gram-Negative Cocci

Page 80: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Chromobacterium and Neisseria

Chromobacterium violaceum Violacein

Page 81: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Neisseria gonorrhoeae

Page 82: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

15.11 Enteric Bacteria

Enteric Bacteria

Relatively homogeneous phylogenetic group within the

Gammaproteobacteria

Facultative aerobes

Motile or non-motile, nonsporulating rods

Possess relatively simple nutritional requirements

Ferment sugars to a variety of end products

Page 83: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Defining Characteristics of the Enteric Bacteria

Page 84: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Enteric bacteria can be separated into two broad

groups by the type and proportion of fermentation

products generated by anaerobic fermentation of

glucose

Mixed-acid fermentators

2,3-butanediol fermentators

Page 85: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Enteric Fermentations

Page 86: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Enteric Fermentations

Page 87: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Butanediol-Producing Bacterium

Erwinia carotovora

Page 88: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Diagnostic tests and differential media are often

used to identify various genera of enteric bacteria

Page 89: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Key Diagnostic Reactions Used to Separate Enteric Bacteria

Page 90: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Key Diagnostic Reactions Used to Separate Enteric Bacteria

Page 91: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

A Simple Key to the Main Genera of Enteric Bacteria

Page 92: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Escherichia

Universal inhabitants of intestinal tract of humans and

warm-blooded animals

Synthesize vitamins for host

Some strains are pathogenic (O157:H7)

Page 93: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Salmonella and Shigella

Closely related to Escherichia

Usually pathogenic

Salmonella characterized immunologically by surface

antigens

Page 94: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Proteus

Genus containing rapidly motile cells; capable of

swarming

Frequent cause of urinary tract infections in humans

Page 95: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Swarming in Proteus

Proteus mirabilis with as bundle of peritrichous flagella

Page 96: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

A swarming concentric colony of Proteus mirabilis

Page 97: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Butanediol fermentators are a closely related group

of organisms

Some capable of pigment production

Page 98: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Reactions Used to Separate 2,3-Butanediol Producers

Page 99: Chapter 15 (1) Bacteria: The Proteobacteria. I. The Phylogeny of Bacteria  15.1Phylogenetic Overview of Bacteria.

Colonies of Serretia marcescens

Red-orange pigmentation of Serratia marcescens due to the pyrrole-containing “prodigiosin”


Recommended