+ All Categories
Home > Documents > Chapter 3 Data Transmissionckk.com.tr/ders/Haberlesme/04 PCM - TDM - PSTN.pdf•S/N ratios for weak...

Chapter 3 Data Transmissionckk.com.tr/ders/Haberlesme/04 PCM - TDM - PSTN.pdf•S/N ratios for weak...

Date post: 18-Mar-2020
Category:
Upload: others
View: 9 times
Download: 1 times
Share this document with a friend
105
Communication PCM TDM PSTN Data Traffic EngineeringDr. Cahit Karakuş, 2019 1
Transcript

Communication

“PCM – TDM – PSTN – Data Traffic Engineering”

Dr. Cahit Karakuş, 2019

1

İçerik

• Ses Dalgaları

• Pulse Code Modulation

• TDM – E1

• PSTN: Public Switched Telephone Network

• Data Traffic Engineering

2

3

Ses Dalgaları

Ses

• Ses havada ses dalgaları (Mekanik) ile yayılır.

• Sesin havada ortalama yayılma hızı=342 m/s. Yayılma hızı hava sıcaklığı ve diğer koşullara bağlı olarak değişim gösterir.

• Ses dalgaları boşlukta yayılmaz. Görsel köpürür…

4

Ses dalgaları 4’e ayrılır

• Ses ötesi (Infrasound); 20 hertz ve altındaki ses dalgalardır.

• İşitilebilir ses; 20-20 000 hertz arasında olan ses dalgalardır.

• Ultra ses (Ultrasound); 20KHz (20.000 hertz) den 15MHz’e kadar olan ses dalgalarıdır. Bu dalgalar anne karnında bebek görüntüleme ve böbrek taşı kırmada kullanılır.

• Hiperses(Hypersound): frekansları 15MHz’den yukarı olan ses dalgalarıdır.

5

İnsan Kulağı

• İnsan kulağı, nominal olarak 20 Hz (0.02 kHz) ila 20.000 Hz (20 kHz) arasındaki sesleri duyabilir. Üst sınır yaşla azalma eğilimindedir; yetişkinlerin çoğu 16 kHz'in üzerinde duyamıyor.

• İdeal laboratuar koşullarında müzik tonu olarak tanımlanan en düşük frekans 12 Hz'dir.

• 4 ila 16 Hz arasındaki tonlar vücudun dokunma duyusuyla algılanabilir. 111 Hz ile 121Hz arası duygusallık oluşturduğu gözlenmiştir.

• Kulakta duymak kadar kemik ve dokularda da titreşen sesler duyulur. Tanımlayamadığınız başka bir yerden bir ses geldiğini hissederseniz transa geçersiniz.

6

Konuşmanın Bileşenleri

• Sesin işitme frekans aralığı, 20Hz-16kHz dir. Konuşma 100Hz-7kHz aralığındadır.

• Ses dalgaları mikrofon yardımıyla elektriksel analog sinyale dönüştürülür. Peryodik

sinyallerden oluşur. İletim için kolayca elektromanyetik sinyale dönüştürülür

• Ses frekansları, değişen frekans ve voltaja sahip elektromanyetik frekanslara dönüştürülür.

• Sesin sınır frekans aralığı: Tanıma, Anlama, Hissetme özelliklerini sağlar: 300-3400Hz

• Ses, elektrik sinyale dönüşür. Analog sinyalin karekteristikleri: Genlik, frekans ( f ), Dalga boyu ( λ ), Faz

7

Lifecycle from Sound to Digital

to Sound

Source: http://en.wikipedia.org/wiki/Digital_audio

Introduction

What is Speech Coding ?

10

Pulse Code Modulation

ANALOG-TO-DIGITAL CONVERSION

A digital signal is superior to an analog signal because it is more robust (güçlü) to noise and can easily be

recovered, corrected and amplified. For this reason, the tendency (eğilim) today is to change an analog signal

to digital data.

Dijital bir sinyal analog sinyale göre daha üstündür çünkü ekonomiktir, gürültüye karşı daha dayanıklıdır ve

kolayca geri kazanılabilir, düzeltilebilir ve yükseltilebilir. Bu sebeple, günümüzdeki eğilim bir analog sinyali

dijital verilere değiştirmektir. Bilgisayar ya da sayısal sistemlerden bahsedilmektedir. İletim ortamında sayısal

sinyal elverişli değildir.

PCM

PCM consists of three steps to digitize an analog signal:

1. Sampling

2. Quantization

3. Binary encoding

Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.

Filtering should ensure that we do not distort the signal, remove high frequency components that affect the signal shape.

Nyquist Sampling Theorem

For lossless digitization, the sampling rate should be at least twice the maximum frequency response. Sayısal iletim ortamının performansını belirler.

• In mathematical terms:

fs ≥ 2*fm

fs ≥ 2*B

• where fs is sampling frequency and fm is the maximum frequency in the signal; B is the bandwidth. Birimleri Hz=1/sec. Frekans bir saniyedeki titreşim sayısıdır.

Nyquist max data rate Limit • Kayıpsız ortamlarda (Bilgisayar ya da sayısal haberleşme sistemlerinde); Haberleşme

ortamlarında değil.

• max data rate = 2 B log2M bits/second, where B = bandwidth (in Hz) M = discrete levels (bits per signal change)

• Analog sinyal M aralığa(discrete level) bölünür. Herbir aralığın sayısal karşılığı belirlenir.

• Shows the maximum number of bits that can be sent per second on a noiseless channel with a bandwidth of B, if M bits are sent per signal

— Example: what is the maximum data rate for a 4kHz channel that transmits data using 256 levels?

— Solution: B = 4kHz; M = 256;

max. data rate = 2x4000xln2^8=64,000bits/second

• B=4KHz=4000Hz Fs=2 x B=2 x 4000 =8000 Hz

Ts=1/fs =1/8000 =125µs

125 µs 8 bit gönderilirse 1 sec kaç bit gönderilir.

X=8/(125 x 10^-6)=64000bit/sec=64Kbit/sec

Shannon’s Theorem

• Shannon’s theorem gives the capacity of a system in the presence of noise. Analog iletim ortamının kapasitesini belirler.

C = B log2(1 + SNR)

The Shannon capacity gives us the upper limit; the Nyquist formula tells us how

many signal levels we need.

15

Sampling

Sampling usually happens at equally separated intervals; this interval is called the sampling interval. The reciprocal of sampling interval is called the sampling frequency or sampling rate. The unit of sampling rate is Hz Örnekleme genellikle eşit zaman aralıklarında yapılır; bu aralığa örnekleme aralığı denir. Örnekleme aralığının karşılığına örnekleme frekansı veya örnekleme oranı denir. Örnekleme oranı birimi Hz

• In agreement with the sampling theorem, the telephone audio signals (with frequency between 300 Hz to 3400 Hz; it is taken 4KHz), should be sampled at a frequency equal or greater than 6800 Hz (8000Hz). Actually, we usually take the sampling frequency or sampling rate at 8000 Hertz. Bir analog sinyalden saniyede eşit aralıklarla 8000 örnek alınıyor ve bir örnekleme 8 bit ile temsil ediliyorsa saniyde kaç bit örnek alınır? 8000 x 8=64 000 bit/sec=64Kbit/sec.

• Herbir örnek 8 bit ile temsil ediliyor ise, örnekleme aralık sayısı (Kuantalama) 2^8=256 dır. T=1/8000= 0.000125 sec. = 125 µs , T örnekleme aralığıdır.

Signal Sampling

• Sampling is converting a continuous time signal into a discrete time signal

• Categories:

—Impulse (ideal) sampling

—Natural Sampling

—Sample and Hold operation

Ideal Sampling and Aliasing

• Sampled signal is discrete in time domain with spacing Ts

• Spectrum will repeat for every fs Hz

• Aliasing (spectral overlapping) if fs is too small (fs < 2fm)

• Nyquist sampling rate fs = 2fm

• Generally oversampling is done fs > 2fm

Concepts

Quantalama

NON-LİNEER QUANTALAMA

• Lineer quantalama sisteminde düşük genlikli

sinyallerin hata oranı yüksek olur.

• Telefonda kısık sesli konuşanların seslerinin

büyük kısmı kaybolur. Bunu önlemek için

genlik eksenini parçalara bölerken eşit

bölünmez.

• Düşük genlikli sinyallerde aralıklar daha sık

yüksek genlikli sinyallerde aralıklar daha

seyrektir.

• Aralıklar öyle ayarlanır ki sinyal gürültü oranı

hep aynı olur. Bu işleme non-lineer

quantalama denir.

2Mbit/sn Frame Çerçevesinin Oluşturulması

NON-LİNEER QUANTALAMA

28 = 256 Adet işareti kodlayabiliriz.

1. 1.Bit pozitif veya negatif bölgeyi gösterir.

1 olursa pozitif bölge

0 olursa negatif bölge

2. 2,3,4. Bitler hangi parçada bulunduğunu gösterir.(010)

3. 5,6,7,8. Bitler parça içinde bulunduğu yeri gösterir.

Bu dört karekterle 16 ayrı kodlama yapabiliriz.

Görüldüğü her parçada 15 adet kodlama vardır.

ÖRNEK: Pozitif 2.parçada 45 in kodlaması nasıl yapılır?

1 0 1 0 1 1 0 1

2Mbit/sn Frame Çerçevesinin Oluşturulması

Quantization Error

• Difference between actual and sampled value

—amplitude between [-A, A]

—quantization levels = N

• e.g., if A = 1, N = 8, = 1/4

N

A2

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Non-Linear Quantization

• The quantizing intervals are not of equal size

• Small quantizing intervals are allocated to small signal values (samples) and large quantization intervals to large samples so that the signal-to-quantization distortion ratio is nearly independent of the signal level

• S/N ratios for weak signals are much better but are slightly less for the stronger signals

• “Companding” is used to quantize signals

Pulse Code Modulation Standarts

• PCM is a Time-Domain Waveform coding method and is defined within CCITT G.711, and AT&T 43801. Basically, an analog signal is sampled at a rate of 8000 times per second. In each sample, the amplitude of the signal is assigned (quantized) a digital value.

• There are two PCM algorithms defined within CCITT G.711, called "A-Law" and "Mu-Law". Mu-Law PCM is used in North America and Japan, and A-Law used in most other countries. In both A-Law and Mu-Law PCM, the values used to represent the amplitude is a number between 0 and +/- 127; therefore, 8 bits are required to represent each sample (2 to the eigth power = 256).

• It can be seen then that PCM operates at a rate of: 8 bits/sample * 8000 samples/sec = 64000 (64K) Bits Per Second.

Components of PCM encoder

Three different sampling methods for PCM

We want to digitize (ayrık) the human voice. What is the bit rate, assuming 8

bits per sample?

Solution

The human voice normally contains frequencies from 0 to 4000 Hz. So the

sampling rate and bit rate are calculated as follows:

Example

The process of delta modulation

Adaptive Differential PCM (ADPCM)

• Adaptive Differential Pulse Code Modulation (ADPCM) codecs are waveform codecs which instead of quantizing the speech signal directly, quantize the difference between the speech signal and a prediction that has been made of the speech signal.

• If the prediction is accurate then the difference between the real and predicted speech samples will have a lower variance than the real speech samples, and will be accurately quantized with fewer bits than would be needed to quantize the original speech samples.

Companding

• Formed from the words compressing and expanding.

• A PCM compression technique where analogue signal values are rounded on a non-linear scale.

• The data is compressed before sent and then expanded at the receiving end using the same non-linear scale.

• Companding reduces the noise and crosstalk levels at the receiver.

Speech Compression Standards • 64 kbps µ-law/A-law PCM(CCTT G.711)

• 32 kbps ADPCM(CCITT G.721)

• 16 kbps Low Delay CELP(CCITT G.728)

• 13.2 kbps RPE-LTP(GSM 06.10)

• 13 kbps ACELP(GSM 06.60)

• 13 kbps QCELP(US CDMA Cellular)

• 8 kbps QCELP(US CDMA Cellular)

• 8 kbps VSELP(US TDMA Cellular)

• 8 kbps CS-ACELP(ITU G.729)

• 6.7 kbps VSELP(Japan Digital Cellular)

• 6.4 kbps IMBE(Immarsat Voice Coding Standard)

• 5.3 & 6.4 kbps True Speech Coder(ITU G.723)

• 4.8 kbps CELP(Fed. Standard 1016-STU-3)

• 2.4 kbps LPC(Fed. Standard 1015 LPC-10E)

“Circuit Switching

PSTN”

Dr. Cahit Karakuş, 2019

33

PSTN Public Switched Telephone Network

History and Evolution of

circuit switching - PSTN

—Manual, Strowger, register, cross bar system, trunking, electronic and digital switching systems

PSTN

Users

Local

Telephone

Exchanges

City Telephone

Exchange

Traffic from 1

user

Traffic from all

users connect

to exchange

Traffic from all

local exchanges

Slide 37

Before automatic switching exchange was invented,

manual crossbar switchboard was used

PSTN- history

Manual crossbar switchboard

Automatic switching exchange

Guess what was Mr. Strowger’s job when he invented

the automatic switch?

Slide 38

Strowger step-by-step system

E.g. Dialling no. 4388

Slide 39

•Public Switched Telephone

Network (PSTN) consists of

switching nodes (called

exhanges) in hierarchical

structure:

(a) Local network – connect customers’ stations to LEs

(b) Junction network – interconnect group of LEs

(c) Trunk / toll network – provides long distance circuits within country

(d) International network – provide circuits between countries

Public Switched Telephone Network (PSTN)

40

Public Circuit Switched Network

Structure of the PSTN

• Switching

• Transport or transmission (PDH, SDH)

• Subscriber signalling (analog or digital)

• Network-internal signalling (SS7)

• Intelligent Network (IN) concept

• Basic components also for circuit-switched core of mobile networks (PLMN)

Slide 43

•Time-division multiplexing (TDM) transmission was initially

introduced for trunk and junction circuits in the form of

pulse-code modulation (PCM).

•If TDM transmission is used with space-division tandem

switching, it is necessary to provide demultiplexing of

PCM channels to audio signals before switching and

multiplexing of audio signals into PCM channels after

switching for retransmission.

Digital Switching Systems

Slide 44

•There are no customer lines involved in tandem exchanges

– no disadvantage of high-cost customers’ lines.

•Thus, digital exchanges were first introduced for trunk and

junction switching.

•This led to the conversion of trunk networks into integrated

digital networks (IDN) – digital transmission and switching.

Digital switching systems: trunk & junction switch

Slide 45

•We can set up digital concentrators at local exchanges and connect them to

a TDM route switch at large parent exchange via PCM trunks.

•This enables wider coverage area of exchange since PCM trunks are not so

much limited by length.

•The next evolutionary step is to move PCM codec from exchange end to

customer end.

•Digital line all the way to customer. This enables data transmission by

removing codec. The concept of integrated service digital network (ISDN).

Digital switching systems: local exchange

Basic local exchange (LE) architecture

Time switch

TDM links to other network elements

• Switch control

Switching system

• E.164 number analysis

• Charging

• User databases

LIC

LIC

Tone Rx

Group switch

Sign.

ETC

ETC

Exchange terminal circuit

Line interface circuit

SS7 Signalling equipment

Control system • O&M functions

Subscriber stage

Modern trend: Switching and control functions are separated into different network elements (separation of user and control plane).

Tone generator

Setup of a call (1)

Time switch

2. Check user database. For instance, is user A barred for outgoing calls?

Switching system

3. Reserve memory for user B number

LIC

LIC

Tone Rx

Group switch

Sign.

ETC

ETC

Control system

Phase 1. User A lifts handset and receives dial tone.

1. Off hook

Local exchange of user A

4. Tone Rx is connected

5. Dial tone is sent (indicating “network is alive”)

Tone generator

Time switch

3. Number analysis

Switching system

4. IN triggering actions? Should an external database (e.g. SCP, HLR) be contacted?

LIC

LIC

Tone Rx

Group switch

Sign.

ETC

ETC

Control system

Phase 2. Exchange receives and analyzes user B number.

2. Number (DTMF signal) received

1. User A dials user B number

Setup of a call (2)

Local exchange of user A

Time switch

2. Outgoing circuit is reserved

Switching system

LIC

LIC

Tone Rx

Group switch

Sign.

ETC

ETC

Control system

3. Outgoing signalling message (ISUP IAM) contains user B number

Phase 3. Outgoing circuit is reserved. ISUP Initial address message (IAM) is sent to next exchange.

Setup of a call (3)

1. Tone receiver is disconnected

Local exchange of user A

E.g., CIC = 24

IAM (contains information CIC = 24)

Time switch

1. ISUP ACM message indicates free or busy user B

Switching system

LIC

LIC Group switch

Sign.

ETC

ETC

Control system

3. Charging starts when ISUP ANM message is received

Phase 4. ACM received => ringback or busy tone generated. ANM received => charging starts.

Setup of a call (4)

Local exchange of user A

ACM, ANM Tone generator 2. Ringback

or busy tone is locally generated

4. Call continues…

51

TDM - E1

TDM

• Time division multiplexing allows a link to be utilized simultaneously by many users

E-1 line for multiplexing telephone lines

TS0-ÇTB Bulma Algoritması

TS: Time Slot – Bir aboneye ait kanal ÇTB: Çerçeve Tanıtım Bilgisi

57

E1 CCS Transmission Format

Applying this framing method to the OMNIBranch and OMNIFlex.

• TS 0 is used for framing and alarm information

• The OMNIBranch assigns channel numbers 1 to 31, for usable transmission.

CCITT G.704 (32 Time Slots)

1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OMNIBranch / OMNIFlex - 31 Time Slot Assignments

1 - 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Frame (32 Time Slots)

1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Speech

Ch. 1-31

Time Slot 0

(8 bits)

0 X 0 1 1 0 1 1 1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Time Slot 1

Speech (Ch. 1)

Frame

Alignment

Word

ITU-T Rec. G.704

Data Traffic Engineering

60

Tele-traffic engineering

• Introduction

• Telephone traffic profile

• Definition

• Trunking

• Congestion

• Traffic performance

Trafik yoğunluğunu belirleyen faktörler

•In the design of a telecommunication system, initial decision must

be made regarding its size in order to obtain the desired capacity.

•Need to estimate the traffic amount and thus no. of trunks

provided.

•In teletraffic engineering, trunk any entity that will carry one

call. The entity can be international circuit (thousands of km) or

wires in between switches (a few metres).

•The number of trunks to be provided obviously depends on the

traffic to be carried.

•It must be sufficient for the busiest time. However, this will results

in most equipment idling during non-busy hours.

Introduction to Teletraffic Engineering

An example of

telephone traffic

profile of a service

area:

•Operator thus offer cheaper call rates during off-peak hours. It costs them almost

nothing to carry such calls.

•If they manage to shift some calls from peak to off-peak hours, less equipment

and thus capital expenditure are needed.

Telephone traffic profile

•It is dimensionless but aThe traffic intensity (sometime referred simply as

traffic) is defined as the average number of calls in progress simultaneously

during a particular period of time.

• Trafik yoğunluğu (bazen trafik olarak da adlandırılır), belirli bir süre boyunca

aynı anda devam eden ortalama çağrı sayısı olarak tanımlanır.

•name has been given to the unit of traffic : Erlang (E) named after A. K. Erlang,

the Danish pioneer in traffic theory.

•One Erlang (E) represents the amount of traffic carried by a trunk that is

completely occupied i.e. one call-hour per hour or one call-minute per minute.

Traffic

Traffic Theory

1915: A. K.

Erlang

•The traffic carried by a

groups of trunks is

T

ChA

A = traffic in Erlangs

C = average number of

call arrivals during

time T

h = average call holding

time

Traffic

Trunking concept

• The concept of trunking allows a large number of users to

share the relatively small number of trunks/links by

providing access to each user, on demand, from a pool of

available trunks/links.

• Trunking exploits the statistical behaviour of users so that a

fixed number of trunks/links may accommodate a large,

random user community.

• On a group of trunks, the average number of calls in progress

depends on :

1. The number of calls which arrive

2. Their duration (holding time)

Trunking concept

•A single trunk cannot carry more than one call, traffic A for a

single trunk is 1. The traffic is a fraction of an Erlang equal to

the average proportion of time for which the trunk is busy. This is

called the occupancy of the trunk.

•The probability of finding a trunk busy is equal to the proportion of

time for which the trunk is busy. Thus this probability =

occupancy of the trunk.

Trunking concept

• It is uneconomic to provide sufficient equipment to carry all

the traffics that could possibly offered to a telecommunication

system.

• In a telephone exchange, it is possible that all subscribers make

calls simultaneously. The cost of meeting the demand is

prohibitive.

• Therefore, there is a possibility that all trunks in a group of

trunks are busy congestion.

• There are 2 types of telecommunication system :

1. Lost Call (LC) system

2. Delay/queuing system

Congestion

•In delay systems, calls coming in during congestion wait in a queue until an

outgoing trunk becomes free.

•In lost call system, the call will be just dropped.

•Telephone systems are normally lost call systems.

•In such systems,

•Traffic carried (Ac) = traffic offered (Ao) - traffic lost (Al)

•The proportion of calls that is lost or delayed due to congestion is a measure of the

quality of the service provided. It is called grade of service (GOS), B :

offered Traffic

lost Traffic

offered calls ofNumber

lost calls ofNumber

B

Congestion

B = proportion of the time for which congestion exists.

= probability of congestion.

= probability that a call will be lost due to congestion.

•Thus, if traffic Ao Erlangs is offered to a group of trunks having a GOS, B, the traffic lost is AoB and the traffic carried is

• Ac = Ao(1 - B)

•The larger the GOS, the worse is the service given.

•If GOS is too large it will results in many users unable to make successful calls and thus dissatisfied.

•If GOS is too small, unnecessary expenditure on equipment which is rarely used is made.

•In practice, GOS is higher for more expensive trunks.

Congestion

•The basic problem: dimensioning problem i.e. given the offered traffic, A,

and the specified GOS, B, find the number of trunks, N, that is required.

Dimensioning

•In order to obtain analytical solutions to teletraffic problems, it is necessary to have a

mathematical model of the traffic offered.

•A simple model is based on the following assumptions :

(1) Pure-chance traffic - call arrivals and terminations are independent random

events.

(2) Statistical equilibrium - the generation of traffic is a stationary random process

i.e. the probabilities do not change during the period considered.

Traffic model

•The number of call arrival in a given period of time, T has Poisson distribution.

•The intervals between call arrivals, T are intervals between two independent events and the distribution is given

by a negative exponential distribution

•The call duration, H is modelled as a negative exponential distribution

•For a group of N trunks the number of calls in progress varies randomly. This is an example of birth and death

process or renewal process.

•The number of calls in progress (i.e., so called the state) is always between 0 and N.

•Such process is called a simple Markov chain. Its behaviour depends on the probability of change from each state

to one state before or after the state.

Traffic model

ex

xPx

!

•Simple Markov chain.

State probabilities

Transition probabilities

•At statistical equilibrium, the probabilities do not change and

process becomes regular Markov chain.

Traffic model

•Using the traffic model described earlier, Erlang determined the

GOS of a loss-call system having N trunks, when offered traffic

is A :

Lost call systems

•The following assumptions are made :

(1) Pure-chance traffic

(2) Statistical equilibrium

(3) Full availability - every call arrives can be connected to any

outgoing trunk which is free

(4) Calls that encounter congestion are dropped

•The probability of a lost call which is the GOS,

B = E1,N(A) = P (N)

N

k

k

N

N

kA

NAAEB

0

,1

!

!Erlang lost call formula

(or Erlang B)

Lost call systems

•Erlang found that the probability of x trunks is busy is given by:

Ax

ex

AxP

!

0 !n

nA

n

Aegiven that

When N is large, it can be approximated as,

If call arrivals have Poisson

distribution, so does the number

of call in progress

N

k

kx

k

A

x

AxP

0 !!

•It can be shown that:

AAEN

AAEAE

N

N

N

1,1

1,1

,1

The second eqn allows E1,N(A), to be computed for all values of N interactively

A group of five trunks is offered 2E of traffic. Find:

1. The grade of service

2. The probability that only one trunk is busy

3. The probability that only one trunk is free

4. The probability that at least one trunk is free

Solutions:

1. From Erlang lost call

formula

Lost call systems

2. From

N

k

kx

k

A

x

AxP

0 !!

P(1) = 2/7.2667 = 0.275

3) P(4) = (16/24)/7.2667 = 0.0917

4. P(x<5) = 1 – P(5)

= 1 – B = 1 – 0.037 = 0.963

Lost call systems

•If the offered traffic, A increases, the number of trunks, N, must obviously be increased

to provide a given GOS.

•However, for the same trunk occupancy (or utilization), the probability of finding all

trunks busy is less for a large group of trunks than for a small group.

•Thus for a given GOS, trunk occupancy is higher in a large group of trunks than a

small group large group is more efficient.

•This is the concept of trunking as explained earlier or principle of concentration: it is

more efficient to concentrate traffic onto a single large group of trunks.

Traffic performance

•Example : for trunk groups dimensioned to provide GOS of 0.002

at their normal load, a 5-trunk group suffers GOS increase of 40%

when traffic overload of 10% occurs while a 100-trunk group

suffers a 550% increase in GOS.

•Most telecommunications operators adopt dual criteria: two

GOSs are specified - one at normal traffic load and another,

larger GOS for a given percentage of overload.

•The number of trunks provided is determined by which criterion

requires the greater number.

Traffic performance

Traffic performance

•Connection between users may span over multiple links in the

system.

•Thus the GOS for the whole connection needs to be determined.

•Lets look at example of two links connection with each link

having GOS, B1 and B2.

Traffic offered to second link = A(1 - B1)

Traffic reaching destination = A(1 - B1)(1 - B2)

= A(1 + B1 B2 - B1 - B2)

Loss systems in tandem

The overall GOS = B1 + B2 - B1 B2.

If B1, B2 << 1, then B1 B2 is negligible and the overall GOS is B1 +

B2.

•In general, for an n-link connection, the GOS is

n

k

kBB1

Loss systems in tandem

•E1,N(A) is suitable for solving problems : given A and N, find B.

•However, in network dimensioning the problem is : given A and

B, find N. The equation given earlier is not suitable. Calculated

values in table can be used..

(next page)

(slide 22)

Traffic tables

91

Traffic Engineering (E1)

E1 Switching

92

Lokal Circuit Anahtarlama

Time Division Switching

E≈%10

1

N

1 M

1 ME

1

SAYISAL DEVRE

ANAHTARALAMA

%5 MA

1

M

E1 Tx (30 Kanal) E1 Rx (30 Kanal)

ME

%10 ŞA

%25 SEMTLER

%40 DATA

%20 GSM

%5MA

%10ŞA

%25SEMTLER

%40DATA

%20GSM

Su

nu

cu

Bilgisayar

DIŞ Hatlar

E≈%5

Örnek: Abone sayısı 12000; İç Trunk Earlang=%10; Dış Trunk

Earlang=%20; Şae=%10, Mae=%5, See=%25, Dae=%40, GSMe=%20

• N=12000, ITE=%10, DTE=%20

• Niç=NxITE=12000 x 10 /100=1200 Abone, Aynı anda; maksimum alet (devre ya da sistem)

• Ndış=Niç x DTE = 1200 x 20 /100=240 Abone (PCM, 64Kbps)

• Hesap edilen Dış anahtarlama E1 sayısı=240/30=8 E1

• ŞAE1=8 x 10/100=0.8E1; Toplam Kanal sayısı=0.8 x 30 =24KK; ŞAE1=1 E1 alınır.

• MAE1=8 x 5/100=0.4E1; Toplam Kanal sayısı=0.4 x 30 =12KK; ŞAE1=1 E1 alınır.

• SemtE1=8 x 25/100=2E1; Toplam Kanal sayısı=2 x 30 =60KK; ŞAE1=2 E1 alınır.

• DataE1=8 x 40/100=3.2E1; Toplam Kanal sayısı=3.2 x 30 =96KK; ŞAE1=4 E1 alınır. (Kanal Planlama: 30 + 30 + 30 + 6)

• GSME1=8 x 20/100=1.6E1;Toplam Kanal sayısı=1.6 x 30 =48KK; ŞAE1=2 E1 alınır.

(Kanal: 30 + 18)

• >Planlanan E1=10 E1

93

94

DSM

E1

E10

E1 Rx

Tx

Rx Tx E10

Digital Switching Matrix & E1 Switching

E1- TDM: Time Slot Switching – DSM (Digital

Switching Matrix)

DSM

E1

E25

1

25

Rx Tx

Rx Tx

E16

Rx

E21

Rx

E16 Tx

E21 Tx

CH

5

CH

5

CH

20

CH

20

Örnek: Toplam E1 sayısı 25 olan DSM de 455 nolu

aboneyi 620 nolu aboneye anahtarlayın

• A) Toplam abone sayısı=25 x 30 =750

• B) 455 nolu ve 620 nolu aboneler kanalı hangi E1 de?

455/30=15. …; 16 nolu E1’in 5 nolu kanalı

620/30=20. …; 21 nolu E1’in 20 nolu kanalı

• C) Anahtarlama

Örnek: Toplam E1 sayısı 5 olan DSM de 75 nolu

aboneyi 90 nolu aboneye anahtarlayın

• A) Toplam aynı anda hizmet alacak abone sayısı=5 x 30 =150

• B) Kanal Sıralaması yapınız

1. E1 Kanal Sıralama: 1…30

– 2. E1 Kanal Sıralama: 31…60

– 3. E1 Kanal Sıralama : 61… 90

– 4. E1 Kanal Sıralama : 91 … 120

– 5. E1 Kanal Sıralama : 121 … 150

• C) Anahtarlanacak abonelerin konumlarını belirleyin

• 75 nolu abone: 3. E1’in 15 nolu kanalı

• 90 nolu abone: 3.E1’in 31 nolu kanalı(0: ÇTB, 16: ÇÇTB ve Sinyalleşme, Abone kanalları: 1..15, 17..31)

DSM

E1

E25

1

25

Rx Tx

Rx Tx

E16

Rx E16 Tx

E21 Tx

CH

15

CH

15

CH

30

CH

30

Örnek: Toplam E1 sayısı 5 olan DSM de 75 nolu

aboneyi 90 nolu aboneye anahtarlayın

• D) DSM anahtarlama devresini çiziniz.

Örnek: Toplam E1 sayısı 8 olan DSM de 6. E1 10. Kanalı 4.E1 in 29. Kanalına

anahtarlanmıştır. DSM anahtarlama devresini çiziniz. Abone numaralarını bulunuz

• A) Abone numaralarını bulunuz.

• Aynı anda hizmet alacak toplam abone sayısı: 8 x 30=240

• Kanal Sıralaması:

1. E1 Kanal Sıralama: 1…30

– 2. E1 Kanal Sıralama: 31…60

– 3. E1 Kanal Sıralama : 61… 90

– 4. E1 Kanal Sıralama : 91 … 120

– 5. E1 Kanal Sıralama : 121 … 150

– 6. E1 Kanal Sıralaması: 151 … 180

– 7. E1 Kanal Sıralaması: 181 … 210

– 8. E1 Kanal Sıralaması: 211 … 240

• 6. E1 10.Kanal: 5 x 30 + 10=150 +10=160

• 4. E1 29. Kanal: 3 x 30 +30 =120 (ÇÇTB: 16. Kanal)

100

Traffic Engineering (PSTN- CODEC)

Incoming PCM Junction Switching

101

Lokal Circuit Anahtarlama

Time Division Switching

E≈%10

1

N

1 M

1 ME

1

SAYISAL DEVRE

ANAHTARALAMA

%5 MA

1

M

E1 Tx (30 Kanal) E1 Rx (30 Kanal)

ME

%10 ŞA

%25 SEMTLER

%40 DATA

%20 GSM

%5MA

%10ŞA

%25SEMTLER

%40DATA

%20GSM

Su

nu

cu

Bilgisayar

DIŞ Hatlar

E≈%5

Örnek: Abone sayısı 12000; İç Trunk Earlang=%10; Dış Trunk

Earlang=%20; 30 Kanal 1 E1 olduğuna göre E1 sayısını bulunuz.

• N=12000, ITE=%10, DTE=%20

• Niç=NxITE=12000 x 10 /100=1200 Abone, Aynı anda; maksimum alet (devre ya da sistem)

• Ndış=Niç x DTE = 1200 x 20 /100=240 Abone (PCM, 64Kbps)

• Dış anahtarlama E1 sayısı=240/30=8 E1

102

DSM

E1

E8

E1 Rx Tx

Rx Tx E8

Incoming GSM Switching

103

1

N

1 M

1 ME

1

SAYISAL DEVRE ANAHTARALAMA

%5 MA

1 M

E1 Tx (30

Kanal)E1 Rx (30 Kanal)

ME

%10 ŞA%25 SEMTLER%40 DATA%20 GSM

%5MA%10ŞA%25SEMTLER%40DATA%20GSM

Su

nu

cu

Bilgisayar

DIŞ Hatlar

E≈%10

Boş Kanal Bulma

E≈%20

Kaynaklar

• Analog Electronics, Bilkent Unıversity • Electric Circuits Ninth Edition, James W. Nilsson Professor Emeritus Iowa State University,

Susan A. Riedel Marquette University, Prentice Hall, 2008. • Lessons in Electric Circuits, By Tony R. Kuphaldt Fifth Edition, last update January 10, 2004. • Fundamentals of Electrical Engineering, Don H. Johnson, Connexions, Rice University,

Houston, Texas, 2016. • Introduction to Electrical and Computer Engineering, Christopher Batten - Computer

Systems Laboratory School of Electrical and Computer Engineering, Cornell University, ENGRG 1060 Explorations in Engineering Seminar, Summer 2012.

• Introduction to Electrical Engineering, Mulukutla S. Sarma, Oxford University Press, 2001. • Basics of Electrical Electronics and Communication Engineering, K. A. NAVAS Asst.Professor

in ECE, T. A. Suhail Lecturer in ECE, Rajath Publishers, 2010. • http://www.ee.cityu.edu.hk/~csl/sigana/sig01.ppt • İnternet ortamından sunum ve ders notları

104

Usage Notes

• These slides were gathered from the presentations published on the internet. I would like to thank who prepared slides and documents.

• Also, these slides are made publicly available on the web for anyone to use

• If you choose to use them, I ask that you alert me of any mistakes which were made and allow me the option of incorporating such changes (with an acknowledgment) in my set of slides.

Sincerely,

Dr. Cahit Karakuş

[email protected]

105

106


Recommended