+ All Categories
Home > Documents > Chapter 17b Solubility

Chapter 17b Solubility

Date post: 14-Apr-2018
Category:
Upload: mei-chin-lye
View: 223 times
Download: 0 times
Share this document with a friend

of 69

Transcript
  • 7/27/2019 Chapter 17b Solubility

    1/69

    10/14/2013 Chapter 17 1

    CH160 General Chemistry II

    Lecture Presentation

    Solubility Equilibria

    Chapter 17

  • 7/27/2019 Chapter 17b Solubility

    2/69

    10/14/2013 Chapter 17 2

    Why Study Solubility Equilibria?

    Many natural processes involve precipitation or dissolutionof salts. A few examples:

    Dissolving of underground limestone deposits (CaCO3)forms caves

    Note: Limestone is water insoluble (How can this be?)

    Precipitation of limestone (CaCO3) forms stalactites andstalagmites in underground caverns

    Precipitation of insoluble Ca3(PO4)2 and/or CaC2O4 in thekidneys forms kidney stones

    Dissolving of tooth enamel, Ca5(PO4)3OH, leads to toothdecay (ouch!)

    Precipitation of sodium urate, Na2C5H2N4O2, in jointsresults in gouty arthritis.

  • 7/27/2019 Chapter 17b Solubility

    3/69

    10/14/2013 Chapter 17 3

    Why Study Solubility Equilibria?

    Many chemical and industrial processes involveprecipitation or dissolution of salts. A few examples:

    Production/synthesis of many inorganic compounds involves theirprecipitation reactions from aqueous solution

    Separation of metals from their ores often involves dissolution

    Qualitative analysis, i.e. identification of chemical species insolution, involves characteristic precipitation and dissolutionreactions of salts

    Water treatment/purification often involves precipitation of metalsas insoluble inorganic salts

    Toxic Pb2+, Hg2+, Cd2+ removed as their insoluble sulfide (S2-) saltsPO4

    3- removed as insoluble calcium salts

    Precipitation of gelatinous insoluble Al(OH)3 removes suspendedmatter in water

  • 7/27/2019 Chapter 17b Solubility

    4/69

    10/14/2013 Chapter 17 4

    Why Study Solubility Equilibria?

    To understand precipitation/dissolution processes in

    nature, and how to exploit precipitation/dissolution

    processes for useful purposes, we need to look at the

    quantitative aspects of solubility and solubility

    equilibria.

  • 7/27/2019 Chapter 17b Solubility

    5/69

    10/14/2013 Chapter 17 5

    Solubility of Ionic Compounds

    Solubility Rulesgeneral rules for predicting the solubility of ionic

    compounds

    strictly qualitative

  • 7/27/2019 Chapter 17b Solubility

    6/69

    10/14/2013 Chapter 17 6

    Solubility of Ionic Compounds

    Solubility Rule Examples

    All alkali metal compounds are soluble

    Most hydroxide compounds are insoluble. The

    exceptions are the alkali metals, Ba2+, and Ca2+Most compounds containing chloride are soluble. The

    exceptions are those with Ag+, Pb2+, and Hg22+

    All chromates are insoluble, except those of the alkalimetals and the NH4+ ion

  • 7/27/2019 Chapter 17b Solubility

    7/69

    10/14/2013 Chapter 17 7

    Solubility of Ionic Compounds

    NaOH+

    Fe3+

    Cr3+

    large excess added

    Fe(OH)3 Cr(OH)3

    Precipitation of both Cr3+

    and Fe3+ occurs

  • 7/27/2019 Chapter 17b Solubility

    8/69

    10/14/2013 Chapter 17 8

    Solubility of Ionic Compounds

    NaOH

    +

    Fe3+

    Cr3+

    small excess added

    slowly

    Fe(OH)3

    Cr3+

    less soluble salt

    precipitates only

  • 7/27/2019 Chapter 17b Solubility

    9/69

    10/14/2013 Chapter 17 9

    Solubility of Ionic Compounds

    Solubility Rulesgeneral rules for predicting the solubility of ionic

    compounds

    strictly qualitativeDo not tell how soluble

    Not quantitative

  • 7/27/2019 Chapter 17b Solubility

    10/69

    10/14/2013 Chapter 17 10

    My+ yAx-

    Ax-

    xMy+ My+

    Ax-

    MxAy

    Solubility Equilibrium

    saturated

    solution

    solid

  • 7/27/2019 Chapter 17b Solubility

    11/69

    10/14/2013 Chapter 17 11

    Solubility of Ionic Compounds

    Solubility Equilibrium

    MxAy(s) xMy+(aq) + yAx-(aq)

    The equilibrium constant for this reaction is thesolubility product, Ksp:

    Ksp = [My+]x[Ax-]y

  • 7/27/2019 Chapter 17b Solubility

    12/69

    10/14/2013 Chapter 17 12

    Solubility Product, Ksp

    Ksp is related to molar solubility

  • 7/27/2019 Chapter 17b Solubility

    13/69

    10/14/2013 Chapter 17 13

    Solubility Product, Ksp

    Ksp is related to molar solubility

    qualitative comparisons

  • 7/27/2019 Chapter 17b Solubility

    14/69

    10/14/2013 Chapter 17 14

    Solubility Product, Ksp

    Ksp used to compare relative solubilities

    smaller Ksp = less soluble

    larger Ksp= more soluble

  • 7/27/2019 Chapter 17b Solubility

    15/69

    10/14/2013 Chapter 17 15

    Solubility Product, Ksp

    Ksp is related to molar solubility

    qualitative comparisons

    quantitative calculations

  • 7/27/2019 Chapter 17b Solubility

    16/69

    10/14/2013 Chapter 17 16

    Calculations with Ksp

    Basic steps for solving solubility equilibriumproblems

    Write the balanced chemical equation for the

    solubility equilibrium and the expression for Ksp

    Derive the mathematical relationship between Ksp

    and molar solubility (x)

    Make an ICE table

    Substitute equilibrium concentrations of ions into Kspexpression

    Using Ksp, solve for x or visa versa, depending on

    what is wanted and the information provided

  • 7/27/2019 Chapter 17b Solubility

    17/69

    10/14/2013 Chapter 17 17

    Example 1(1 on Example Problems Handout)

    Calculate the Ksp for MgF2 if the molar

    solubility of this salt is 2.7 x 10-3 M.

    (ans.: 7.9 x 10-8)

  • 7/27/2019 Chapter 17b Solubility

    18/69

    10/14/2013 Chapter 17 18

    Example 2(2 on Example Problems Handout)

    Calculate the Ksp for Ca3(PO4)2 (FW = 310.2)

    if the solubility of this salt is 8.1 x 10-4 g/L.(ans.: 1.3 x 10-26)

  • 7/27/2019 Chapter 17b Solubility

    19/69

    10/14/2013 Chapter 17 19

    Example 3(4 on Example Problems Handout)

    The Ksp for CaF2 (FW = 78 g/mol) is 4.0 x 10-11.

    What is the molar solubility of CaF2 in water?

    What is the solubility of CaF2

    in water in g/L?(ans.: 2.2 x 10-4 M, 0.017 g/L)

  • 7/27/2019 Chapter 17b Solubility

    20/69

    10/14/2013 Chapter 17 20

    Precipitation

    Precipitation reactionexchange reaction

    one product is insoluble

    ExampleOverall: CaCl2(aq) + Na2CO3(aq) --> CaCO3(s) + 2NaCl(aq)

  • 7/27/2019 Chapter 17b Solubility

    21/69

    10/14/2013 Chapter 17 21

    Precipitation

    Precipitation reactionexchange reaction

    one product is insoluble

    ExampleOverall: CaCl2(aq) + Na2CO3(aq) --> CaCO3(s) + 2NaCl(aq)

    Na+ and Ca2+exchange anions

  • 7/27/2019 Chapter 17b Solubility

    22/69

    10/14/2013 Chapter 17 22

    Precipitation

    Precipitation reactionexchange reaction

    one product is insoluble

    ExampleOverall: CaCl2(aq) + Na2CO3(aq) --> CaCO3(s) + 2NaCl(aq)

    Net Ionic: Ca2+(aq) + CO3

    2-(aq) CaCO3

    (s)

  • 7/27/2019 Chapter 17b Solubility

    23/69

    10/14/2013 Chapter 17 23

    Precipitation

    Compare precipitation to solubility equilibrium

    Ca2+(aq) + CO32-(aq) CaCO3(s) prec.

    vsCaCO3(s) Ca

    2+(aq) + CO32-(aq) sol. Equil.

    saturated solution

  • 7/27/2019 Chapter 17b Solubility

    24/69

    10/14/2013 Chapter 17 24

    Precipitation

    Compare precipitation to solubility equilibrium:

    Ca2+(aq) + CO32-(aq) CaCO3(s)

    vsCaCO3(s) Ca

    2+(aq) + CO32-(aq)

    saturated solution

    Precipitation occurs until solubility equilibrium is

    established.

  • 7/27/2019 Chapter 17b Solubility

    25/69

    10/14/2013 Chapter 17 25

    Precipitation

    Ca2+(aq) + CO32-(aq) CaCO3(s)

    vs

    CaCO3(s) Ca2+(aq) + CO3

    2-(aq)

    saturated solution

    Key to forming ionic precipitates: Mix ions so

    concentrations exceed those in saturated solution

    (supersaturated solution)

  • 7/27/2019 Chapter 17b Solubility

    26/69

    10/14/2013 Chapter 17 26

    Predicting Precipitation

    To determine if solution is supersaturated:

    Compare ion product (Q or IP) to Ksp

    ForMxAy(s) xMy+(aq) + yAx-(aq)

    Q = [My+]x[Ax-]y

    Q calculated for initial conditions

    Q >Ksp supersaturated solution, precipitation

    occurs, solubility equilibrium established (Q =

    Ksp

    )

    Q = Ksp saturated solution, no precipitation

    Q < Ksp unsaturated solution, no precipitation

  • 7/27/2019 Chapter 17b Solubility

    27/69

    10/14/2013 Chapter 17 27

    Predicting Precipitation

    Basic Steps for Predicting Precipitation

    Consult solubility rules (if necessary) to determine

    what ionic compound might precipitate

    Write the solubility equilibrium for this substance

    Pay close attention to the stoichiometry

    Calculate the moles of each ion involved before

    mixing

    moles = M x L or moles = mass/FW

    Calculate the concentration of each ion involved

    after mixing assuming no reaction

    Calculate Q and compare to Ksp

  • 7/27/2019 Chapter 17b Solubility

    28/69

    10/14/2013 Chapter 17 28

    Example 4(7 and 8 on Example Problems Handout)

    Will a precipitate form if (a) 500.0 mL of 0.0030

    M lead nitrate, Pb(NO3)2, and 800.0 mL of

    0.0040 M sodium fluoride, NaF, are mixed, and

    (b) 500.0 mL of 0.0030 M Pb(NO3)2 and 800.0

    mL of 0.040 M NaF are mixed?

    (ans.: (a) No, Q = 7.5 x 10-9; (b) Yes, Q = 7.5 x 10-7)

  • 7/27/2019 Chapter 17b Solubility

    29/69

    10/14/2013 Chapter 17 29

    Solubility of Ionic Compounds

    Solubility RulesAll alkali metal compounds are soluble

    The nitrates of all metals are soluble in water.

    Most compounds containing chloride are soluble. Theexceptions are those with Ag+, Pb2+, and Hg2

    2+

    Most compounds containing fluoride are soluble. The

    exceptions are those with Mg2+, Ca2+, Sr2+, Ba2+, and

    Pb2+

    Ex. 4: Possible precipitate = PbF2 (Ksp = 4.1 x 10-8)

  • 7/27/2019 Chapter 17b Solubility

    30/69

    10/14/2013 Chapter 17 30

    Example 5(10 on Example Problem Handout)

    A student carefully adds solid silver nitrate,

    AgNO3, to a 0.0030 M solution of sodium

    sulfate, Na2SO4. What [Ag+] in the solution is

    needed to just initiate precipitation of silver

    sulfate, Ag2SO4 (Ksp = 1.4 x 10-5)?

    (ans.: 0.068 M)

  • 7/27/2019 Chapter 17b Solubility

    31/69

    10/14/2013 Chapter 17 32

    Factors that Affect Solubility

    Common Ion Effect

    pH

    Complex-Ion Formation

  • 7/27/2019 Chapter 17b Solubility

    32/69

    10/14/2013 Chapter 17 33

    Factors that Affect Solubility

    Common Ion Effect

    pH

    Complex-Ion Formation

    These sure sound

    familiar. Where

    have I seen them

    before?

  • 7/27/2019 Chapter 17b Solubility

    33/69

    10/14/2013 Chapter 17 34

    Common Ion Effect and Solubility

    Consider the solubility equilibrium of AgCl.

    AgCl(s) Ag+(aq) + Cl-(aq)

    How does adding excess NaCl affect the

    solubility equilibrium?

    NaCl(s) Na+(aq) + Cl-(aq)

  • 7/27/2019 Chapter 17b Solubility

    34/69

    10/14/2013 Chapter 17 35

    Common Ion Effect and Solubility

    Consider the solubility equilibrium of AgCl.

    AgCl(s) Ag+(aq) + Cl-(aq)

    How does adding excess NaCl affect the

    solubility equilibrium?

    NaCl(s) Na+

    (aq) + Cl-

    (aq)2 sources of Cl-

    Cl- is common ion

  • 7/27/2019 Chapter 17b Solubility

    35/69

    10/14/2013 Chapter 17 36

    Example 6(11 on Example Problem Handout)

    What is the molar solubility of AgCl (Ksp = 1.8 x

    10-10) in a 0.020 M NaCl solution? What is the

    molar solubility of AgCl in pure water?(ans.: 8.5 x 10-9, 1.3 x 10-5)

  • 7/27/2019 Chapter 17b Solubility

    36/69

    10/14/2013 Chapter 17 37

    Common Ion Effect and Solubility

    How does adding excess NaCl affect thesolubility equilibrium of AgCl?

    AgCl in H2O

    1.3 x 10-5 M

    + 0.020 M NaCl

    Molars

    olubility

    Molarsolubility

    AgCl in 0.020

    M NaCl

    8.5 x 10-9 M

  • 7/27/2019 Chapter 17b Solubility

    37/69

    10/14/2013 Chapter 17 38

    Common Ion Effect and Solubility

    Why does the molar solubility of AgCl decrease

    after adding NaCl?

    Understood in terms of LeChateliers principle:

    NaCl(s) --> Na+ + Cl-

  • 7/27/2019 Chapter 17b Solubility

    38/69

    10/14/2013 Chapter 17 39

    Common Ion Effect and Solubility

    Why does the molar solubility of AgCl decrease

    after adding NaCl?

    Understood in terms of LeChateliers principle:

    NaCl(s) --> Na+ + Cl-

    AgCl(s) Ag+ + Cl-

  • 7/27/2019 Chapter 17b Solubility

    39/69

    10/14/2013 Chapter 17 44

    Common Ion Effect and Solubility

    Why does the molar solubility of AgCl decrease

    after adding NaCl?

    Understood in terms of LeChateliers principle:

    NaCl(s) --> Na+ + Cl-

    AgCl(s) Ag+ + Cl-

    Common-Ion Effect

  • 7/27/2019 Chapter 17b Solubility

    40/69

    10/14/2013 Chapter 17 45

    pH and Solubility

    How can pH influence solubility?

    Solubility of insoluble salts will be affected by pH

    changes if the anion of the salt is at least moderately

    basic

    Solubility increases as pH decreases

    Solubility decreases as pH increases

  • 7/27/2019 Chapter 17b Solubility

    41/69

    10/14/2013 Chapter 17 46

    pH and Solubility

    Salts contain either basic or neutral anions:basic anions

    Strong bases: OH-, O2-

    Weak bases (conjugate bases of weak molecular acids):

    F-, S2-, CH3COO-, CO3

    2-, PO43-, C2O4

    2-, CrO42-, etc.

    Solubility affected by pH changes

    neutral anions (conjugate bases of strong

    monoprotic acids)Cl-, Br-, I-, NO3

    -, ClO4-

    Solubility not affected by pH changes

  • 7/27/2019 Chapter 17b Solubility

    42/69

    10/14/2013 Chapter 17 47

    pH and Solubility

    Example:Fe(OH)2

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

  • 7/27/2019 Chapter 17b Solubility

    43/69

    10/14/2013 Chapter 17 48

    pH and Solubility

    Example:Fe(OH)2-Add acid

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

  • 7/27/2019 Chapter 17b Solubility

    44/69

    10/14/2013 Chapter 17 49

    pH and Solubility

    Example:Fe(OH)2-Add acid

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

    2H3O+(aq) + 2OH-(aq) 4H

    2O

  • 7/27/2019 Chapter 17b Solubility

    45/69

    10/14/2013 Chapter 17 50

    pH and Solubility

    Example:Fe(OH)2-Add acid

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

    2H3O+(aq) + 2OH-(aq) 4H

    2O

    Which way does this reaction shift the solubility equilibrium? Why?

    Understood in terms of LeChatliers principle

  • 7/27/2019 Chapter 17b Solubility

    46/69

    10/14/2013 Chapter 17 51

    pH and Solubility

    Example:Fe(OH)2-Add acid

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

    2H3O+(aq) + 2OH-(aq) 4H2O

    Decrease=stress

    More Fe(OH)2 dissolves in response

    Solubility increases

    Stress relief = increase [OH-]

  • 7/27/2019 Chapter 17b Solubility

    47/69

    10/14/2013 Chapter 17 52

    pH and Solubility

    Example:Fe(OH)2

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

    2H3O+(aq) + 2OH-(aq) 4H

    2O(l)

    Fe(OH)2(s) + 2H3O+(aq) Fe2+(aq) + 4H2O(l)overall

  • 7/27/2019 Chapter 17b Solubility

    48/69

    10/14/2013 Chapter 17 53

    pH and Solubility

    Example:Fe(OH)2

    Fe(OH)2(s) Fe2+(aq) + 2OH-(aq)

    2H3O+(aq) + 2OH-(aq) 4H

    2O(l)

    Fe(OH)2(s) + 2H3O+(aq) Fe2+(aq) + 4H2O(l)overall

    solubility increasesdecrease pH

    solubility decreasesincrease pH

  • 7/27/2019 Chapter 17b Solubility

    49/69

    10/14/2013 Chapter 17 54

    pH, Solubility, and Tooth Decay

    Enamel (hydroxyapatite) = Ca10(PO4)6(OH)2

    (insoluble ionic compound)

    Ca10(PO4)6(OH)2 10Ca2+(aq) + 6PO4

    3-(aq) + 2OH-(aq)

  • 7/27/2019 Chapter 17b Solubility

    50/69

    10/14/2013 Chapter 17 55

    pH, Solubility, and Tooth Decay

    Enamel (hydroxyapatite) = Ca10(PO4)6(OH)2(insoluble ionic compound)

    Ca10(PO4)6(OH)2 10Ca2+(aq) + 6PO4

    3-(aq) + 2OH-(aq)

    weak base strong base

  • 7/27/2019 Chapter 17b Solubility

    51/69

    10/14/2013 Chapter 17 56

    pH, Solubility, and Tooth Decay

    bacteria in mouth

    + food organic acids

    (Yummy)

    metabolism

    (H3O+)

  • 7/27/2019 Chapter 17b Solubility

    52/69

    10/14/2013 Chapter 17 57

    pH, Solubility, and Tooth Decay

    Ca10(PO4)6(OH)2(s) 10Ca2+(aq) + 6PO4

    3-(aq) + 2OH-(aq)

    OH-(aq) + H3O+(aq) 2H2O(l)

    PO43-(aq) + H3O

    +(aq) HPO43-(aq) + H2O(l)

  • 7/27/2019 Chapter 17b Solubility

    53/69

    10/14/2013 Chapter 17 58

    pH, Solubility, and Tooth Decay

    Ca10(PO4)6(OH)2(s) 10Ca2+(aq) + 6PO4

    3-(aq) + 2OH-(aq)

    OH-(aq) + H3O+(aq) 2H2O(l)

    PO43-(aq) + H3O+(aq) HPO43-(aq) + H2O(l)

    Decrease=stress

    More Ca10(PO4)6(OH)2dissolves in response

    Solubility increases

    Leads to tooth decay

    Decrease=stress

  • 7/27/2019 Chapter 17b Solubility

    54/69

    10/14/2013 Chapter 17 59

    Tooth Decay

  • 7/27/2019 Chapter 17b Solubility

    55/69

    10/14/2013 Chapter 17 60

    pH, Solubility, and Tooth Decay

    Why fluoridation?

    F-replaces OH- in enamel

    Ca10

    (PO4)6(F)

    2(s)

    10Ca2+(aq) + 6PO

    4

    3-(aq) + 2F-(aq)

    fluorapatite

  • 7/27/2019 Chapter 17b Solubility

    56/69

    10/14/2013 Chapter 17 61

    pH, Solubility, and Tooth Decay

    Why fluoridation?

    F-replaces OH- in enamel

    Ca10

    (PO4)6(F)

    2(s)

    10Ca2+(aq) + 6PO

    4

    3-(aq) + 2F-(aq)

    Less soluble (has

    lower Ksp) thanCa10(PO4)6(OH)2

    weaker base than OH-

    more resistant to acidattack

    Factors together fight tooth decay!

  • 7/27/2019 Chapter 17b Solubility

    57/69

    10/14/2013 Chapter 17 62

    pH, Solubility, and Tooth Decay

    Why fluoridation?

    F-replaces OH- in enamel

    Ca10

    (PO4)6(F)

    2(s)

    10Ca2+(aq) + 6PO

    4

    3-(aq) + 2F-(aq)

    F- added to drinking water as NaF or Na2SiF6

    1 ppm = 1 mg/L

    F- added to toothpastes as SnF2, NaF, or Na2PO3F

    0.1 - 0.15 % w/w

  • 7/27/2019 Chapter 17b Solubility

    58/69

    10/14/2013 Chapter 17 63

    Complex Ion Formation and Solubility

    Metals act as Lewis acids (see Chapter 15)Example

    Fe3+(aq) + 6H2O(l) Fe(H2O)63+(aq)

    Lewis acid Lewis base

  • 7/27/2019 Chapter 17b Solubility

    59/69

    10/14/2013 Chapter 17 64

    Complex Ion Formation and Solubility

    Metals act as Lewis acids (see Chapter 15)Example

    Fe3+(aq) + 6H2O(l) Fe(H2O)63+(aq)

    Complex ion

    Complex ion/complex contains central metal ion bonded

    to one or more molecules or anions called ligands

    Lewis acid = metal

    Lewis base = ligand

  • 7/27/2019 Chapter 17b Solubility

    60/69

    10/14/2013 Chapter 17 65

    Complex Ion Formation and Solubility

    Metals act as Lewis acids (see Chapter 15)Example

    Fe3+(aq) + 6H2O(l) Fe(H2O)63+(aq)

    Complex ion

    Complex ions are often water soluble

    Ligands often bond strongly with metals

    Kf>> 1: Equilibrium lies very far to right.

  • 7/27/2019 Chapter 17b Solubility

    61/69

    10/14/2013 Chapter 17 66

    Complex Ion Formation and Solubility

    Metals act as Lewis acids (see Chapter 15)Other Lewis bases react with metals also

    Examples

    Fe3+

    (aq) + 6CN-

    (aq)

    Fe(CN)63-

    (aq)

    Ni2+(aq) + 6NH3(aq) Ni(NH3)62+(aq)

    Ag+(aq) + 2S2O32-(aq) Ag(S2O3)2

    3-(aq)

    Lewis acid Lewis base Complex ion

    Lewis acid Lewis base Complex ion

    Lewis acid Lewis base Complex ion

  • 7/27/2019 Chapter 17b Solubility

    62/69

    10/14/2013 Chapter 17 67

    Complex-Ion Formation and Solubility

    How does complex ion formation influence

    solubility?

    Solubility of insoluble salts increases with addition

    of Lewis bases if the metal ion forms a complex withthe base.

  • 7/27/2019 Chapter 17b Solubility

    63/69

    10/14/2013 Chapter 17 68

    Complex-Ion Formation and Solubility

    Example

    AgCl

    AgCl(s) Ag+(aq) + Cl-(aq)

  • 7/27/2019 Chapter 17b Solubility

    64/69

    10/14/2013 Chapter 17 69

    Complex-Ion Formation and Solubility

    Example

    AgCl-Add NH3

    AgCl(s) Ag+(aq) + Cl-(aq)

    Ag+(aq) + 2NH3(aq) Ag(NH3)2+(aq)

  • 7/27/2019 Chapter 17b Solubility

    65/69

    10/14/2013 Chapter 17 70

    Complex-Ion Formation and Solubility

    Example

    AgCl-Add NH3

    AgCl(s) Ag+(aq) + Cl-(aq)

    Ag+(aq) + 2NH3(aq) Ag(NH3)2+(aq)

    Which way does this reaction shift the solubility equilibrium? Why?

  • 7/27/2019 Chapter 17b Solubility

    66/69

    10/14/2013 Chapter 17 71

    Complex-Ion Formation and Solubility

    Example

    AgCl-Add NH3

    AgCl(s) Ag+(aq) + Cl-(aq)

    Ag+(aq) + 2NH3(aq) Ag(NH3)2+(aq)

    Decrease=stressMore AgCl dissolves in response

    Solubility increases

  • 7/27/2019 Chapter 17b Solubility

    67/69

    10/14/2013 Chapter 17 72

    Complex-Ion Formation and Solubility

    Example

    AgCl

    AgCl(s) Ag+(aq) + Cl-(aq)

    Ag+(aq) + 2NH3(aq) Ag(NH3)2+(aq)

    AgCl(s) + 2NH3(aq) Ag(NH3)2+(aq) + Cl-(aq)overall

    Addition of ligand

    solubility increases

    Summary: Factors that Influence Solubility

  • 7/27/2019 Chapter 17b Solubility

    68/69

    10/14/2013 Chapter 17 73

    y y

    Common Ion Effect

    Decreases solubility

    pH

    pH decreases

    Increases solubility

    pH increases

    Decreases solubility

    Salt must have basic anionComplex-Ion Formation

    Increases solubility

  • 7/27/2019 Chapter 17b Solubility

    69/69

    End of Presentation


Recommended