+ All Categories
Home > Documents > Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd...

Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd...

Date post: 28-Dec-2015
Category:
Upload: oswin-chandler
View: 222 times
Download: 3 times
Share this document with a friend
Popular Tags:
52
Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002. A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in powerpoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2002 J.F Kurose and K.W. Ross, All Rights Reserved Material modified by MLH, AK, AHR 3/03 *Last 3 slides from:
Transcript
Page 1: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Chapter 4Network Layer

Computer Networking: A Top Down Approach Featuring the Internet,

2nd edition. Jim Kurose, Keith RossAddison-Wesley, July

2002.

A note on the use of these ppt slides:We’re making these slides freely available to all (faculty, students, readers). They’re in powerpoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2002J.F Kurose and K.W. Ross, All Rights ReservedMaterial modified by MLH, AK, AHR 3/03*Last 3 slides from: http://www.csd.uwo.ca/faculty/hanan/Perv/ Presentations/wirelesstech3.ppt

Page 2: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Chapter 4 roadmap4.1 Introduction and Network Service Models

4.2 Routing Principles

4.3 Hierarchical Routing

4.4 The Internet (IP) Protocol

4.5 Routing in the Internet

4.6 What’s Inside a Router?

4.7 IPv6

4.8 Multicast Routing

4.9 Mobility

Page 3: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Multicast: one sender to many receivers • Multicast: act of sending datagram to multiple

receivers with single “transmit” operation– analogy: one teacher to many students

• Question: how to achieve multicast

Multicast via unicast• source sends N

unicast datagrams, one addressed to each of N receivers

multicast receiver (red)

not a multicast receiver (red)

routersforward unicastdatagrams

Page 4: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Multicast: one sender to many receivers • Multicast: act of sending datagram to multiple

receivers with single “transmit” operation– analogy: one teacher to many students

• Question: how to achieve multicast

Network multicast• Router actively participate in

multicast, making copies of packets as needed and forwarding towards multicast receivers

Multicastrouters (red) duplicate and forward multicast datagrams

Page 5: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Multicast: one sender to many receivers • Multicast: act of sending datagram to multiple

receivers with single “transmit” operation– analogy: one teacher to many students

• Question: how to achieve multicast

Application-layer multicast• end systems involved in

multicast copy and forward unicast datagrams among themselves

Page 6: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Internet Multicast Service Model

multicast group concept: use of indirection– hosts addresses IP datagram to multicast group– routers forward multicast datagrams to hosts

that have “joined” that multicast group

128.119.40.186

128.59.16.12

128.34.108.63

128.34.108.60

multicast group

226.17.30.197

Page 7: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Multicast groups class D Internet addresses reserved for multicast:

host group semantics:o anyone can “join” (receive) multicast groupo anyone can send to multicast groupo no network-layer identification to hosts of members

needed: infrastructure to deliver mcast-addressed datagrams to all hosts that have joined that multicast group

Page 8: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Joining a mcast group: two-step process

• local: host informs local mcast router of desire to join group: IGMP (Internet Group Management Protocol)

• wide area: local router interacts with other routers to receive mcast datagram flow– many protocols (e.g., DVMRP, MOSPF, PIM)

IGMPIGMP

IGMP

wide-areamulticast

routing

Page 9: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

IGMP: Internet Group Management Protocol

• host: sends IGMP report when application joins mcast group– IP_ADD_MEMBERSHIP socket option– host need not explicitly “unjoin” group when

leaving • router: sends IGMP query at regular intervals

– host belonging to a mcast group must reply to query

query report

Page 10: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

IGMPIGMP version 1• router: Host Membership

Query msg broadcast on LAN to all hosts

• host: Host Membership Report msg to indicate group membership– randomized delay before

responding– implicit leave via no

reply to Query

• RFC 1112

IGMP v2: additions include• group-specific Query• Leave Group msg

– last host replying to Query can send explicit Leave Group msg

– router performs group-specific query to see if any hosts left in group

– RFC 2236

IGMP v3: under development as Internet draft

Page 11: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Multicast Routing: Problem Statement• Goal: find a tree (or trees) connecting

routers having local mcast group members – tree: not all paths between routers used– source-based: different tree from each sender to rcvrs– shared-tree: same tree used by all group members

Shared tree Source-based trees

Page 12: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Approaches for building mcast trees

Approaches:• source-based tree: one tree per source

– shortest path trees– reverse path forwarding

• group-shared tree: group uses one tree– minimal spanning (Steiner) – center-based trees

…we first look at basic approaches, then specific protocols adopting these approaches

Page 13: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Shared-Tree: Steiner Tree

• Steiner Tree: minimum cost tree connecting all routers with attached group members

• problem is NP-complete• excellent heuristics exists• not used in practice:

– computational complexity– information about entire network needed– monolithic: rerun whenever a router needs to

join/leave

Page 14: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Center-based trees

• single delivery tree shared by all• one router identified as “center” of tree• to join:

– edge router sends unicast join-msg addressed to center router

– join-msg “processed” by intermediate routers and forwarded towards center

– join-msg either hits existing tree branch for this center, or arrives at center

– path taken by join-msg becomes new branch of tree for this router

Page 15: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Center-based trees: an exampleSuppose R6 chosen as center:

R1

R2

R3

R4

R5

R6 R7

router with attachedgroup member

router with no attachedgroup member

path order in which join messages generated

LEGEND

21

3

1

Page 16: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Multicast Routing: Problem Statement

• Goal: find a tree (or trees) connecting routers having local mcast group members – tree: not all paths between routers used

– source-based: different tree from each sender to rcvrs

– shared-tree: same tree used by all group members

Shared tree Source-based trees

Page 17: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Approaches for building mcast trees

Approaches:• source-based tree: one tree per source

– shortest path trees– reverse path forwarding

• group-shared tree: group uses one tree– minimal spanning (Steiner) – center-based trees

…we first look at basic approaches, then specific protocols adopting these approaches

Page 18: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Shortest Path Tree• mcast forwarding tree: tree of shortest path

routes from source to all receivers– Dijkstra’s algorithm

R1

R2

R3

R4

R5

R6 R7

21

6

3 4

5

i

router with attachedgroup member

router with no attachedgroup member

link used for forwarding,i indicates order linkadded by algorithm

LEGENDS: source

Page 19: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Reverse Path Forwarding

if (mcast datagram received on incoming link on shortest path back to center)

then flood datagram onto all outgoing links else ignore datagram

rely on router’s knowledge of unicast shortest path from it to sender

each router has simple forwarding behavior:

Page 20: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Reverse Path Forwarding: example

• result is a source-specific reverse SPT– may be a bad choice with asymmetric links

R1

R2

R3

R4

R5

R6 R7

router with attachedgroup member

router with no attachedgroup member

datagram will be forwarded

LEGENDS: source

datagram will not be forwarded

Page 21: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Reverse Path Forwarding: pruning• forwarding tree contains subtrees with no mcast

group members– no need to forward datagrams down subtree– “prune” msgs sent upstream by router with

no downstream group members

R1

R2

R3

R4

R5

R6 R7

router with attachedgroup member

router with no attachedgroup member

prune message

LEGENDS: source

links with multicastforwarding

P

P

P

Page 22: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Internet Multicasting Routing: DVMRP

• DVMRP: distance vector multicast routing protocol, RFC1075

• flood and prune: reverse path forwarding, source-based tree– RPF tree based on DVMRP’s own routing tables

constructed by communicating DVMRP routers – no assumptions about underlying unicast– initial datagram to mcast group flooded everywhere

via RPF– routers not wanting group: send upstream prune

msgs

Page 23: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

DVMRP: continued…• soft state: DVMRP router periodically (1 min.)

“forgets” branches are pruned: – mcast data again flows down unpruned branch– downstream router: reprune or else continue to

receive data• routers can quickly regraft to tree

– following IGMP join at leaf• odds and ends

– commonly implemented in commercial routers– Mbone routing done using DVMRP

Page 24: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

TunnelingQ: How to connect “islands” of multicast

routers in a “sea” of unicast routers?

mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram

normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router

receiving mcast router unencapsulates to get mcast datagram

physical topology logical topology

Page 25: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

PIM: Protocol Independent Multicast

• not dependent on any specific underlying unicast routing algorithm (works with all)

• two different multicast distribution scenarios :

Dense: group members

densely packed, in “close” proximity.

bandwidth more plentiful

Sparse: # networks with group

members small wrt # interconnected networks

group members “widely dispersed”

bandwidth not plentiful

Page 26: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Consequences of Sparse-Dense Dichotomy:

Dense• group membership by

routers assumed until routers explicitly prune

• data-driven construction on mcast tree (e.g., RPF)

• bandwidth and non-group-router processing profligate

Sparse:• no membership until

routers explicitly join• receiver- driven

construction of mcast tree (e.g., center-based)

• bandwidth and non-group-router processing conservative

Page 27: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

PIM- Dense Mode

flood-and-prune RPF, similar to DVMRP but

underlying unicast protocol provides RPF info for incoming datagram

less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm

has protocol mechanism for router to detect it is a leaf-node router

Page 28: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

PIM - Sparse Mode• center-based approach• router sends join msg to

rendezvous point (RP)– intermediate routers

update state and forward join

• after joining via RP, router can switch to source-specific tree– increased performance:

less concentration, shorter paths

R1

R2

R3

R4

R5

R6R7

join

join

join

all data multicastfrom rendezvouspoint

rendezvouspoint

Page 29: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

PIM - Sparse Mode

sender(s):• unicast data to RP,

which distributes down RP-rooted tree

• RP can extend mcast tree upstream to source

• RP can send stop msg if no attached receivers– “no one is listening!”

R1

R2

R3

R4

R5

R6R7

join

join

join

all data multicastfrom rendezvouspoint

rendezvouspoint

Page 30: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Chapter 4 roadmap4.1 Introduction and Network Service Models4.2 Routing Principles4.3 Hierarchical Routing4.4 The Internet (IP) Protocol4.5 Routing in the Internet4.6 What’s Inside a Router?4.7 IPv64.8 Multicast Routing4.9 MobilityBut first! Merrie’s Spring Break!

Page 31: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

What is mobility?• spectrum of mobility, from the network perspective:

no mobility high mobility

mobile user, usingsame access point

mobile user, passing through multiple access point while maintaining ongoing connections (like cell phone)

mobile user, connecting/ disconnecting from network using DHCP.

Page 32: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility: Vocabularyhome network: permanent “home” of mobile(e.g., 128.119.40/24)

Permanent address: address in home network, can always be used to reach mobilee.g., 128.119.40.186

wide area network

Correspondent;IM, email, web browsing

McConnellNetwork

home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote; not necessarily a router. Can be a server/host on network.

Page 33: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility: More Vocabulary

Care-of-address: address in visited network.(e.g., 79,129.13.2)

wide area network

visited network: network in which mobile currently resides (e.g., 79.129.13/24)

Permanent address: remains constant (e.g., 128.119.40.186)

foreign agent: entity in visited network that performs mobility functions on behalf of mobile.

correspondent: wants to communicate with mobile

McConnellNetwork Autobahn

Network

Page 34: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

How do you contact a mobile friend:

• search all phone books?

• call her parents?• expect her to let you

know where he/she is?

I wonder where Alice moved to?

Consider a friend frequently changing addresses, how do you find her?

I hopeI hope Bob doesn’t find me!

Question: How do you think a correspondent contacts a mobile user?

Page 35: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility: approaches• Let routing handle it: routers advertise permanent address of

mobile-nodes-in-residence via usual routing table exchange.– routing tables indicate where each mobile located– no changes to end-systems– Routers, potentially, would have to maintain forwarding table

entries for millions of mobile nodes• Let end-systems handle it:

– indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote

– direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Page 36: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility: approaches• Let routing handle it: routers advertise permanent address of

mobile-nodes-in-residence via usual routing table exchange.

– routing tables indicate where each mobile located

– no changes to end-systems

– Routers, potentially, would have to maintain forwarding table entries for millions of mobile nodes

• let end-systems handle it:

– indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote

– direct routing: correspondent gets foreign address of mobile, sends directly to mobile

not scalable

to millions of mobiles

Page 37: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility: registration

End result:• Foreign agent knows about mobile• Home agent knows location of mobile

wide area network

McConnell NetworkAutobahn Network

1

Merrie contacts foreign agent on entering Autobahn network

2

Autobahn agent contacts McConnell agent: “This Merrie is a resident in my network”

Page 38: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility via Indirect Routing

wide area network

McConnellNetwork

AutobahnNetwork

3

2

41

correspondent addresses packets using McConnell (home) address of mobile

McConnell agent intercepts packets, forwards to foreign agent, using the COA

Autobahn agent receives packets, forwards to Merrie

Merrie replies directly to correspondent

Page 39: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Forwarding datagrams to remote mobile

McConnell Permanent address: 128.119.40.186 Merrie’s

Care-of address: 79.129.13.2dest: 128.119.40.186

packet sent by correspondent

dest: 79.129.13.2 dest: 128.119.40.186

packet sent by home agent to foreign agent: a packet within a packet

dest: 128.119.40.186

foreign-agent-to-mobile packet

Page 40: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Leaving the Autobahn

AutobahnNetwork

Bye-bye Autobahn agent!On to France!

Upon leaving the Autobahn, Merrie will deregister with the Autobahn agent.

The foreign agent does not necessarily deregister Merrie’s Care of Address.

When Merrie applies for a new COA, the old one is dropped as the Autobahn agent no longer receives encapsulations from McConnell network. Essentially, a time out process.

As long as time between Autobahn and French Network is short, very few datagrams are lost; therefore a continuous connection. Those datagrams lost will be resent via transport protocols.

French Network

Page 41: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Indirect Routing: comments• Mobile uses two addresses:

– permanent address: used by correspondent (hence mobile location is transparent to correspondent)

– care-of-address: used by home agent to forward datagrams to mobile• Routing is based on tunneling• Question: When is this inefficient?

•Triangle Routing Problem:–inefficient when correspondent and mobile are in same network

Other problems:

•Delay

•Burdens networks

Page 42: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility via Direct Routing

wide area network

McConnellNetwork

AutobahnNetwork

4

2

41correspondent requests, receives Merrie’s COA

correspondent forwards to Autobahn agent

Autobahn agent receives packets, forwards to Merrie

Merrie replies directly to correspondent

3

Page 43: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobility via Direct Routing: comments

• overcome triangle routing problem• non-transparent to correspondent: correspondent

must get care-of-address from home agentWhat happens if mobile changes networks?

• Need protocol to notify correspondent of changing COA

• Chaining: Autobahn forwards to France, forwards to England, forwards . . . Etc

What about security? This approach not considered secure by the IETF (Internet Engineering Task Force)

Page 44: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobile IP

• RFC 3220 http://www.ietf.org/rfc/rfc3220.txt• has many features we’ve seen:

– home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet)

• three components to standard:– agent discovery

– registration with home agent

– indirect routing of datagrams

Page 45: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobile IP: agent discovery• agent advertisement: foreign/home agents advertise

service by broadcasting ICMP messages (typefield = 9)

RBHFMGV bits reserved

type = 16

type = 9 code = 0 = 9

checksum = 9

router address

standard ICMP fields

mobility agent advertisement

extension

length sequence #

registration lifetime

0 or more care-of-addresses

0 8 16 24

R bit: registration required

H,F bits: home and/or foreign agent

Page 46: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Functions of Agent Advertisement

• Allow for the detection of mobility agents• Let the mobile node (MN) know whether the agent is a

host or foreign agent• List one or more available care-of addresses• Inform the MN about special features provided by FA

– Example: Alternative encapsulation techniques• MN compares the network portion of the agent’s IP

address with the network portion of its home address. If the network portion do not match, then the MN is on a foreign network.

Page 47: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobile IP: registration example

visited network: 79.129.13/24 home agent

HA: 128.119.40.7 foreign agent

COA: 79.129.13.2 COA: 79.129.13.2

….

ICMP agent adv. Mobile agent

MA: 128.119.40.186

registration req.

COA: 79.129.13.2 HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 9999 identification:714 ….

registration req.

COA: 79.129.13.2 HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 9999 identification: 714 encapsulation format ….

registration reply

HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 4999 Identification: 714 encapsulation format ….

registration reply

HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 4999 Identification: 714 ….

time

Page 48: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobile IP: Registration

• The registration process involves 4 steps:– The MN requests the fowarding service by sending a

registration request to the foreign agent that the mobile node wants to use.

– The FA relays this request to the mobile node’s home agent.

– The HA either accepts or denies the request and sends a registration reply to the FA.

– The FA relays this reply to the MN.

Page 49: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobile IP: Registration• Registration fields include:

– Lifetime: The number of seconds before the registration is considered expired. A value of 0 is a request for deregistration.

– Home address: The home IP address of the mobile node.– Home agent: The IP address of the mobile node’s home

agent.– Care of Address: The home agent should forward IP

datagrams that it receives with MN’s home address to this destination address.

– Identification: Generated by MN; used for matching registration requests to registration replies (for security). Should be unique for each registration request.

Page 50: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Mobile IP: Registration

• The registration reply message includes the following fields:– Home address: The home IP address of the

mobile node.– Home agent: The IP address of the MN’s home

agent.– Lifetime: Number of seconds before registration

expires– Identification: Used for matching registration

requests to registration replies.

Page 51: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Ad-hoc Networks

• RFC 2501 http://www.ietf.org/rfc/rfc2501.txt• No routing infrastructure: two users establish a network

between themselves (think peer-to-peer)• Problems:

– Unreliable links can be jammed(Denial of Service attacks)/someone can listen in

– What if a node signs off (to save battery power)?– How to authenticate?– How to control access?– Need way to multihop

Page 52: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

The Future?


Recommended