+ All Categories
Home > Documents > Chapter 15 Solutions Calculus

Chapter 15 Solutions Calculus

Date post: 04-Apr-2018
Category:
Upload: aditya-p-banerjee
View: 249 times
Download: 0 times
Share this document with a friend

of 37

Transcript
  • 7/30/2019 Chapter 15 Solutions Calculus

    1/37

    620

    CHAPTER 15

    Multiple Integrals

    EXERCISE SET 15.1

    1.

    10

    20

    (x + 3)dydx =

    10

    (2x + 6)dx = 7 2.

    31

    11

    (2x 4y)dydx =31

    4x dx = 16

    3.

    42

    10

    x2ydxdy =

    42

    1

    3y dy = 2 4.

    02

    21

    (x2 + y2)dxdy =

    02

    (3 + 3y2)dy = 14

    5.

    ln 30

    ln 20

    ex+ydydx =

    ln 30

    exdx = 2

    6.

    20

    10

    y sin xdydx =

    20

    1

    2sin x dx = (1 cos2)/2

    7.

    01

    52

    dxdy =

    01

    3 dy = 3 8.

    64

    73

    dydx =

    64

    10dx = 20

    9.

    10

    10

    x

    (xy + 1)2dydx =

    10

    1 1

    x + 1

    dx = 1 ln 2

    10.

    /2

    21

    x cos xydydx =

    /2

    (sin2x sin x)dx = 2

    11.

    ln 20

    10

    xy ey2xdydx =

    ln 20

    1

    2(ex 1)dx = (1 ln2)/2

    12.

    43

    21

    1

    (x + y)2dydx =

    43

    1

    x + 1 1

    x + 2

    dx = ln(25/24)

    13.

    11

    22

    4xy3dydx =

    11

    0 dx = 0

    14.

    10

    10

    xyx2 + y2 + 1

    dydx =

    10

    [x(x2 + 2)1/2 x(x2 + 1)1/2]dx = (3

    3 4

    2 + 1)/3

    15.

    10

    32

    x

    1 x2 dydx =10

    x(1 x2)1/2dx = 1/3

    16.

    /20

    /30

    (x sin y y sin x)dydx =/20

    x

    2

    2

    18sin x

    dx = 2/144

    17. (a) xk = k/2 1/4, k = 1, 2, 3, 4; yl = l/2 1/4, l = 1, 2, 3, 4, R

    f(x, y) dxdy 4

    k=1

    4l=1

    f(xk, yl )Akl =

    4k=1

    4l=1

    [(k/21/4)2+(l/21/4)](1/2)2 = 37/4

    (b)

    20

    20

    (x2 + y) dxdy = 28/3; the error is |37/4 28/3| = 1/12

  • 7/30/2019 Chapter 15 Solutions Calculus

    2/37

    Exercise Set 15.1 621

    18. (a) xk = k/2 1/4, k = 1, 2, 3, 4; yl = l/2 1/4, l = 1, 2, 3, 4, R

    f(x, y) dxdy 4

    k=1

    4l=1

    f(xk, yl )Akl =

    4k=1

    4l=1

    [(k/2 1/4) 2(l/2 1/4)](1/2)2 = 4

    (b)

    20

    20

    (x 2y) dxdy = 4; the error is zero

    19. V =

    5

    3

    2

    1

    (2x + y)dydx =

    5

    3

    (2x + 3/2)dx = 19

    20. V =

    31

    20

    (3x3 + 3x2y)dydx =

    31

    (6x3 + 6x2)dx = 172

    21. V =

    20

    30

    x2dydx =

    20

    3x2dx = 8

    22. V = 3

    0

    4

    0

    5(1

    x/3)dydx =

    3

    0

    5(4

    4x/3)dx = 30

    23. (a)

    (1, 0, 4)

    (2, 5, 0)

    x

    y

    z (b)(0, 0, 5)

    (3, 4, 0)

    (0, 4, 3)

    z

    x

    y

    24. (a)

    (1, 1, 0)

    (0, 0, 2)

    x

    y

    z (b)

    (2, 2, 0)

    (2, 2, 8)

    x

    y

    z

    25.

    1/20

    0

    x cos(xy)cos2 xdydx =

    1/20

    cos2 x sin(xy)0

    dx

    =

    1/20

    cos2 x sin xdx = 13

    cos3 x1/20

    =1

    3

  • 7/30/2019 Chapter 15 Solutions Calculus

    3/37

    622 Chapter 15

    26. (a)

    y

    x

    z

    5

    3

    (0, 2, 2)

    (5, 3, 0)

    (b) V =

    50

    20

    y d y d x +

    50

    32

    (2y + 6) dydx

    = 10 + 5 = 15

    27. fave =2

    /20

    10

    y sin xydxdy =2

    /20

    cos xy

    x=1x=0

    dy =

    2

    /20

    (1 cos y) dy = 1 2

    28. average =1

    3

    30

    10

    x(x2 + y)1/2dxdy =

    30

    1

    9[(1 + y)3/2 y3/2]dy = 2(31 9

    3)/45

    29. Tave =1

    2 1

    0 2

    0 10 8x2 2y2

    dydx =

    1

    2 1

    0

    44

    3 16x2

    dx =

    14

    3

    30. fave =1

    A(R)

    ba

    dc

    k dydx =1

    A(R)(b a)(d c)k = k

    31. 1.381737122 32. 2.230985141

    33.

    R

    f(x, y)dA =

    ba

    dc

    g(x)h(y)dy

    dx =

    ba

    g(x)

    dc

    h(y)dy

    dx

    =

    ba

    g(x)dx

    dc

    h(y)dy

    34. The integral of tan x (an odd function) over the interval [1, 1] is zero.

    35. The first integral equals 1/2, the second equals 1/2. No, because the integrand is not continuous.

    EXERCISE SET 15.2

    1.

    10

    xx2

    xy2dydx =

    10

    1

    3(x4 x7)dx = 1/40

    2. 3/2

    1

    3y

    y

    ydxdy = 3/2

    1

    (3y

    2y2)dy = 7/24

    3.

    30

    9y20

    ydxdy =

    30

    y

    9 y2 dy = 9

    4.

    11/4

    xx2

    x/y dydx =

    11/4

    xx2

    x1/2y1/2dydx =11/4

    2(x x3/2)dx = 13/80

  • 7/30/2019 Chapter 15 Solutions Calculus

    4/37

    Exercise Set 15.2 623

    5.

    2

    x30

    sin(y/x)dydx =

    2

    [x cos(x2) + x]dx = /2

    6.

    11

    x2x2

    (x2 y)dydx =11

    2x4dx = 4/5 7.

    /2

    x20

    1

    xcos(y/x)dydx =

    /2

    sin x dx = 1

    8. 1

    0

    x

    0

    ex2

    dydx = 1

    0

    xex2

    dx = (e

    1)/2 9.

    1

    0

    x

    0

    yx2 y2 dydx =

    1

    0

    1

    3

    x3dx = 1/12

    10.

    21

    y20

    ex/y2

    dxdy =

    21

    (e 1)y2dy = 7(e 1)/3

    11. (a)

    20

    x20

    xydydx =

    20

    1

    2x5dx =

    16

    3

    (b)

    31

    (y+7)/2(y5)/2

    xydxdy =

    31

    (3y2 + 3y)dy = 38

    12. (a) 1

    0x

    x2

    (x + y)dydx = 1

    0

    (x3/2 + x/2 x3 x4/2)dx = 3/10

    (b)

    11

    1x21x2

    xdydx +

    11

    1x21x2

    y d y d x =

    11

    2x

    1 x2 dx + 0 = 0

    13. (a)

    84

    x16/x

    x2dydx =

    84

    (x3 16x)dx = 576

    (b)

    42

    816/y

    x2 dxdy +

    84

    8y

    x2 dxdy =

    84

    512

    3 4096

    3y3

    dy +

    84

    512 y33

    dy

    =640

    3+

    1088

    3= 576

    14. (a)21

    y0

    xy2dxdy =21

    12

    y4dy = 31/10

    (b)

    10

    21

    xy2 dydx +

    21

    2x

    xy2 dydx =

    10

    7x/3 dx +

    21

    8x x43

    dx = 7/6 + 29/15 = 31/10

    15. (a)

    11

    1x21x2

    (3x 2y)dydx =11

    6x

    1 x2 dx = 0

    (b)

    11

    1y2

    1y2(3x 2y) dxdy =

    114y

    1 y2 dy = 0

    16. (a)5025x2

    5x y d y d x =50 (5x x

    2

    )dx = 125/6

    (b)

    50

    25y25y

    y dxdy =

    50

    y

    25 y2 5 + y

    dy = 125/6

    17.

    40

    y0

    x(1 + y2)1/2dxdy =40

    1

    2y(1 + y2)1/2dy = (

    17 1)/2

  • 7/30/2019 Chapter 15 Solutions Calculus

    5/37

    624 Chapter 15

    18.

    0

    x0

    x cos y d y d x =

    0

    x sin x dx =

    19.

    20

    6yy2

    xydxdy =

    20

    1

    2(36y 12y2 + y3 y5)dy = 50/3

    20. /4

    0

    1/2

    sin y

    xdxdy = /4

    0

    1

    4cos2y dy = 1/8

    21.

    10

    xx3

    (x 1)dy dx =10

    (x4 + x3 + x2 x)dx = 7/60

    22.

    1/20

    2xx

    x2dydx +

    11/2

    1/xx

    x2dydx =

    1/20

    x3dx +

    11/2

    (x x3)dx = 1/8

    23. (a)

    -1.5 -1-2 -0.5 0.5 1 1.5

    x

    y

    1

    2

    3

    4

    (b) x = (1.8414, 0.1586), (1.1462, 3.1462)

    (c)

    R

    x dA 1.14621.8414

    x+2ex

    xdydx =

    1.14621.8414

    x(x + 2 ex) dx 0.4044

    (d)

    R

    x dA 3.14620.1586

    ln yy2

    xdxdy =

    3.14620.1586

    ln2 y

    2 (y 2)

    2

    2

    dy 0.4044

    24. (a)

    1 2 3

    5

    15

    25

    x

    y

    R

    (b) (1, 3), (3, 27)

    (c) 3

    1

    4x3x4

    34x+4x2xdydx =

    3

    1

    x[(4x3

    x4)

    (3

    4x + 4x2)] dx =

    224

    15

    25. A =

    /40

    cos xsinx

    dydx =

    /40

    (cos x sin x)dx =

    2 1

    26. A =

    14

    y23y4

    dxdy =

    14

    (y2 3y + 4)dy = 125/6

  • 7/30/2019 Chapter 15 Solutions Calculus

    6/37

    Exercise Set 15.2 625

    27. A =

    33

    9y21y2/9

    dxdy =

    33

    8(1 y2/9)dy = 32

    28. A =

    10

    cosh xsinhx

    dydx =

    10

    (cosh x sinh x)dx = 1 e1

    29. 4063x/20

    (3

    3x/4

    y/2) dydx = 40

    [(3

    3x/4)(6

    3x/2)

    (6

    3x/2)2/4] dx = 12

    30.

    20

    4x20

    4 x2 dydx =

    20

    (4 x2) dx = 16/3

    31. V =

    33

    9x29x2

    (3 x)dydx =33

    (6

    9 x2 2x

    9 x2)dx = 27

    32. V =

    10

    xx2

    (x2 + 3y2)dydx =

    10

    (2x3 x4 x6)dx = 11/70

    33. V =30

    20

    (9x2 + y2)dydx =30

    (18x2 + 8/3)dx = 170

    34. V =

    11

    1y2

    (1 x)dxdy =11

    (1/2 y2 + y4/2)dy = 8/15

    35. V =

    3/23/2

    94x294x2

    (y + 3)dydx =

    3/23/2

    6

    9 4x2 dx = 27/2

    36. V =

    30

    3y2/3

    (9 x2)dxdy =30

    (18 3y2 + y6/81)dy = 216/7

    37. V = 8

    50

    25x20

    25 x2dydx = 8

    50

    (25 x2)dx = 2000/3

    38. V = 2

    20

    1(y1)20

    (x2 + y2)dxdy = 2

    20

    1

    3[1 (y 1)2]3/2 + y2[1 (y 1)2]1/2

    dy,

    let y 1 = sin to get V = 2/2/2

    1

    3cos3 + (1 + sin )2 cos

    cos d which eventually yields

    V = 3/2

    39. V = 4 1

    01x2

    0

    (1

    x2

    y2)dydx =

    8

    3

    1

    0

    (1

    x2)3/2dx = /2

    40. V =

    20

    4x20

    (x2 + y2)dydx =

    20

    x2

    4 x2 + 13

    (4 x2)3/2

    dx = 2

    41.

    20

    2y2

    f(x, y)dxdy 42.

    80

    x/20

    f(x, y)dydx 43.

    e21

    2lnx

    f(x, y)dydx

  • 7/30/2019 Chapter 15 Solutions Calculus

    7/37

    626 Chapter 15

    44.

    10

    eey

    f(x, y)dxdy 45.

    /20

    sinx0

    f(x, y)dydx 46.

    10

    xx2

    f(x, y)dydx

    47.

    40

    y/40

    ey2

    dxdy =

    40

    1

    4yey

    2

    dy = (1 e16)/8

    48. 1

    0

    2x

    0

    cos(x2)dydx = 1

    0

    2x cos(x2)dx = sin1

    49.

    20

    x20

    ex3

    dydx =

    20

    x2ex3

    dx = (e8 1)/3

    50.

    ln 30

    3ey

    xdxdy =1

    2

    ln 30

    (9 e2y)dy = 12

    (9ln3 4)

    51.

    20

    y20

    sin(y3)dxdy =

    20

    y2 sin(y3)dy = (1 cos8)/3

    52. 1

    0 e

    e

    x

    xdydx = 1

    0

    (ex xex)dx = e/2 1

    53. (a)

    40

    2x

    sin y3 dydx; the inner integral is non-elementary.

    20

    y20

    sin

    y3

    dxdy =

    20

    y2 sin

    y3

    dy = 13

    cos

    y3 2

    0

    = 0

    (b)

    10

    /2sin1 y

    sec2(cos x)dxdy ; the inner integral is non-elementary.

    /20

    sin x0

    sec2(cos x)dydx =

    /20

    sec2(cos x)sin x dx = tan 1

    54. V = 4

    2

    0

    4x20

    (x2 + y2) dy dx = 4

    2

    0

    x2

    4 x2 + 13

    (4 x2)3/2

    dx (x = 2sin )

    =

    /20

    64

    3+

    64

    3sin2 128

    3sin4

    d =

    64

    3

    2+

    64

    3

    4 128

    3

    2

    1 32 4 = 8

    55. The region is symmetric with respect to the y-axis, and the integrand is an odd function of x,hence the answer is zero.

    56. This is the volume in the first octant under the surface z =

    1 x2 y2, so 1/8 of the volume ofthe sphere of radius 1, thus

    6.

    57. Area of triangle is 1/2, so f = 210

    1x

    1

    1 + x2 dydx = 210

    11 + x2

    x

    1 + x2

    dx =

    2 ln 2

    58. Area =

    20

    (3x x2 x) dx = 4/3, so

    f =3

    4

    20

    3xx2x

    (x2 xy)dydx = 34

    20

    (2x3 + 2x4 x5/2)dx = 34

    8

    15= 2

    5

  • 7/30/2019 Chapter 15 Solutions Calculus

    8/37

    Exercise Set 15.3 627

    59. Tave =1

    A(R)

    R

    (5xy + x2) dA. The diamond has corners (2, 0), (0,4) and thus has area

    A(R) = 41

    22(4) = 16m2. Since 5xy is an odd function of x (as well as y),

    R

    5xydA = 0. Since

    x2 is an even function of both x and y,

    Tave =4

    16 R

    x,y>0

    x2 dA =1

    4

    2

    0

    42x

    0

    x2 dydx =1

    4

    2

    0

    (4

    2x)x2 dx =1

    44

    3x3

    1

    2x4

    2

    0

    =2

    3

    C

    60. The area of the lens is R2 = 4 and the average thickness Tave is

    Tave =4

    4

    20

    4x20

    1 (x2 + y2)/4 dydx = 1

    20

    1

    6(4 x2)3/2dx (x = 2cos )

    =8

    3

    0

    sin4 d =8

    3

    1 32 4

    2=

    1

    2in

    61. y = sin x and y = x/2 intersect at x = 0 and x = a = 1.895494, so

    V = a

    0 sinx

    x/2 1 + x + y dy dx = 0.676089

    EXERCISE SET 15.3

    1.

    /20

    sin 0

    r cos dr d =

    /20

    1

    2sin2 cos d = 1/6

    2.

    0

    1+cos 0

    rdrd =

    0

    1

    2(1 + cos )2d = 3/4

    3. /2

    0

    a sin

    0

    r2drd = /2

    0

    a3

    3

    sin3 d =2

    9

    a3

    4.

    /60

    cos30

    rdrd =

    /60

    1

    2cos2 3 d = /24

    5.

    0

    1sin 0

    r2 cos drd =

    0

    1

    3(1 sin )3 cos d = 0

    6.

    /20

    cos 0

    r3drd =

    /20

    1

    4cos4 d = 3/64

    7. A = 2

    0

    1cos

    0

    rdrd = 2

    0

    1

    2

    (1

    cos )2d = 3/2

    8. A = 4

    /20

    sin 20

    rdrd = 2

    /20

    sin2 2 d = /2

    9. A =

    /2/4

    1sin2

    rdrd =

    /2/4

    1

    2(1 sin2 2)d = /16

  • 7/30/2019 Chapter 15 Solutions Calculus

    9/37

    628 Chapter 15

    10. A = 2

    /30

    2sec

    r d r d =

    /30

    (4 sec2 )d = 4/3

    3

    11. A = 2

    /2/6

    4sin 2

    rdrd =

    /2/6

    (16 sin2 4)d = 4/3 + 2

    3

    12. A = 2

    /2

    1

    1+cos

    rdrd =

    /2

    (

    2cos

    cos2 )d = 2

    /4

    13. V = 8

    /20

    31

    r

    9 r2 drd = 1283

    2

    /20

    d =64

    3

    2

    14. V = 2

    /20

    2sin 0

    r2drd =16

    3

    /20

    sin3 d = 32/9

    15. V = 2

    /20

    cos 0

    (1 r2)rdrd = 12

    /20

    (2cos2 cos4 )d = 5/32

    16. V = 4 /2

    0

    3

    1

    drd = 8 /2

    0

    d = 4

    17. V =

    /20

    3 sin 0

    r2 sin drd = 9

    /20

    sin4 d = 27/16

    18. V = 4

    /20

    22cos

    r

    4 r2 drd +/2

    20

    r

    4 r2 drd

    =32

    3

    /20

    sin3 d +32

    3

    /2

    d =64

    9+

    16

    3

    19. 2

    0

    1

    0

    er2

    rdrd =1

    2

    (1

    e1)

    2

    0

    d = (1

    e1)

    20.

    /20

    30

    r

    9 r2 drd = 9/20

    d = 9/2

    21.

    /40

    20

    1

    1 + r2rdrd =

    1

    2ln 5

    /40

    d =

    8ln 5

    22.

    /2/4

    2cos 0

    2r2 sin drd =16

    3

    /2/4

    cos3 sin d = 1/3

    23. /2

    0

    1

    0

    r3drd =1

    4

    /2

    0

    d = /8

    24.

    20

    20

    er2

    rdrd =1

    2(1 e4)

    20

    d = (1 e4)

    25.

    /20

    2cos 0

    r2drd =8

    3

    /20

    cos3 d = 16/9

  • 7/30/2019 Chapter 15 Solutions Calculus

    10/37

    Exercise Set 15.3 629

    26.

    /20

    10

    cos(r2)rdrd =1

    2sin1

    /20

    d =

    4sin1

    27.

    /20

    a0

    r

    (1 + r2)3/2drd =

    2

    1 1/

    1 + a2

    28. /4

    0

    sec tan

    0

    r2drd =1

    3

    /4

    0

    sec3 tan3 d = 2(

    2 + 1)/45

    29.

    /40

    20

    r1 + r2

    drd =

    4(

    5 1)

    30.

    /2tan1(3/4)

    53csc

    r d r d =1

    2

    /2tan1(3/4)

    (25 9csc2 )d

    =25

    2

    2 tan1(3/4)

    6 = 25

    2tan1(4/3) 6

    31. V =

    20

    a0

    hrdrd =

    20

    ha2

    2d = a2h

    32. (a) V = 8

    /20

    a0

    c

    a(a2 r2)1/2 rdrd = 4c

    3a(a2 r2)3/2

    a0

    =4

    3a2c

    (b) V 43

    (6378.1370)26356.5231 1,083,168,200,000 km3

    33. V = 2

    /20

    a sin 0

    c

    a(a2 r2)1/2r d r d = 2

    3a2c

    /20

    (1 cos3 )d = (3 4)a2c/9

    34. A = 4

    /40

    a2cos20

    rdrd = 4a2/40

    cos2 d = 2a2

    35. A =

    /4

    /6

    4sin

    8cos2

    r d r d +

    /2

    /4

    4sin

    0

    rdrd

    =

    /4/6

    (8sin2 4cos2)d +/2/4

    8sin2 d = 4/3 + 2

    3 2

    36. A =

    0

    2a sin 0

    rdrd = 2a20

    sin2 d = a2 12

    a2 sin2

    37. (a) I2 =

    +0

    ex2

    dx

    +0

    ey2

    dy

    =

    +0

    +0

    ex2

    dx

    ey

    2

    dy

    =+0

    +0

    ex2

    ey2

    dxdy =+0

    +0

    e(x2

    +y2

    )dxdy

    (b) I2 =

    /20

    +0

    er2

    rdrd =1

    2

    /20

    d = /4 (c) I =

    /2

    38. (a) 1.173108605 (b)

    0

    10

    rer4

    drd =

    10

    rer4

    dr 1.173108605

  • 7/30/2019 Chapter 15 Solutions Calculus

    11/37

    630 Chapter 15

    39. V =

    20

    R0

    D(r)rdrd =

    20

    R0

    kerrdrd = 2k(1 + r)erR0

    = 2k[1 (R + 1)eR]

    40.

    tan1(2)tan1(1/3)

    20

    r3 cos2 drd = 4

    tan1(2)tan1(1/3)

    cos2 d =1

    5+ 2[tan1(2) tan1(1/3)] = 1

    5+

    2

    EXERCISE SET 15.4

    1. (a) z

    xy

    (b)

    x

    y

    z

    (c)

    x

    y

    z

    2. (a)

    y

    x

    z (b) z

    y

    x

    (c) z

    yx

  • 7/30/2019 Chapter 15 Solutions Calculus

    12/37

    Exercise Set 15.4 631

    3. (a) x = u, y = v, z =5

    2+

    3

    2u 2v (b) x = u, y = v, z = u2

    4. (a) x = u, y = v, z =v

    1 + u2(b) x = u, y = v, z =

    1

    3v2 5

    3

    5. (a) x = 5cos u, y = 5sin u, z = v; 0 u 2, 0 v 1(b) x = 2 cos u, y = v, z = 2sin u; 0 u 2, 1 v 3

    6. (a) x = u, y = 1 u, z = v;1 v 1 (b) x = u, y = 5 + 2v, z = v; 0 u 3

    7. x = u, y = sin u cos v, z = sin u sin v 8. x = u, y = eu cos v, z = eu sin v

    9. x = r cos , y = r sin , z =1

    1 + r210. x = r cos , y = r sin , z = er

    2

    11. x = r cos , y = r sin , z = 2r2 cos sin

    12. x = r cos , y = r sin , z = r2(cos2 sin2 )

    13. x = r cos , y = r sin , z =

    9

    r2; r

    5

    14. x = r cos , y = r sin , z = r; r 3 15. x = 12

    cos , y =1

    2 sin , z =

    3

    2

    16. x = 3cos , y = 3sin , z = 3cot 17. z = x 2y; a plane

    18. y = x2 + z2, 0 y 4; part of a circular paraboloid

    19. (x/3)2 + (y/2)2 = 1; 2 z 4; part of an elliptic cylinder

    20. z = x2 + y2; 0 z 4; part of a circular paraboloid

    21. (x/3)

    2

    + (y/4)

    2

    = z2

    ; 0 z 1; part of an elliptic cone22. x2 + (y/2)2 + (z/3)2 = 1; an ellipsoid

    23. (a) x = r cos , y = r sin , z = r, 0 r 2; x = u, y = v, z = u2 + v2; 0 u2 + v2 4

    24. (a) I: x = r cos , y = r sin , z = r2, 0 r 2; II: x = u, y = v, z = u2 + v2; u2 + v2 2

    25. (a) 0 u 3, 0 v (b) 0 u 4,/2 v /2

    26. (a) 0 u 6, v 0 (b) 0 u 5, /2 v 3/2

    27. (a) 0 /2, 0 2 (b) 0 , 0

    28. (a) /2 , 0 2 (b) 0 /2, 0 /2

    29. u = 1, v = 2, ru rv = 2i 4j + k; 2x + 4y z = 5

    30. u = 1, v = 2, ru rv = 4i 2j + 8k; 2x + y 4z = 6

    31. u = 0, v = 1, ru rv = 6k; z = 0 32. ru rv = 2i j 3k; 2x y 3z = 4

  • 7/30/2019 Chapter 15 Solutions Calculus

    13/37

    632 Chapter 15

    33. ru rv = (

    2/2)i (2/2)j + (1/2)k; x y +

    2

    2z =

    2

    8

    34. ru rv = 2i ln 2k; 2x (ln2)z = 0

    35. z =

    9 y2, zx = 0, zy = y/

    9 y2, z2x + z2y + 1 = 9/(9 y2),

    S =2033

    39 y2 dydx =

    2

    0 3 dx = 6

    36. z = 8 2x 2y, z2x + z2y + 1 = 4 + 4 + 1 = 9, S =40

    4x0

    3 dydx =

    40

    3(4 x)dx = 24

    37. z2 = 4x2 + 4y2, 2zzx = 8x so zx = 4x/z, similarly zy = 4y/z thus

    z2x + z2y + 1 = (16x

    2 + 16y2)/z2 + 1 = 5, S =

    10

    xx2

    5 dydx =

    5

    10

    (x x2)dx =

    5/6

    38. z2 = x2 + y2, zx = x/z, zy = y/z, z2x + z

    2y + 1 = (z

    2 + y2)/z2 + 1 = 2,

    S =R

    2 dA = 2 /2

    0

    2cos 0 2 rdrd = 42

    /20 cos

    2

    d = 2

    39. zx = 2x, zy = 2y, z2x + z2y + 1 = 4x2 + 4y2 + 1,

    S =

    R

    4x2 + 4y2 + 1 dA =

    20

    10

    r

    4r2 + 1 drd

    =1

    12(5

    5 1)20

    d = (5

    5 1)/6

    40. zx = 2, zy = 2y, z2x + z2y + 1 = 5 + 4y

    2,

    S =10

    y0

    5 + 4y

    2

    dxdy =10 y

    5 + 4y

    2

    dy = (27 55)/12

    41. r/u = cos vi + sin vj + 2uk, r/v = u sin vi + u cos vj,

    r/u r/v = u4u2 + 1; S =20

    21

    u

    4u2 + 1 du dv = (17

    17 5

    5)/6

    42. r/u = cos vi + sin vj + k, r/v = u sin vi + u cos vj,

    r/u r/v = 2u; S =/20

    2v0

    2 u du dv =

    2

    123

    43. zx = y, zy = x, z2x + z

    2y + 1 = x

    2 + y2 + 1,

    S =

    R

    x2 + y2 + 1 dA =

    /60

    30

    r

    r2 + 1 drd =1

    3(10

    101)

    /60

    d = (10

    101)/18

  • 7/30/2019 Chapter 15 Solutions Calculus

    14/37

  • 7/30/2019 Chapter 15 Solutions Calculus

    15/37

    634 Chapter 15

    54. (a) x = v cos u, y = v sin u, z = f(v), for example (b) x = v cos u, y = v sin u, z = 1/v2

    (c) z

    yx

    55. (x/a)2 + (y/b)2 + (z/c)2 = cos2 v(cos2 u + sin2 u) + sin2 v = 1, ellipsoid

    56. (x/a)2 + (y/b)2 (z/c)2 = cos2 u cosh2 v + sin2 u cosh2 v sinh2 v = 1, hyperboloid of one sheet

    57. (x/a)2 + (y/b)2 (z/c)2 = sinh2 v + cosh2 v(sinh2 u cosh2 u) = 1, hyperboloid of two sheets

    EXERCISE SET 15.5

    1.

    11

    20

    10

    (x2 + y2 + z2)dxdydz =

    11

    20

    (1/3 + y2 + z2)dydz =

    11

    (10/3 + 2z2)dz = 8

    2.

    1/21/3

    0

    10

    zx sin xy dz dy dx =

    1/21/3

    0

    1

    2x sin xydydx =

    1/21/3

    1

    2(1 cos x)dx = 1

    12+

    3 24

    3.

    20

    y21

    z1

    yz dx dz dy =

    20

    y21

    (yz2 + yz)dz dy =

    20

    1

    3y7 +

    1

    2y5 1

    6y

    dy =

    47

    3

    4.

    /4

    0

    1

    0

    x2

    0

    x cos y dz dxdy =

    /4

    0

    1

    0

    x3 cos ydxdy =

    /4

    0

    14

    cos y dy = 2/8

    5.

    30

    9z20

    x0

    xydydxdz =

    30

    9z20

    1

    2x3dxdz =

    30

    1

    8(81 18z2 + z4)dz = 81/5

    6.

    31

    x2x

    ln z0

    xey dy dz dx =

    31

    x2x

    (xz x)dz dx =31

    1

    2x5 3

    2x3 + x2

    dx = 118/3

    7.

    20

    4x20

    3x2y25+x2+y2

    x dz dydx =

    20

    4x20

    [2x(4 x2) 2xy2]dydx

    =

    2

    0

    43

    x(4 x2)3/2dx = 128/15

    8.

    21

    2z

    3y0

    y

    x2 + y2dxdydz =

    21

    2z

    3dydz =

    21

    3(2 z)dz = /6

  • 7/30/2019 Chapter 15 Solutions Calculus

    16/37

    Exercise Set 15.5 635

    9.

    0

    10

    /60

    xy sin yz dz dy dx =

    0

    10

    x[1 cos(y/6)]dydx =0

    (1 3/)x dx = ( 3)/2

    10.

    11

    1x20

    y0

    y dz dydx =

    11

    1x20

    y2dydx =

    11

    1

    3(1 x2)3dx = 32/105

    11.20

    x0

    2x20

    xyz dz dy dx =20

    x0

    1

    2 xy(2 x2)2dydx =20

    1

    4 x3(2 x2)2dx = 1/6

    12.

    /2/6

    /2y

    xy0

    cos(z/y)dz dx dy =

    /2/6

    /2y

    y sin xdxdy =

    /2/6

    y cos y dy = (5 6

    3)/12

    13.

    30

    21

    12

    x + z2

    ydzdydx 9.425

    14. 8

    10

    1x20

    1x2y20

    ex2y2z2 dz dy dx 2.381

    15. V =

    40

    (4x)/20

    (123x6y)/40

    dz dy dx =

    40

    (4x)/20

    1

    4(12 3x 6y)dydx

    =

    40

    3

    16(4 x)2dx = 4

    16. V =

    10

    1x0

    y0

    dz dy dx =

    10

    1x0

    y d y d x =

    10

    2

    3(1 x)3/2dx = 4/15

    17. V = 2 2

    0 4

    x2 4y

    0

    dz dy dx = 2 2

    0 4

    x2(4 y)dydx = 2

    2

    0 8 4x2 +

    1

    2x4 dx = 256/15

    18. V =

    10

    y0

    1y20

    dz dx dy =

    10

    y0

    1 y2 dxdy =

    10

    y

    1 y2 dy = 1/3

    19. The projection of the curve of intersection onto the xy-plane is x2 + y2 = 1,

    V = 4

    10

    1x20

    43y24x2+y2

    dz dy dx

    20. The projection of the curve of intersection onto the xy-plane is 2x2 + y2 = 4,

    V = 420

    42x20

    8x2y23x2+y2

    dz dy dx

    21. V = 2

    33

    9x2/30

    x+30

    dz dy dx 22. V = 8

    10

    1x20

    1x20

    dz dy dx

  • 7/30/2019 Chapter 15 Solutions Calculus

    17/37

    636 Chapter 15

    23. (a)

    (0, 0, 1)

    (1, 0, 0)(0, 1, 0)

    z

    y

    x

    (b)

    (0, 9, 9)

    (3, 9, 0)

    z

    x

    y

    (c)

    (0, 0, 1)

    (1, 2, 0)

    x

    y

    z

    24. (a)

    (3, 9, 0)

    (0, 0, 2)

    x

    y

    z

    (b)(0, 0, 2)

    (0, 2, 0)

    (2, 0, 0)

    x

    y

    z

    (c)

    (2, 2, 0)

    (0, 0, 4)

    x

    y

    z

    25. V = 1

    0 1x

    0 1xy

    0

    dz dy dx = 1/6, fave = 6 1

    0 1x

    0 1xy

    0

    (x + y + z) dz dy dx =3

    4

    26. The integrand is an odd function of each of x, y, and z, so the answer is zero.

    27. The volume V =3

    2, and thus

    rave =

    2

    3

    G

    x2 + y2 + z2 dV =

    2

    3

    1/21/

    2

    12x212x2

    67x2y25x2+5y2

    x2 + y2 + z2dzdydx 3.291

  • 7/30/2019 Chapter 15 Solutions Calculus

    18/37

    Exercise Set 15.5 637

    28. V = 1, dave =1

    V

    10

    10

    10

    (x z)2 + (y z)2 + z2 dxdydz 0.771

    29. (a)

    a0

    b(1x/a)0

    c(1x/ay/b)0

    dz dy dx,

    b0

    a(1y/b)0

    c(1x/ay/b)0

    dz dx dy,

    c0

    a(1z/c)0

    b(1x/az/c)0

    dydxdz,

    a0

    c(1x/a)0

    b(1x/az/c)0

    dy dz dx,

    c

    0

    b(1z/c)

    0

    a(1y/bz/c)

    0

    dxdy dz,

    b

    0

    c(1y/b)

    0

    a(1y/bz/c)

    0

    dx dz dy

    (b) Use the first integral in Part (a) to geta0

    b(1x/a)0

    c

    1 xa y

    b

    dydx =

    a0

    1

    2bc

    1 xa

    2dx =

    1

    6abc

    30. V = 8

    a0

    b1x2/a20

    c1x2/a2y2/b20

    dz dy dx

    31. (a) 2

    04x2

    0

    5

    0

    f(x,y,z) dzdydx

    (b)

    90

    3x0

    3xy

    f(x, y, z) dzdydx (c)

    20

    4x20

    8yy

    f(x,y,z) dzdydx

    32. (a)

    30

    9x20

    9x2y20

    f(x, y, z)dz dy dx

    (b)

    40

    x/20

    20

    f(x, y, z)dz dy dx (c)

    20

    4x20

    4yx2

    f(x,y,z)dz dy dx

    33. (a) At any point outside the closed sphere {x2 + y2 + z2 1} the integrand is negative, so tomaximize the integral it suffices to include all points inside the sphere; hence the maximumvalue is taken on the region G = {x2 + y2 + z2 1}.

    (b) 4.934802202

    (c)

    20

    0

    10

    (1 2)ddd = 2

    2

    34.

    ba

    dc

    k

    f(x)g(y)h(z)dz dy dx =

    ba

    dc

    f(x)g(y)

    k

    h(z)dz

    dydx

    =

    ba

    f(x)

    dc

    g(y)dy

    dx

    k

    h(z)dz

    = b

    a

    f(x)dxd

    c

    g(y)dy

    k

    h(z)dz35. (a)

    11

    x dx

    10

    y2dy

    /20

    sin z dz

    = (0)(1/3)(1) = 0

    (b)

    10

    e2xdx

    ln 30

    eydy

    ln 20

    ezdz

    = [(e2 1)/2](2)(1/2) = (e2 1)/2

  • 7/30/2019 Chapter 15 Solutions Calculus

    19/37

    638 Chapter 15

    EXERCISE SET 15.6

    1. Let a be the unknown coordinate of the fulcrum; then the total moment about the fulcrum is5(0 a) + 10(5 a) + 20(10 a) = 0 for equilibrium, so 250 35a = 0, a = 50/7. The fulcrumshould be placed 50/7 units to the right of m1.

    2. At equilibrium, 10(0 4) + 3(2 4) + 4(3 4) + m(6 4) = 0, m = 25

    3. A = 1, x =

    1

    0

    1

    0

    xdydx =1

    2, y =

    1

    0

    1

    0

    y d y d x =1

    2

    4. A = 2, x =1

    2

    G

    xdydx, and the region of integration is symmetric with respect to the x-axes

    and the integrand is an odd function of x, so x = 0. Likewise, y = 0.

    5. A = 1/2,

    R

    x dA =

    10

    x0

    xdydx = 1/3,

    R

    y dA =

    10

    x0

    y d y d x = 1/6;

    centroid (2/3, 1/3)

    6. A =

    10

    x20

    dydx = 1/3,

    R

    x dA =

    10

    x20

    xdydx = 1/4,

    R

    y dA =

    10

    x20

    y d y d x = 1/10; centroid (3/4, 3/10)

    7. A =

    10

    2x2x

    dydx = 7/6,

    R

    x dA =

    10

    2x2x

    xdydx = 5/12,

    R

    y dA =

    10

    2x2x

    y d y d x = 19/15; centroid (5/14, 38/35)

    8. A =

    4,

    R

    x dA =

    10

    1x20

    xdydx =1

    3, x =

    4

    3, y =

    4

    3by symmetry

    9. x = 0 from the symmetry of the region,

    A =1

    2(b2 a2),

    R

    y dA =

    0

    ba

    r2 sin drd =2

    3(b3 a3); centroid x = 0, y = 4(b

    3 a3)3(b2 a2) .

    10. y = 0 from the symmetry of the region, A = a2/2,

    R

    x dA = /2

    /2 a

    0

    r2 cos drd = 2a3/3; centroid 4a3

    , 0

    11. M=

    R

    (x, y)dA =

    10

    10

    |x + y 1| dxdy

    =

    10

    1x0

    (1 x y) dy +11x

    (x + y 1) dy

    dx =1

    3

  • 7/30/2019 Chapter 15 Solutions Calculus

    20/37

    Exercise Set 15.6 639

    x = 3

    10

    10

    x(x, y) dydx = 3

    10

    1x0

    x(1 x y) dy +11x

    x(x + y 1) dy

    dx =1

    2

    By symmetry, y =1

    2as well; center of gravity (1/2, 1/2)

    12. x =1

    M

    G

    x(x, y) dA, and the integrand is an odd function of x while the region is symmetric

    with respect to the y-axis, thus x = 0; likewise y = 0.

    13. M =

    10

    x0

    (x + y)dydx = 13/20, Mx =

    10

    x0

    (x + y)y d y d x = 3/10,

    My =

    10

    x0

    (x + y)xdydx = 19/42, x = My/M = 190/273, y = Mx/M = 6/13;

    the mass is 13/20 and the center of gravity is at (190/273, 6/13).

    14. M =

    0

    sin x0

    y d y d x = /4, x = /2 from the symmetry of the density and the region,

    Mx =0sinx0 y

    2

    dydx = 4/9, y = Mx/M =

    16

    9 ; mass /4, center of gravity

    2 ,

    16

    9

    .

    15. M =

    /20

    a0

    r3 sin cos drd = a4/8, x = y from the symmetry of the density and the

    region, My =

    /20

    a0

    r4 sin cos2 drd = a5/15, x = 8a/15; mass a4/8, center of gravity

    (8a/15, 8a/15).

    16. M =

    0

    10

    r3drd = /4, x = 0 from the symmetry of density and region,

    Mx =

    0

    1

    0

    r4 sin drd = 2/5, y =8

    5

    ; mass /4, center of gravity 0,8

    5.

    17. V = 1, x =

    10

    10

    10

    x dz dydx =1

    2, similarly y = z =

    1

    2; centroid

    1

    2,

    1

    2,

    1

    2

    18. symmetry,

    G

    z dz dy dx =

    20

    20

    10

    rz dr d dz = 2, centroid = (0, 0, 1)

    19. x = y = z from the symmetry of the region, V = 1/6,

    x =1

    V

    10

    1x0

    1xy0

    x dz dydx = (6)(1/24) = 1/4; centroid (1/4, 1/4, 1/4)

    20. The solid is described by 1 y 1, 0 z 1 y2, 0 x 1 z;

    V =

    11

    1y20

    1z0

    dx dz dy =4

    5, x =

    1

    V

    11

    1y20

    1z0

    x dxdz dy =5

    14, y = 0 by symmetry,

    z =1

    V

    11

    1y20

    1z0

    z dx dz dy =2

    7; the centroid is

    5

    14, 0,

    2

    7

    .

  • 7/30/2019 Chapter 15 Solutions Calculus

    21/37

    640 Chapter 15

    21. x = 1/2 and y = 0 from the symmetry of the region,

    V =

    10

    11

    1y2

    dz dy dx = 4/3, z =1

    V

    G

    z dV = (3/4)(4/5) = 3/5; centroid (1/2, 0, 3/5)

    22. x = y from the symmetry of the region,

    V = 2

    0

    2

    0

    xy

    0

    dz dy dx = 4, x =1

    VG

    x dV = (1/4)(16/3) = 4/3,

    z =1

    V

    G

    z dV = (1/4)(32/9) = 8/9; centroid (4/3, 4/3, 8/9)

    23. x = y = z from the symmetry of the region, V = a3/6,

    x =1

    V

    a0

    a2x20

    a2x2y20

    x dz dydx =1

    V

    a0

    a2x20

    x

    a2 x2 y2 dydx

    =1

    V

    /20

    a0

    r2

    a2 r2 cos drd = 6a3

    (a4/16) = 3a/8; centroid (3a/8, 3a/8, 3a/8)

    24. x = y = 0 from the symmetry of the region, V = 2a3/3

    z =1

    V

    aa

    a2x2a2x2

    a2x2y20

    z dz dy dx =1

    V

    aa

    a2x2a2x2

    1

    2(a2 x2 y2)dydx

    =1

    V

    20

    a0

    1

    2(a2 r2)rdrd = 3

    2a3(a4/4) = 3a/8; centroid (0, 0, 3a/8)

    25. M =

    a0

    a0

    a0

    (a x)dz dy dx = a4/2, y = z = a/2 from the symmetry of density and

    region, x =1

    M a

    0

    a

    0

    a

    0

    x(a x)dz dy dx = (2/a4)(a5/6) = a/3;

    mass a4/2, center of gravity (a/3, a/2, a/2)

    26. M =

    aa

    a2x2a2x2

    h0

    (h z)dz dy dx = 12

    a2h2, x = y = 0 from the symmetry of density

    and region, z =1

    M

    G

    z(h z)dV = 2a2h2

    (a2h3/6) = h/3;

    mass a2h2/2, center of gravity (0, 0, h/3)

    27. M = 1

    1 1

    0

    1y2

    0

    yz dz dy dx = 1/6, x = 0 by the symmetry of density and region,

    y =1

    M

    G

    y2z dV = (6)(8/105) = 16/35, z =1

    M

    G

    yz2dV = (6)(1/12) = 1/2;

    mass 1/6, center of gravity (0, 16/35, 1/2)

  • 7/30/2019 Chapter 15 Solutions Calculus

    22/37

    Exercise Set 15.6 641

    28. M =

    30

    9x20

    10

    xz dz dy dx = 81/8, x =1

    M

    G

    x2z dV = (8/81)(81/5) = 8/5,

    y =1

    M

    G

    xyz dV = (8/81)(243/8) = 3, z =1

    M

    G

    xz2dV = (8/81)(27/4) = 2/3;

    mass 81/8, center of gravity (8/5, 3, 2/3)

    29. (a) M =10

    10

    k(x2 + y2)dy dx = 2k/3, x = y from the symmetry of density and region,

    x =1

    M

    R

    kx(x2 + y2)dA =3

    2k(5k/12) = 5/8; center of gravity (5/8, 5/8)

    (b) y = 1/2 from the symmetry of density and region,

    M =

    10

    10

    kxdydx = k/2, x =1

    M

    R

    kx2dA = (2/k)(k/3) = 2/3,

    center of gravity (2/3, 1/2)

    30. (a) x = y = z from the symmetry of density and region,

    M =10

    10

    10

    k(x2

    + y2

    + z2

    )dz dy dx = k,

    x =1

    M

    G

    kx(x2 + y2 + z2)dV = (1/k)(7k/12) = 7/12; center of gravity (7/12, 7/12, 7/12)

    (b) x = y = z from the symmetry of density and region,

    M =

    10

    10

    10

    k(x + y + z)dz dy dx = 3k/2,

    x =1

    M

    G

    kx(x + y + z)dV =2

    3k(5k/6) = 5/9; center of gravity (5/9, 5/9, 5/9)

    31. V =G

    dV =0

    sinx0

    1/(1+x2+y2)0

    dz dy dx = 0.666633,

    x =1

    V

    G

    xdV = 1.177406, y =1

    V

    G

    ydV = 0.353554, z =1

    V

    G

    zdV = 0.231557

    32. (b) Use polar coordinates for x and y to get

    V =

    G

    dV =

    20

    a0

    1/(1+r2)0

    r dz dr d = ln(1 + a2),

    z =1

    V G

    zdV =a2

    2(1 + a2) ln(1 + a2)

    Thus lima0+

    z =1

    2; lima+

    z = 0.

    lima0+

    z =1

    2; lima+

    z = 0

    (c) Solve z = 1/4 for a to obtain a 1.980291.

  • 7/30/2019 Chapter 15 Solutions Calculus

    23/37

    642 Chapter 15

    33. Let x = r cos , y = r sin , and dA = rdrd in formulas (11) and (12).

    34. x = 0 from the symmetry of the region, A =

    20

    a(1+sin )0

    rdrd = 3a2/2,

    y =1

    A

    20

    a(1+sin )0

    r2 sin drd =2

    3a2(5a3/4) = 5a/6; centroid (0, 5a/6)

    35. x = y from the symmetry of the region, A =/20

    sin 20

    rdrd = /8,

    x =1

    A

    /20

    sin20

    r2 cos drd = (8/)(16/105) =128

    105; centroid

    128

    105,

    128

    105

    36. x = 3/2 and y = 1 from the symmetry of the region,R

    x dA = xA = (3/2)(6) = 9,

    R

    y dA = yA = (1)(6) = 6

    37. x = 0 from the symmetry of the region, a2/2 is the area of the semicircle, 2y is the distancetraveled by the centroid to generate the sphere so 4a3/3 = (a2/2)(2y), y = 4a/(3)

    38. (a) V =

    1

    2a2

    2

    a +

    4a

    3

    =

    1

    3(3 + 4)a3

    (b) the distance between the centroid and the line is

    2

    2

    a +

    4a

    3

    so

    V =

    1

    2a2

    2

    2

    2

    a +

    4a

    3

    =

    1

    6

    2(3 + 4)a3

    39. x = k so V = (ab)(2k) = 22abk

    40. y = 4 from the symmetry of the region,

    A =

    22

    8x2x2

    dydx = 64/3 so V = (64/3)[2(4)] = 512/3

    41. The region generates a cone of volume1

    3ab2 when it is revolved about the x-axis, the area of the

    region is1

    2ab so

    1

    3ab2 =

    1

    2ab

    (2y), y = b/3. A cone of volume

    1

    3a2b is generated when the

    region is revolved about the y-axis so1

    3a2b =

    1

    2ab

    (2x), x = a/3. The centroid is (a/3, b/3).

    42. Ix = a

    0 b

    0

    y2 d y d x =1

    3ab3, Iy =

    a

    0 b

    0

    x2 d y d x =1

    3a3b,

    Iz =

    a0

    b0

    (x2 + y2) d y d x =1

    3ab(a2 + b2)

    43. Ix =

    20

    a0

    r3 sin2 d r d = a4/4; Iy =

    20

    a0

    r3 cos2 d r d = a4/4 = Ix;

    Iz = Ix + Iy = a4/2

  • 7/30/2019 Chapter 15 Solutions Calculus

    24/37

    Exercise Set 15.7 643

    EXERCISE SET 15.7

    1.

    20

    10

    1r20

    zr dz drd =

    20

    10

    1

    2(1 r2)rdrd =

    20

    1

    8d = /4

    2.

    /20

    cos 0

    r20

    r sin dz drd =

    /20

    cos 0

    r3 sin drd =

    /20

    1

    4cos4 sin d = 1/20

    3.

    /2

    0

    /2

    0

    1

    0

    3 sin cos ddd =

    /2

    0

    /2

    0

    14

    sin cos dd =

    /2

    0

    18

    d = /16

    4.

    20

    /40

    a sec 0

    2 sin ddd =

    20

    /40

    1

    3a3 sec3 sin dd =

    20

    1

    6a3d = a3/3

    5. V =

    20

    30

    9r2

    r dz drd =

    20

    30

    r(9 r2)drd =20

    81

    4d = 81/2

    6. V = 2

    20

    20

    9r20

    r dz drd = 2

    20

    20

    r

    9 r2drd

    =

    2

    3 (27 55) 2

    0 d = 4(27 55)/37. r2 + z2 = 20 intersects z = r2 in a circle of radius 2; the volume consists of two portions, one inside

    the cylinder r =

    20 and one outside that cylinder:

    V =

    20

    20

    r220r2

    r dz drd +

    20

    202

    20r220r2

    r dz drd

    =

    20

    20

    r

    r2 +

    20 r2

    drd +

    20

    202

    2r

    20 r2 drd

    =4

    3(10

    5 13)

    20

    d +128

    3

    20

    d =152

    3 +

    80

    3

    5

    8. z = hr/a intersects z = h in a circle of radius a,

    V =

    20

    a0

    hhr/a

    r dz drd =

    20

    a0

    h

    a(ar r2)drd =

    20

    1

    6a2h d = a2h/3

    9. V =

    20

    /30

    40

    2 sin ddd =

    20

    /30

    64

    3sin dd =

    32

    3

    20

    d = 64/3

    10. V =

    20

    /40

    21

    2 sin ddd =

    20

    /40

    7

    3sin dd =

    7

    6(2

    2)

    20

    d = 7(2

    2)/3

    11. In spherical coordinates the sphere and the plane z = a are = 2a and = a sec , respectively.They intersect at = /3,

    V =

    2

    0

    /3

    0

    a sec

    0

    2 sin ddd +

    2

    0

    /2

    /3

    2a

    0

    2 sin ddd

    =

    20

    /30

    1

    3a3 sec3 sin dd +

    20

    /2/3

    8

    3a3 sin dd

    =1

    2a320

    d +4

    3a320

    d = 11a3/3

  • 7/30/2019 Chapter 15 Solutions Calculus

    25/37

    644 Chapter 15

    12. V =

    20

    /2/4

    30

    2 sin ddd =

    20

    /2/4

    9sin dd =9

    2

    2

    20

    d = 9

    2

    13.

    /20

    a0

    a2r20

    r3 cos2 dz drd =

    /20

    a0

    (a2r3 r5)cos2 drd

    =1

    12a6

    /2

    0

    cos2 d = a6/48

    14.

    0

    /20

    10

    e3

    2 sin ddd =1

    3(1 e1)

    0

    /20

    sin dd = (1 e1)/3

    15.

    /20

    /40

    80

    4 cos2 sin ddd = 32(2

    2 1)/15

    16.

    20

    0

    30

    3 sin ddd = 81

    17. (a) /2

    /3

    4

    1

    2

    2

    r tan3 1 + z

    2dz dr d =

    /3

    /6

    tan3 d4

    1

    r dr2

    2

    11 + z

    2dz

    =

    4

    3 1

    2ln 3

    15

    2

    2ln(

    5 2)

    =

    5

    2(8 + 3ln 3)ln(

    5 2)

    (b)

    /2/3

    41

    22

    y tan3 z1 + x2

    dxdy dz; the region is a rectangular solid with sides /6, 3, 4.

    18.

    /20

    /40

    1

    18cos37 cos dd =

    2

    36

    /20

    cos37 d =4,294,967,296

    755,505,013,725

    2 0.008040

    19. (a) V = 2

    20

    a0

    a2r20

    r dz drd = 4a3/3

    (b) V =

    20

    0

    a0

    2 sin ddd = 4a3/3

    20. (a)

    20

    4x20

    4x2y20

    xyz dz dy dx

    =

    20

    4x20

    1

    2xy(4 x2 y2)dydx = 1

    8

    20

    x(4 x2)2dx = 4/3

    (b)

    /20

    20

    4r20

    r3z sin cos dz drd

    =/20

    20

    1

    2 (4r3

    r5

    )sin cos drd =

    8

    3/20 sin cos d = 4/3

    (c)

    /20

    /20

    20

    5 sin3 cos sin cos ddd

    =

    /20

    /20

    32

    3sin3 cos sin cos dd =

    8

    3

    /20

    sin cos d = 4/3

  • 7/30/2019 Chapter 15 Solutions Calculus

    26/37

    Exercise Set 15.7 645

    21. M =

    20

    30

    3r

    (3 z)r dz drd =20

    30

    1

    2r(3 r)2drd = 27

    8

    20

    d = 27/4

    22. M =

    20

    a0

    h0

    k zrdz dr d =

    20

    a0

    1

    2kh2rdrd =

    1

    4ka2h2

    20

    d = ka2h2/2

    23. M = 2

    0

    0

    a

    0

    k3 sin ddd = 2

    0

    0

    1

    4ka4 sin dd =

    1

    2ka4

    2

    0

    d = ka4

    24. M =

    20

    0

    21

    sin ddd =

    20

    0

    3

    2sin dd = 3

    20

    d = 6

    25. x = y = 0 from the symmetry of the region,

    V =

    20

    10

    2r2r2

    r dz drd =

    20

    10

    (r

    2 r2 r3)drd = (8

    2 7)/6,

    z =1

    V

    20

    10

    2r2r2

    zr dz drd =6

    (8

    2 7) (7/12) = 7/(16

    2 14);

    centroid 0, 0, 7162 14

    26. x = y = 0 from the symmetry of the region, V = 8/3,

    z =1

    V

    20

    20

    2r

    zr dz drd =3

    8(4) = 3/2; centroid (0, 0, 3/2)

    27. x = y = z from the symmetry of the region, V = a3/6,

    z =1

    V

    /20

    /20

    a0

    3 cos sin ddd =6

    a3(a4/16) = 3a/8;

    centroid (3a/8, 3a/8, 3a/8)

    28. x = y = 0 from the symmetry of the region, V =20

    /30

    40

    2 sin ddd = 64/3,

    z =1

    V

    20

    /30

    40

    3 cos sin ddd =3

    64(48) = 9/4; centroid (0, 0, 9/4)

    29. y = 0 from the symmetry of the region, V = 2

    /20

    2 cos 0

    r20

    r dz drd = 3/2,

    x =2

    V

    /20

    2 cos 0

    r20

    r2 cos dz drd =4

    3() = 4/3,

    z =2

    V /2

    0 2cos

    0 r2

    0

    rz dz dr d =4

    3(5/6) = 10/9; centroid (4/3, 0, 10/9)

    30. M=

    /20

    2 cos 0

    4r20

    zr dz drd =

    /20

    2cos 0

    1

    2r(4 r2)2drd

    =16

    3

    /20

    (1 sin6 )d = (16/3)(11/32) = 11/6

  • 7/30/2019 Chapter 15 Solutions Calculus

    27/37

    646 Chapter 15

    31. V =

    /20

    /3/6

    20

    2 sin ddd =

    /20

    /3/6

    8

    3sin dd =

    4

    3(

    3 1)/20

    d

    = 2(

    3 1)/3

    32. M =

    20

    /40

    10

    3 sin ddd =

    20

    /40

    1

    4sin dd =

    1

    8(2

    2)

    20

    d = (2

    2)/4

    33. x = y = 0 from the symmetry of density and region,

    M =

    20

    10

    1r20

    (r2 + z2)r dz drd = /4,

    z =1

    M

    20

    10

    1r20

    z(r2+z2)r dz drd = (4/)(11/120) = 11/30; center of gravity (0, 0, 11/30)

    34. x = y = 0 from the symmetry of density and region, M =

    20

    10

    r0

    zr dz drd = /4,

    z =1

    M 2

    0 1

    0 r

    0

    z2r dz drd = (4/)(2/15) = 8/15; center of gravity (0, 0, 8/15)

    35. x = y = 0 from the symmetry of density and region,

    M =

    20

    /20

    a0

    k3 sin ddd = ka4/2,

    z =1

    M

    20

    /20

    a0

    k4 sin cos ddd =2

    ka4(ka5/5) = 2a/5; center of gravity (0, 0, 2a/5)

    36. x = z = 0 from the symmetry of the region, V = 54/3 16/3 = 38/3,

    y =1

    V

    0

    0

    32

    3 sin2 sin ddd =1

    V

    0

    0

    65

    4sin2 sin dd

    =1V

    0

    658

    sin d =3

    38(65/4) = 195/152; centroid (0, 195/152, 0)

    37. M =

    20

    0

    R0

    0e(/R)32 sin ddd =

    20

    0

    1

    3(1 e1)R30 sin dd

    =4

    3(1 e1)0R3

    38. (a) The sphere and cone intersect in a circle of radius 0 sin 0,

    V = 2

    1 0 sin0

    0 20r2

    r cot 0

    r dz drd = 2

    1 0 sin0

    0 r20 r2 r2 cot 0 drd

    =

    21

    1

    330(1 cos3 0 sin3 0 cot 0)d =

    1

    330(1 cos3 0 sin2 0 cos 0)(2 1)

    =1

    330(1 cos 0)(2 1).

  • 7/30/2019 Chapter 15 Solutions Calculus

    28/37

    Exercise Set 15.8 647

    (b) From Part (a), the volume of the solid bounded by = 1, = 2, = 1, = 2, and

    = 0 is1

    330(1 cos 2)(2 1)

    1

    330(1 cos 1)(2 1) =

    1

    330(cos 1 cos 2)(2 1)

    so the volume of the spherical wedge between = 1 and = 2 is

    V =1

    332(cos 1 cos 2)(2 1)

    1

    331(cos 1 cos 2)(2 1)

    =

    1

    3 (

    3

    2 3

    1)(cos 1 cos 2)(2 1)(c)

    d

    dcos = sin so from the Mean-Value Theorem cos 2cos 1 = (21)sin where

    is between 1 and 2. Similarlyd

    d3 = 32 so 3231 = 32(21) where is between

    1 and 2. Thus cos 1cos 2 = sin and 3231 = 32 so V = 2 sin .

    39. Iz =

    20

    a0

    h0

    r2 r dz dr d =

    20

    a0

    h0

    r3dz dr d =1

    2a4h

    40. Iy = 2

    0

    a

    0

    h

    0

    (r2 cos2 + z2)r dz drd = 2

    0

    a

    0

    (hr3 cos2 +1

    3

    h3r)drd

    =

    20

    1

    4a4h cos2 +

    1

    6a2h3

    d =

    4

    a4h +

    3a2h3

    41. Iz =

    20

    a2a1

    h0

    r2 r dz dr d =

    20

    a2a1

    h0

    r3dz dr d =1

    2h(a42 a41)

    42. Iz =

    20

    0

    a0

    (2 sin2 ) 2 sin ddd =

    20

    0

    a0

    4 sin3 ddd =8

    15a5

    EXERCISE SET 15.8

    1.(x, y)

    (u, v)=

    1 43 5 = 17 2. (x, y)(u, v) =

    1 4v4u 1 = 1 16uv

    3.(x, y)

    (u, v)=

    cos u sin vsin u cos v = cos u cos v + sin u sin v = cos(u v)

    4.(x, y)

    (u, v)=

    2(v2 u2)(u2 + v2)2

    4uv(u2 + v2)2

    4uv

    (u2 + v2)22(v2 u2)(u2 + v2)2

    = 4/(u2 + v2)2

    5. x =2

    9u +

    5

    9v, y = 1

    9u +

    2

    9v;

    (x, y)

    (u, v)=

    2/9 5/91/9 2/9 = 19

    6. x = ln u, y = uv;(x, y)

    (u, v)=

    1/u 0v u = 1

  • 7/30/2019 Chapter 15 Solutions Calculus

    29/37

    648 Chapter 15

    7. x =

    u + v/

    2, y =

    v u/2; (x, y)(u, v)

    =

    1

    2

    2

    u + v

    1

    2

    2

    u + v

    12

    2

    v u1

    2

    2

    v u

    =

    1

    4

    v2 u2

    8. x = u3/2/v1/2, y = v1/2/u1/2;(x, y)

    (u, v)

    =

    3u1/2

    2v1/2 u

    3/2

    2v3/2

    v1/22u3/2

    12u1/2v1/2

    =1

    2v

    9.(x, y, z)

    (u, v, w)=

    3 1 01 0 20 1 1

    = 5

    10.(x, y, z)

    (u, v, w)=

    1 v u 0

    v vw u uw uvvw uw uv

    = u2v

    11. y = v, x = u/y = u/v,z = w

    x = w

    u/v;(x, y, z)

    (u,v,w)=

    1/v u/v2 00 1 0

    1/v u/v2 1 = 1/v

    12. x = (v + w)/2, y = (u w)/2, z = (u v)/2, (x, y, z)(u, v, w)

    =

    0 1/2 1/2

    1/2 0 1/21/2 1/2 0

    = 1

    4

    13.

    x

    y

    (0, 2)

    (1, 0) (1, 0)

    (0, 0)

    14.

    1 2 3

    1

    2

    3

    4

    x

    y

    (0, 0) (4, 0)

    (3, 4)

    15.

    -3 3

    -3

    3

    x

    y

    (2, 0)

    (0, 3) 16.

    1 2

    1

    2

    x

    y

    17. x =1

    5u +

    2

    5v, y = 2

    5u +

    1

    5v,

    (x, y)

    (u, v)=

    1

    5;

    1

    5

    S

    u

    vdAuv =

    1

    5

    31

    41

    u

    vdu dv =

    3

    2ln 3

  • 7/30/2019 Chapter 15 Solutions Calculus

    30/37

    Exercise Set 15.8 649

    18. x =1

    2u +

    1

    2v, y =

    1

    2u 1

    2v,

    (x, y)

    (u, v)= 1

    2;

    1

    2

    S

    veuvdAuv =1

    2

    41

    10

    veuvdu dv =1

    2(e4 e 3)

    19. x = u + v, y = u v, (x, y)(u, v)

    = 2; the boundary curves of the region S in the uv-plane are

    v = 0, v = u, and u = 1 so 2 S

    sin u cos vdAuv = 2 1

    0

    u

    0

    sin u cos v dv du = 1

    1

    2

    sin2

    20. x =

    v/u, y =

    uv so, from Example 3,(x, y)

    (u, v)= 1

    2u; the boundary curves of the region S in

    the uv-plane are u = 1, u = 3, v = 1, and v = 4 so

    S

    uv2

    1

    2u

    dAuv =

    1

    2

    41

    31

    v2du dv = 21

    21. x = 3u, y = 4v,(x, y)

    (u, v)= 12; S is the region in the uv-plane enclosed by the circle u2 + v2 = 1.

    Use polar coordinates to obtainS

    12

    u2

    + v2

    (12) dAuv = 14420

    10 r

    2

    dr d = 96

    22. x = 2u, y = v,(x, y)

    (u, v)= 2; S is the region in the uv-plane enclosed by the circle u2 + v2 = 1. Use

    polar coordinates to obtain

    S

    e(4u2+4v2)(2) dAuv = 2

    20

    10

    re4r2

    dr d = (1 e4)/2

    23. Let S be the region in the uv-plane bounded by u2 + v2 = 1, so u = 2x, v = 3y,

    x = u/2, y = v/3,(x, y)

    (u, v)

    = 1/2 00 1/3

    = 1/6, use polar coordinates to get1

    6

    S

    sin(u2 + v2)dudv =1

    6

    /20

    10

    r sin r2 drd =

    24( cos r2)

    10

    =

    24(1 cos1)

    24. u = x/a,v = y/b,x = au,y = bv;(x, y)

    (u, v)= ab; A = ab

    20

    10

    r d r d = ab

    25. x = u/3, y = v/2, z = w,(x, y, z)

    (u,v,w)= 1/6; S is the region in uvw-space enclosed by the sphere

    u2 + v2 + w2 = 36 so

    S

    u2

    9

    1

    6dVuvw =

    1

    54

    20

    0

    60

    ( sin cos )22 sin d d d

    =1

    54

    20

    0

    60

    4 sin3 cos2 d d d =192

    5

  • 7/30/2019 Chapter 15 Solutions Calculus

    31/37

    650 Chapter 15

    26. Let G1 be the region u2 + v2 + w2 1, with x = au,y = bv,z = cw, (x, y, z)

    (u, v, w)= abc; then use

    spherical coordinates in uvw-space:

    Ix =

    G

    (y2 + z2)dxdydz = abc

    G1

    (b2v2 + c2w2) dudv dw

    = 2

    0

    0

    1

    0

    abc(b2 sin2 sin2 + c2 cos2 )4 sin ddd

    =

    20

    abc

    15(4b2 sin2 + 2c2)d =

    4

    15abc(b2 + c2)

    27. u = = cot1(x/y), v = r =

    x2 + y2

    28. u = r =

    x2 + y2, v = ( + /2)/ = (1/)tan1(y/x) + 1/2

    29. u =3

    7x 2

    7y, v = 1

    7x +

    3

    7y 30. u = x + 4

    3y, v = y

    31. Let u = y

    4x, v = y + 4x, then x =

    1

    8

    (v

    u), y =

    1

    2

    (v + u) so(x, y)

    (u, v)

    =

    1

    8

    ;

    1

    8

    S

    u

    vdAuv =

    1

    8

    52

    20

    u

    vdu dv =

    1

    4ln

    5

    2

    32. Let u = y + x, v = y x, then x = 12

    (u v), y = 12

    (u + v) so(x, y)

    (u, v)=

    1

    2;

    12

    S

    uv dAuv = 12

    20

    10

    uv du dv = 12

    33. Let u = x

    y, v = x + y, then x =

    1

    2

    (v + u), y =1

    2

    (v

    u) so

    (x, y)

    (u, v)

    =1

    2

    ; the boundary curves of

    the region S in the uv-plane are u = 0, v = u, and v = /4; thus

    1

    2

    S

    sin u

    cos vdAuv =

    1

    2

    /40

    v0

    sin u

    cos vdu dv =

    1

    2[ln(

    2 + 1) /4]

    34. Let u = y x, v = y + x, then x = 12

    (v u), y = 12

    (u + v) so(x, y)

    (u, v)= 1

    2; the boundary

    curves of the region S in the uv-plane are v = u, v = u, v = 1, and v = 4; thus1

    2

    S

    eu/vdAuv =1

    2

    41

    vv

    eu/vdu dv =15

    4(e e1)

    35. Let u = y/x,v = x/y2, then x = 1/(u2v), y = 1/(uv) so(x, y)

    (u, v)=

    1

    u4v3;

    S

    1

    u4v3dAuv =

    41

    21

    1

    u4v3du dv = 35/256

  • 7/30/2019 Chapter 15 Solutions Calculus

    32/37

    Exercise Set 15.8 651

    36. Let x = 3u, y = 2v,(x, y)

    (u, v)= 6; S is the region in the uv-plane enclosed by the circle u2 + v2 = 1

    so

    R

    (9 x y)dA =S

    6(9 3u 2v)dAuv = 620

    10

    (9 3r cos 2r sin )rdrd = 54

    37. x = u, y = w/u,z = v + w/u,(x, y, z)

    (u,v,w)

    =

    1

    u

    ;

    S

    v2w

    udVuvw =

    42

    10

    31

    v2w

    udu dv dw = 2ln 3

    38. u = xy,v = yz,w = xz, 1 u 2, 1 v 3, 1 w 4,

    x =

    uw/v,y =

    uv/w,z =

    vw/u,(x, y, z)

    (u,v,w)=

    1

    2

    uvw

    V =

    G

    dV =

    21

    31

    41

    1

    2

    uvwdw dv du = 4(

    2 1)(

    3 1)

    39. (b) If x = x(u, v), y = y(u, v) where u = u(x, y), v = v(x, y), then by the chain rule

    x

    u

    u

    x+

    x

    v

    v

    x=

    x

    x= 1,

    x

    u

    u

    y+

    x

    v

    v

    y=

    x

    y= 0

    y

    u

    u

    x+

    y

    v

    v

    x=

    y

    x= 0,

    y

    u

    u

    y+

    y

    v

    v

    y=

    y

    y= 1

    40. (a)(x, y)

    (u, v)=

    1 v uv u = u; u = x + y, v = yx + y ,

    (u, v)

    (x, y)=

    1 1

    y/(x + y)2 x/(x + y)2

    =x

    (x + y)2+

    y

    (x + y)2=

    1

    x + y=

    1

    u;

    (u, v)

    (x, y)

    (x, y)

    (u, v)= 1

    (b)(x, y)

    (u, v)=

    v u0 2v = 2v2; u = x/y, v = y,

    (u, v)

    (x, y)=

    1/

    y x/(2y3/2)0 1/(2

    y)

    = 12y = 12v2 ; (u, v)(x, y) (x, y)(u, v) = 1(c)

    (x, y)

    (u, v)=

    u vu v

    = 2uv; u = x + y, v = x y,

    (u, v)(x, y) = 1/(2

    x + y) 1/(2

    x + y)

    1/(2x y) 1/(2x y) = 12x2 y2 = 12uv ; (u, v)(x, y) (x, y)(u, v) = 1

    41.(u, v)

    (x, y)= 3xy4 = 3v so

    (x, y)

    (u, v)=

    1

    3v;

    1

    3

    S

    sin u

    vdAuv =

    1

    3

    21

    2

    sin u

    vdu dv = 2

    3ln 2

  • 7/30/2019 Chapter 15 Solutions Calculus

    33/37

    652 Chapter 15

    42.(u, v)

    (x, y)= 8xy so

    (x, y)

    (u, v)=

    1

    8xy; xy

    (x, y)(u, v) = xy

    1

    8xy

    =

    1

    8so

    1

    8

    S

    dAuv =1

    8

    169

    41

    du dv = 21/8

    43.(u, v)

    (x, y)= 2(x2 + y2) so (x, y)

    (u, v)= 1

    2(x2 + y2);

    (x4 y4)exy(x, y)(u, v)

    = x4 y42(x2 + y2) exy = 12 (x2 y2)exy = 12 veu so1

    2

    S

    veudAuv =1

    2

    43

    31

    veudu dv =7

    4(e3 e)

    44. Set u = x + y + 2z, v = x 2y + z, w = 4x + y + z, then (u, v, w)(x, y, z)

    =

    1 1 21 2 14 1 1

    = 18, and

    V =R

    dxdy dz =66

    22

    33

    (x, y, z)

    (u, v, w) dudv dw = 6(4)(12)

    1

    18 = 16

    45. (a) Let u = x + y, v = y, then the triangle R with vertices (0, 0), (1, 0) and (0, 1) becomes thetriangle in the uv-plane with vertices (0, 0), (1, 0), (1, 1), andR

    f(x + y)dA =

    10

    u0

    f(u)(x, y)

    (u, v)dvdu =

    10

    uf(u) du

    (b)

    10

    ueu du = (u 1)eu10

    = 1

    46. (a) (x,y,z)(r,,z)

    =

    cos

    r sin 0

    sin r cos 00 0 1

    = r,(x, y, z)(r,,z) = r

    (b)(x, y, z)

    (,,)=

    sin cos cos cos sin sin sin sin cos sin sin cos

    cos sin 0

    = 2 sin ;(x, y, z)(,,)

    = 2 sin

    CHAPTER 15 SUPPLEMENTARY EXERCISES

    3. (a) R

    dA (b) G

    dV (c) R

    1 +

    z

    x2

    + z

    y 2

    dA

    4. (a) x = a sin cos , y = a sin sin , z = a cos , 0 2, 0 (b) x = a cos , y = a sin , z = z, 0 2, 0 z h

    7.

    10

    1+1y21

    1y2f(x, y) dxdy 8.

    20

    2xx

    f(x, y) dydx +

    32

    6xx

    f(x, y) dy dx

  • 7/30/2019 Chapter 15 Solutions Calculus

    34/37

    Chapter 15 Supplementary Exercises 653

    9. (a) (1, 2) = (b, d), (2, 1) = (a, c), so a = 2, b = 1, c = 1, d = 2

    (b)

    R

    dA =

    10

    10

    (x, y)

    (u, v)dudv =

    10

    10

    3dudv = 3

    10. If 0 < x,y < then 0 < sin

    xy 1, with equality only on the hyperbola xy = 2/4, so

    0 =

    0

    0

    0 dydx <

    0

    0

    sin

    xy dy dx <

    0

    0

    1 dydx = 2

    11.

    11/2

    2x cos(x2) dx =1

    sin(x2)

    11/2

    = 1/(

    2)

    12.

    20

    x2

    2ey

    3

    x=2yx=y

    dy =3

    2

    20

    y2ey3

    dy =1

    2ey

    3

    20

    =1

    2

    e8 1

    13.

    10

    22y

    exey dxdy 14.

    0

    x0

    sin x

    xdydx

    15.

    6

    1

    x

    y

    y = sinx

    y = tan (x/2)

    16.

    0

    p/2

    p/6

    r = a

    r= a(1 + cos u)

    17. 2

    80

    y1/30

    x2 sin y2dxdy =2

    3

    80

    y sin y2 dy = 13

    cos y280

    =1

    3(1 cos 64) 0.20271

    18.

    /2

    0

    2

    0

    (4 r2)rdrd = 2

    19. sin2 = 2sin cos =2xy

    x2 + y2, and r = 2a sin is the circle x2 + (y a)2 = a2, so

    a0

    a+a2x2aa2x2

    2xy

    x2 + y2dydx =

    a0

    x

    ln

    a +

    a2 x2 ln

    a

    a2 x2

    dx = a2

    20.

    /2/4

    20

    4r2(cos sin ) rdrd = 4cos2/2/4

    = 4

    21.20

    20

    16r4

    r2 cos2 r dz dr d =20

    cos2 d20

    r3(16 r4) dr = 32

    22.

    /20

    /20

    10

    1

    1 + 22 sin ddd =

    1

    4

    2

    /20

    sin d

    =

    1 4

    2

    ( cos )/20

    =

    1 4

    2

  • 7/30/2019 Chapter 15 Solutions Calculus

    35/37

    654 Chapter 15

    23. (a)

    20

    /30

    a0

    (2 sin2 )2 sin ddd =

    20

    /30

    a0

    4 sin3 ddd

    (b)

    20

    3a/20

    a2r2r/3

    r2 dz rdr d =

    20

    3a/20

    a2r2r/3

    r3 dz dr d

    (c) 3a/2

    3a/2

    (3a2/4)x2

    (3a2/4)

    x2

    a2x2y2

    x2+y2/

    3

    (x2 + y2) dz dy dx

    24. (a)

    40

    4xx24xx2

    4xx2+y2

    dz dy dx

    (b)

    /2/2

    4cos 0

    4r cos r2

    r dz drd

    25.

    20

    2y/2(y/2)1/3

    dxdy =

    20

    2 y

    2y

    2

    1/3dy =

    2y y

    2

    4 3

    2

    y2

    4/320

    =3

    2

    26. A = 6 /6

    0

    cos 3

    0

    r d r d = 3 /6

    0

    cos2 3 = /4

    27. V =

    20

    a/30

    a3r

    r dz drd = 2

    a/30

    r(a

    3r) dr =a3

    9

    28. The intersection of the two surfaces projects onto the yz-plane as 2y2 + z2 = 1, so

    V = 4

    1/20

    12y20

    1y2y2+z2

    dx dz dy

    = 4

    1/20

    12y20

    (1 2y2 z2) dz dy = 41/20

    2

    3(1 2y2)3/2 dy =

    2

    4

    29. ru rv = 2u2 + 2v2 + 4,

    S =

    u2+v24

    2u2 + 2v2 + 4 dA =

    20

    20

    2

    r2 + 2 rdrd =8

    3(3

    3 1)

    30. ru rv =

    1 + u2, S =

    20

    3u0

    1 + u2dvdu =

    20

    3u

    1 + u2du = 53/2 1

    31. (ru rv)u=1v=2

    = 2,4, 1, tangent plane 2x + 4y z = 5

    32. u =

    3, v = 0, (ru

    rv)u=3

    v=0

    =

    18, 0,

    3

    , tangent plane 6x + z =

    9

    33. A =

    44

    2+y2/8y2/4

    dxdy =

    44

    2 y

    2

    8

    dy =

    32

    3; y = 0 by symmetry;

    44

    2+y2/8y2/4

    xdxdy =

    44

    2 +

    1

    4y2 3

    128y4

    dy =256

    15, x =

    3

    32

    256

    15=

    8

    5; centroid

    8

    5, 0

  • 7/30/2019 Chapter 15 Solutions Calculus

    36/37

    Chapter 15 Supplementary Exercises 655

    34. A = ab/2, x = 0 by symmetry,aa

    b1x2/a20

    y d y d x =1

    2

    aa

    b2(1 x2/a2)dx = 2ab2/3, centroid

    0,4b

    3

    35. V =1

    3a2h, x = y = 0 by symmetry,

    20

    a0

    hrh/a0 rz dz dr d =

    a0 rh

    2 1

    r

    a2

    dr = a2

    h2

    /12, centroid (0, 0, h/4)

    36. V =

    22

    4x2

    4y0

    dz dy dx =

    22

    4x2

    (4 y)dydx =22

    8 4x2 + 1

    2x4

    dx =256

    15,

    22

    4x2

    4y0

    y dz dydx =

    22

    4x2

    (4y y2) dydx =22

    1

    3x6 2x4 + 32

    3

    dx =

    1024

    3522

    4x2

    4y0

    z dz dy dx =

    22

    4x2

    1

    2(4 y)2dydx =

    22

    x

    6

    6+ 2x4 8x2 + 32

    3

    dx =

    2048

    105

    x = 0 by symmetry, centroid

    0,

    12

    7,

    8

    7

    37. The two quarter-circles with center at the origin and of radius A and 2A lie inside and outsideof the square with corners (0, 0), (A, 0), (A, A), (0, A), so the following inequalities hold:/20

    A0

    1

    (1 + r2)2rdr d

    A0

    A0

    1

    (1 + x2 + y2)2dxdy

    /20

    2A0

    1

    (1 + r2)2rdrd

    The integral on the left can be evaluated asA2

    4(1 + A2)and the integral on the right equals

    2A2

    4(1 + 2A2). Since both of these quantities tend to

    4as A +, it follows by sandwiching that

    +0

    +0

    1

    (1 + x2 + y2)2dxdy =

    4.

    38. The centroid of the circle which generates the tube travels a distance

    s =

    40

    sin2 t + cos2 t + 1/16 dt =

    17, so V = (1/2)2

    17 =

    172/4.

    39. (a) Let S1 be the set of points (x, y, z) which satisfy the equation x2/3 + y2/3 + z2/3 = a2/3, and

    let S2 be the set of points (x,y,z) where x = a(sin cos )3, y = a(sin sin )3, z = a cos3 ,

    0 , 0 < 2.If (x, y, z) is a point of S2 then

    x2/3 + y2/3 + z2/3 = a2/3[(sin cos )3 + (sin sin )3 + cos3 ] = a2/3

    so (x, y, z) belongs to S1.If (x, y, z) is a point of S1 then x

    2/3 + y2/3 + z2/3 = a2/3. Let

    x1 = x1/3, y1 = y1/3, z1 = z1/3, a1 = a1/3. Then x21 + y21 + z21 = a21, so in spherical coordinatesx1 = a1 sin cos , y1 = a1 sin sin , z1 = a1 cos , with

    = tan1

    y1x1

    = tan1

    yx

    1/3, = cos1

    z1a1

    = cos1z

    a

    1/3. Then

    x = x31 = a31(sin cos )

    3 = a(sin cos )3, similarly y = a(sin sin )3, z = a cos so (x, y, z)belongs to S2. Thus S1 = S2

  • 7/30/2019 Chapter 15 Solutions Calculus

    37/37

    656 Chapter 15

    (b) Let a = 1 and r = (cos sin )3i + (sin sin )3j + cos3 k, then

    S = 8

    /20

    /20

    r rdd

    = 72

    /20

    /20

    sin cos sin4 cos

    cos2 + sin2 sin2 cos2 dd 4.4506

    (c)

    (x, y, z)

    (,,) =

    sin3 cos3 3 sin2 cos cos3 3 sin3 cos2 sin sin

    3

    sin3

    3 sin2

    cos sin3

    3 sin3

    sin2

    cos cos3 3 cos2 sin 0

    = 92 cos2 sin2 cos2 sin5 ,

    V = 9

    20

    0

    a0

    2 cos2 sin2 cos2 sin5 ddd =4

    35a3

    40. V =4

    3a3, d =

    3

    4a3

    a

    dV =3

    4a3

    0

    20

    a0

    3 sin ddd =3

    4a32(2)

    a4

    4=

    3

    4a

    41. (a) (x/a)2+(y/b)2+(z/c)2 = sin2 cos2 +sin2 sin2 +cos2 = sin2 +cos2 = 1, an ellipsoid

    (b) r(, ) = 2sin cos , 3sin sin , 4cos ; rr = 26sin2

    cos , 4sin

    2

    sin , 3cos sin ,r r = 2

    16 sin4 + 20 sin4 cos2 + 9 sin2 cos2 ,

    S =

    20

    0

    2

    16sin4 + 20sin4 cos2 + 9 sin2 cos2 dd 111.5457699


Recommended