+ All Categories
Home > Documents > Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18...

Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18...

Date post: 04-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
29
Chapter 18 Radioactivity and Nuclear Transformation
Transcript
Page 1: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Chapter 18

Radioactivity and Nuclear Transformation

Page 2: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Activity

• Number of radioactive atoms undergoing transformation per unit time

A = - dN/dt = N

• 1 Curie(Ci) = 3.71010 disintegration/sec

• 1 Becquerel(Bq) = 1 disintegration/sec

– SI unit

• Diagnostic range: 0.1 ~ 30mCi

• Therapeutic range: 300mCi

Page 3: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Constant & Half Life

• Radioactive decay is random process

– Decay constant :

– A = - dN/dt = N N=N0e

-t N=N02

-t/Tp1/2

• Physical half life

– Tp1/2=0.693/

– Fraction of second ~ billions of year

– Hours or days for medical purpose

Radionuclide Tp1/2

Fluorine 18(18F) 110 min

Technetium99m(99mTc) 6.02 hr

Iodine123(123I) 13.27 hr

Indium(111In) 2.81 d

Thallium 201(201Tl) 3.04 d

Iodine131(131I) 8.02 d

Phosphorus 32(32P) 14.26 d

Iodine125(125I) 59.41 d

Cobalt 57(57Co) 271.79 d

Page 4: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Equation

• Nt=N0e-t A=- dNt/dt =N0e

-t=A0e-t

– Activity also decay exponentially

Ex) Remain activity of 500uCi 111In after 2 days

– Half life = 2.81 days =0.693/2.81=0.246 day-1

– A=A0e-t=500e-(0.246)(2) =306(uCi)

Page 5: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Nuclear Transformation

• Radioactive Decay

– Radiation emission during spontaneous decay

– Until to reach stable nuclide

• Parent nuclide daughter nuclide

• Decay types

1. Alpha decay

2. Beta-minus emission

3. Beta-plus(positron) emission

4. Electron capture

5. Iosmeric transition

same molecular formula but different structural formulas

Page 6: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Alpha Decay

• ZAX Z-2

A-4Y-2 + 24He+2 + transition energy

– Increase in N/Z ratio

Ex) 86220Rn 84

216Po + 24He+2 + 6.4MeV

• Mostly with heavy nuclides (A>150)

– Followed by gamma emission and X-ray emission

• Heaviest and least penetrating

– 1cm/MeV in air, 100um in tissue

– Cannot penetrate dead layer of skin

– Not used in medical imaging

134/86=1.56 132/84=1.57

Page 7: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Beta-Minus(Negatron) Decay

• ZAX Z+1

AY+ + - + - + transition energy

– - : identical to electron, discrete maximal energy

– - : antineutrino, neutral subatomic particle smaller

mass than electron, rarely interact with mater

– Increase in Z, no change in A (isobaric transitions)

Ex) 1532P 16

32S + -

• Radionuclide having

excess number of neutrons – High N/Z ratio

17/15=1.13 16/16=1.00

Page 8: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Beta-Plus Decay

• ZAX Z-1

AY- + + + + transition energy

– + : positron, poly energetic spectrum,

• annihilation with electron, 180°-2 ray of 0.511MeV

– : neutrino, antiparticle with antineutrino

– Decrease Z by 1, no change in A (isobaric transitions)

Ex) 918F 8

18O + +

• Neutron poor radionuclide

– Low N/Z ratio

– Accelerator produced radionuclide

9/9=1.00 10/8=1.25

Page 9: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Electron Capture Decay

• Alternative to beta plus decay – For neutron poor radionuclide

– Energy difference btw nuclides lower than threshold to produce positron

• ZAX + e- Z-1

AY- + transition energy

– Capture orbital electron of K or L shell

– Followed by characteristic radiation from outer shell

• Using for imaging

– Decrease Z by 1, no change in A (isobaric transitions)

Ex) 81201Tl + e- 80

201Hg + energy 120/81=1.48 121/80=1.51

Thallium Mercury

Page 10: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Isomeric Transition

• Not directly into stable state

– Through excited state: meta state, isomeric state

– Half life: 10-12 sec ~600 years

• Metastate stable state + gamma ray

• ZAmX Z

AX + transition energy

– No change in atomic(proton) number

– No change in neutron number

– No change in mass number

Ex) Tc-99m

Page 11: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Schemes

• Decay: unique characteristic of the nuclide

• Parent/daughter nuclide, mode of decay, energy level, radiation emission

Page 12: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Scheme of Radon-220

• Alpha decay

• Tp1/2=55sec

• 86220Rn 84

216Po

• 1(0.07%)

– Followed by isomeric decay

• 2(99.93%)

– Directly to ground state

• Decay data table

Page 13: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Scheme of 32P

• - decay

• Tp1/2=14.3 days

• Into stable 32S

• Emax=1.71MeV

• Pure beta emitter

• Using as therapeutic agent

Page 14: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Scheme of 99Mo

• - decay

– Followed by isomeric decay

• Tp1/2=2.75 days

• Into stable 99Tc

– Intermediate 99mTc

• Decay data table

Page 15: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Scheme of 99mTc

• Isomeric transition

• Tp1/2=6.02 hrs

• 140.5keV, 142.7keV

• Detection for imaging

Page 16: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Decay Scheme of 18F

• + decay(97%) +electron capture(3%)

• Followed by annihilation: 2 gamma rays

• Most widely using in PET

Page 17: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Chapter 19

Radionuclide Production and

Radiopharmaceuticals

Page 18: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Radionuclide Production

• Artificially produced – More than 2500 nuclides

– Cyclotron

– Nuclear reactor

– Radionuclide generator

• Cyclotron – Accelerate charged particle

• By Multiply alternating voltage

– Bombard to a target • Require high energy to overcome

repulsive force of nucleus

Page 19: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Nuclear Reaction

• Gallium-67 production

– Bombarding 20MeV proton into zinc-68

– Gallium-67 with emitting 2 neutrons

3068Zn (p,2n) 31

67Ga

• Iodine-123 production

53127I (p,5n) 54

123Xe 53123I (T1/2 =13.27 hr)

54

124Xe (p,2n) 55123Cs 54

123Xe 53123I

• Indium-111 production 47

109Ag (,2n) 49111In , 48

111Cd (p,n) 49111In (T1/2 =2.81d)

48112Cd (p,2n) 49

111In

EC

T1/2 2hr

EC or +

T1/2 ~1sec

EC

T1/2 2hr

Page 20: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Nuclear Reaction

• Cobalt-57 production: 2656Fe (d,n) 27

57Co (T1/2 =271.8d)

• Thallium-201 production

81

203Tl (p,3n) 82201Pb 81

201Tl (T1/2 =3.04d)

• Using hospital based cyclotron

– Short half life

– Fluorene-18: 818O (p,n) 9

18F (T1/2=110min)

– Nitrogen-13: 612C (d,n) 7

13N (T1/2=10min)

– Oxygen-15: 714N (d,n)8

15O, 715N(p,n)8

15O (T1/2=2min)

– Carbon-11: 510B (d,n) 6

11C (T1/2=20.4min)

EC or +

T1/2 ~ 9.4 hr

Page 21: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Nuclear Reactor

• Using neutron: uncharged

– Can penetrate nucleus without high energy

– 2 methods: Nuclear fission, neutron activation

• Nuclear fission

– Splitting of atom into two smaller nuclei

– Need energy to overcome nuclear binding energy

• By absorption of neutrons

– U-235: most widely using

Page 22: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

U-235

• 235U +1nthermal 134Sn+99Mo+31nfast++~200MeV

• Wide range of fragment nuclide

– 200 radionuclide

– Btw Z=70 & Z=160

• Neutron rich products

– - decay

• Medical use

– Mo-99, I-131, Xe-133

92 0 50 42 0

Page 23: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Neutron Activation

• Using neutron produced by fission

• Bombarding stable target material

• Capture neutron and emit ray – (n, ) reaction

– Decay with - decay

– Phosphorus-32: 31P (n, ) 32P (T1/2=14.3 days)

– Chromium-51: 50Cr (n, ) 51Cr (T1/2=27.8 days)

• Difficult to separate chemically from target isotope – Limit in concentration

Page 24: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Radionuclide Generator

• Holding parent nuclide that daughter can easily be separated

– Tc-99m: widely using in medicine (T1/2=6 hrs)

• Impractical to store weekly

– Store parent nuclide Mo-99 (T1/2=67 hrs)

• Chemically separate Tc-99m

– Transient equilibrium: 23 hours

• Production rate=decay rate

– Separate every morning

– Weekly store

Page 25: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Comparison

Characteristic Cyclotron Fission Neutron Activation

Generator

Particle p, d, n n By decay

Product Neutron poor Neutron excess

Neutron excess Neutron poor/ excess

Decay mode Positron emission, electron capture

Beta-minus Beta-minus Several modes

Carrier free? yes yes no yes

High specific activity

yes yes no yes

Relative cost high low low low

Nuclides 201Tl, 123I, 63Ga, 18F, 15O, 57Co,

99Mo, 131I, 133Xe

32P, 51Cr, 125I, 111In, 89Sr, 153Sm

99mTc, 82Rb, 68Ga

Page 26: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Radiopharmaceuticals

• Radionuclide + Pharmaceuticals Radiopharmaceuticals – By injecting into freeze-dried pharmaceuticals

• Nuclear medicine imaging – Tc-99m: most widely in nuclear medicine

– 123I, 67Ga, 111In, 133Xe,201Tl

• Clinical PET imaging – Positron emission pharmaceuticals

– 18F as fluorodeoxyglucose(FDG): 85%

– 11C, 13N, 15O, 68Ga 82Rb,

Page 27: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Ideal Radiopharmaceuticals

• Low radiation dose

– Few particulate emission, abundance of clinically useful photons(~140KeV)

– Compromise among patient attenuation, spatial resolution, detection efficiency

– Effective half-life

• Long enough for imaging, short enough to minimize dose

• High target/Non-target activity

– Clinically useful uptake and clearance: hot/cold spot

• Safety, Convenience, Cost-Effective

– Carrier free, shelf life….

Page 28: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Mechanism of Localization

• Compartmental Localization

– Into anatomical compartment for abnormal opening finding

• Xe-133 gas inhalation into lung

• Tc-99m labeled RBC into circulatory system

• Cell Sequestration

– RBC withdraw label with Tc-99m and damage

reinject

– Measure spleen’s ability to remove damaged RBC

격리

Page 29: Chapter 18abrc.snu.ac.kr/korean/files/2011________chapter18_19.pdf · 2011. 11. 3. · Chapter 18 Radioactivity and Nuclear Transformation . Activity ... –Capture orbital electron

Mechanism of Localization

• Passive Diffusion – Disruption of Blood-Brain Barrier by trauma, neoplasm

• Normally block radiopharmaceuticals

• Metabolism – FDG: glucose analogue & follow glucose metabolism

• Active transport – Transport using energy against gradient

• Iodine in thyroid gland, Thallium in muscle

• Capillary blockage – Tc-99m-MAA block to assess pulmonary perfusion


Recommended