+ All Categories
Home > Documents > Chapter 5. Membrane Filtration Process - KOCW

Chapter 5. Membrane Filtration Process - KOCW

Date post: 08-Jan-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
63
Chang-Han Yun / Ph.D. Hankyung University June , 2015 Chapter 5. Membrane Filtration Process
Transcript
Page 1: Chapter 5. Membrane Filtration Process - KOCW

Chang-Han Yun / Ph.D.

Hankyung University

June , 2015

Chapter 5. Membrane Filtration Process

Page 2: Chapter 5. Membrane Filtration Process - KOCW

2 Membrane Filtration Process Hankyong National University

Contents

1. Membrane Separation Process

5. Waste Water Reuse

4. Desalination

3. Reverse Osmosis(RO)

2. Filtration Membrane

Contents Contents

6. Reference for Industrial WW Reuse

Page 3: Chapter 5. Membrane Filtration Process - KOCW

3 Membrane Filtration Process Hankyong National University

1. Membrane Separation Process

1. Filtration Membrane

6. Membrane Reactor

4. Facilitated Transport Membrane

3. Membrane Contactor

2. Dialysis Membrane

Membrane

Processes Membrane

Processes

7. Bio Membrane

5. Permselective Membrane

Page 4: Chapter 5. Membrane Filtration Process - KOCW

4 Membrane Filtration Process Hankyong National University

Filters Pore Size

(㎛)

Separation

Mechanism Application

Operating

Pressure(bar)

Particle Filter(PF)

Roughing Filter(RF) 5.0 ∼ 1,000 Sieving SS removal 0.03 ∼2.0

Micro Filter(MF) 0.05 ∼ 5.0 Sieving

(Porous)

Colloid/Bacteria

removal 1.0 ∼ 5.0

Ultra Filter(UF) 0.05∼0.005 Sieving

(Porous)

Colloid/Virus

removal 1.0 ∼ 5.0

Nano Filter(NF)

0.001

0.005

Solution-diffusion-

imperfection

(Non-porous)

Salt(>+2)

rejection

5.0 ∼ 10.0

Hyper Filter(HF)

Reverse Osmosis(RO)

Forward Osmosis(FO)

0.00005

0.0005

Solution-diffusion-

imperfection

(Non-porous)

Salt(>+1)

rejection 10.0 ∼ 70.0

Filtration 1. Membrane Separation Process

Page 5: Chapter 5. Membrane Filtration Process - KOCW

5 Membrane Filtration Process Hankyong National University

Dialysis

Membranes

Characteristics Separation

Mechanism Application

Retentate Permeate

Size Comp.

Dialysis Macro Solutes

Micro Minor

(solvent)

Sieving and

hindered diffusion Acid, Alkali

(>0.02㎛)

Hemo-

Dialysis (HD) (0.005㎛) 〃 〃 〃 Artificial kidney

Donnan-

Dialysis (DD) Charged ions 〃 〃 Ion-exchange

Pretreatment of

desalination

Metal recovery

Electro-

Dialysis (ED)

Co-ions,

Macro-ions,

Water

Micro

(ions) Minor 〃

Desalination

Chloro-Alkali

Electro-Dialysis

Reversal (EDR) 〃 〃 〃 〃 〃

Dialysis 1. Membrane Separation Process

Page 6: Chapter 5. Membrane Filtration Process - KOCW

6 Membrane Filtration Process Hankyong National University

Membrane

Contactors

Characteristics Separation

Mechanism Application

Retentate Permeate

Size Comp.

Membrane-based

Solvent Extraction

(MSE/MSX)

Solvent

Less soluble Minor

More

soluble

Solubility

difference

Organic pollutants removal

Olefin extraction

Metal recovery

Membrane

Stripping

(MS)

Water

Less soluble 〃

More

volatile 〃

Dissolved gas(air, NH3 etc)

free water

Membrane

Distillation

(MD)

Non-volatile Either

volatile

High volatility

and diffusion

Concentration of liquid

foods

Pore

Condensation

(PC)

Permanent

gas Minor Condensable

Pore condensation

and permeation VOC removal from gas

Membrane

Contactor 1. Membrane Separation Process

Page 7: Chapter 5. Membrane Filtration Process - KOCW

7 Membrane Filtration Process Hankyong National University

Facilitated

Transport

Membrane

Characteristics Separation

Mechanism Application

Retentate Permeate

Size Comp.

Emulsion Liquid

Membrane

(ELM)

Water

Less soluble

/reactive

Minor

More

soluble

/reactive

Solubility difference

Reaction kinetics

Zn recovery in viscose rayon

Metal/Protein recovery

Phenol removal

Immobilized

Liquid Membrane

(ILM/SLM)

〃 〃 〃 〃

Metal/Protein recovery

Phenol removal

Acid gas removal

Contained Liquid

Membrane

(CLM)

〃 〃 〃 〃 〃

Facilitated

Transport 1. Membrane Separation Process

Page 8: Chapter 5. Membrane Filtration Process - KOCW

8 Membrane Filtration Process Hankyong National University

Permselective

Membrane

Characteristics Separation

Mechanism Application

Retentate Permeate

Size Comp.

Gas Permeation

Membrane

(GPM)

Less soluble Either More soluble Solution-

diffusion

H2S removal in natural gas

CO2 recovery in flue gas

H2, He purification

N2, O2 enrichment

Vapor Permeation

Membrane

(VPM)

Permanent gas

Less soluble Minor More soluble 〃

Water vapor removal

VOC/VIC removal

Pervaporation

(PV) Less soluble 〃

More volatile

More soluble 〃

Alcohol/H2O separation

VCM recovery in

PVC synthesis process

Permselective 1. Membrane Separation Process

Page 9: Chapter 5. Membrane Filtration Process - KOCW

9 Membrane Filtration Process Hankyong National University

Relative Size

of Common

Material

Molecular

Weight

0.001 0.01 0.1 1.0 10 100 1000

100 200 5,000 20,000 100,000 500,000

Aqueous Salt

Metal Ion

Filtration

Technology

Pyrogens

Virus

Colloidal Silica

Bacteria

Carbon Black Paint Pigment

Yeast Cells Beach Sand

Pollens

Reverse Osmosis

Ultra-Filtration

Micro-Filtration

Particle Filtration

Nano-Filtration

Soluble Removal

(Ions, COD) Colloid Removal SS Removal

SDI(0.05㎛) SS filter(1.4㎛)

Filtration

Spectrum 2. Filtration Membrane

Page 10: Chapter 5. Membrane Filtration Process - KOCW

10 Membrane Filtration Process Hankyong National University

Membrane

Module

Tubular Spiral Wound

Hollow Fiber Plate & Frame

2. Filtration Membrane

Page 11: Chapter 5. Membrane Filtration Process - KOCW

11 Membrane Filtration Process Hankyong National University

Module

Characteristics

Module type

Items Spiral wound Hollow fiber Tubular Plate & Frame

Typical Packing Density

m2(Area)/m3(Volume) 800 6,000 70 500

Required feed flow rate

(m/s) 0.25∼0.5 ∼0.005 1∼5 0.25∼0.5

Feed pressure drop

(kg/cm2) 3∼6 0.1∼0.3 2∼3 3∼6

Membrane fouling

propensity High High Low Moderate

Ease of cleaning Poor to good Poor Excellent Good

Feed stream filter size (㎛) 10∼20 5∼10 Not required 10∼25

2. Filtration Membrane

Page 12: Chapter 5. Membrane Filtration Process - KOCW

12 Membrane Filtration Process Hankyong National University

Polysulfone

Spacer

0.2㎛

50㎛

120㎛

Support layer

Polyamide

(Active layer)

Support Layer(50㎛)+ Active Layer(0.2㎛)

Ion separation using reverse osmosis

Spiral Wound 2. Filtration Membrane

Page 13: Chapter 5. Membrane Filtration Process - KOCW

13 Membrane Filtration Process Hankyong National University

Feed Spacer

Feed Spacer

Polysulfone

Product Spacer

0.2㎛

50㎛

120㎛

Support layer

Polyamide

(Active layer)

Product Spacer

Support Layer(50㎛)+ Active Layer(0.2㎛)

Ion separation using reverse osmosis

Spiral Wound 2. Filtration Membrane

Page 14: Chapter 5. Membrane Filtration Process - KOCW

14 Membrane Filtration Process Hankyong National University

Hollow Fiber

Non-Braid Type

Braid Type

(Reinforced)

2. Filtration Membrane

Page 15: Chapter 5. Membrane Filtration Process - KOCW

15 Membrane Filtration Process Hankyong National University

Hollow Fiber

Submergible Type Case Type

2. Filtration Membrane

Page 16: Chapter 5. Membrane Filtration Process - KOCW

16 Membrane Filtration Process Hankyong National University

MBR

MBR : Membrane Bio Reactor

→ (Bio treatment + Membrane filtration) Reactor

2. Filtration Membrane

Raw WW

Anaerobic

Tank

Anoxic

Tank

Aerobic

Tank Membrane

Module

Pump Filtrate

Effluent

Filtrate

Tank

Page 17: Chapter 5. Membrane Filtration Process - KOCW

17 Membrane Filtration Process Hankyong National University

MBR

Aerobic Bio Degradation

Bio

Pollutants(Org/T-N) + O2(Air) CO2 ↑ + H2O + Cell

Sludge

Blower Excess Sludge

WW

MLSS(Mixed Liquor Suspended Solid)

• MLSS of Conventional Activated Sludge : 1,500 ∼ 4,000 mg/L

• MLSS of Aerobic MBR : 4,000 ∼ 10,000 mg/L

MLVSS(Mixed Liquor Volatile Suspended Solid) : 70% of MLSS in general

SRT(Sludge Retention Time) : 20 ∼ 30 days in general

2. Filtration Membrane

Page 18: Chapter 5. Membrane Filtration Process - KOCW

18 Membrane Filtration Process Hankyong National University

Fouling

Deposit → Remove through Flushing / Backwashing

Clogging

Cake Formation

Plugging → Recover by Using Backwashing / CIP (※ CIP : Chemical In Placed)

Fouling

La

yer

Cake Layer formed on the surface of membrane by deposition of SS in feed

Gel Not movable layer of soluble polymer formed on the surface of membrane by

concentration

Scale Insoluble hardness layer formed on the surface of membrane by concentration

Pore Blocking Block the pore inside by adsorption of organic or salting-out of inorganic salt

Path Blocking Block the path of feed stream in membrane module by SS

2. Filtration Membrane

Page 19: Chapter 5. Membrane Filtration Process - KOCW

19 Membrane Filtration Process Hankyong National University

Fouling

Air Flushing : Continuous supply the air to the bottom of membrane frame

Backwashing by flowing-back the filtrate :

※ 0.5∼1.0 min. after every 20∼30 min. filtration(backwash flux = 1.5∼2.0 × filtration flux)

CEBW : Chemical Enhanced Back Wash(Backwashing using filtrate containing HOCl)

※ 1 time per day

CIP

※ 1 time per 3 months

To maintain stable operation, the efficiency of air flushing is most important.

To enhance the flushing effects

Module & Frame Structure → Optimization of aerator : air stream line, bubble size, volume

Roughness of Membrane Surface

2. Filtration Membrane

Page 20: Chapter 5. Membrane Filtration Process - KOCW

20 Membrane Filtration Process Hankyong National University

Operating

Principle of RO

Osmosis Reverse Osmosis

Osm

osi

s

Low Salt

Solution

High Salt

Solution

Mem

bra

ne

Mem

bra

ne

ΔP

ΔP

- O

smo

sis

Low Salt

Solution

High Salt

Solution

3. Reverse Osmosis

Page 21: Chapter 5. Membrane Filtration Process - KOCW

21 Membrane Filtration Process Hankyong National University

Salt and water

ΔP

water

ΔP

water

Salt

Reverse Osmosis

Operating Principle of RO

Water Desalination Cost

Operating

Principle of RO 3. Reverse Osmosis

Page 22: Chapter 5. Membrane Filtration Process - KOCW

22 Membrane Filtration Process Hankyong National University

RO Membrane

Material

Poly-Amide

(PA)

Cellulose

(CA)Remark

2∼12 4∼6

15 30

TDS 99+ 98

SiO2 99+ 95

Stable Unstable

Production Rate Salt Rejection Performance Drop

Salt Permeability 30%↑ 100%↑

Salt Rejection 99% → 98.7% 98% → 96%

Very Low Low

High Low

Oxitant Resistance

Physico-Chemical Stability

Materials

Items

pH Range

Operating Pressure (kgf/cm2)

Salt

Rejection(%)

Fouling

Long Time Using

After 3 Years

Using

3. Reverse Osmosis

Page 23: Chapter 5. Membrane Filtration Process - KOCW

23 Membrane Filtration Process Hankyong National University

RO Membrane

Rejection

NO Inorganic Rejection(%) MW NO Organic Rejection(%) MW

1 NaF 99 42 1 HCHO 35 30

2 NaCN 98 49 2 CH3OH 25 32

3 NaCI 99 58 3 C2H5OH 70 46

4 SiO2 99 60 4 Isopropyl Alcohol 90 60

5 NaHCO3 99 84 5 Urea 70 60

6 NaNO3 99 85 6 Lactic Acid(pH 2) 94 90

7 MgCl2 99 95 7 Lactic Acid(pH 5) 99 90

8 CaCl2 99 111 8 Glucose 98 480

9 MgSO4 99 120 9 Sucrose 99 342

10 NiSO4 99 155 10 Disinfectant 99 -

11 CuSO4 99 160 11 BOD 95 -

12 COD 97 -

3. Reverse Osmosis

Page 24: Chapter 5. Membrane Filtration Process - KOCW

24 Membrane Filtration Process Hankyong National University

RO Membrane

Rejection

NO Cation Rejection(%) NO Anion Rejection(%)

1 Na+ 97 1 Cl- 99

2 Ca2+ 99 2 HCO3- 98

3 Mg+2 99 3 SO42- 99

4 K+ 98 4 NO3- 96

5 Fe3+ 99 5 F- 98

6 Mn2+ 99 6 SiO2- 99

7 Al3+ 99 7 PO43- 99

8 NH4+ 99 8 Br2+ 98

9 Cu2+ 99

10 Ni2+ 99

11 Zn2+ 99

12 Sr2+ 98

13 Cd+2 99

14 Ag+ 99

15 Hg2+ 99

3. Reverse Osmosis

Page 25: Chapter 5. Membrane Filtration Process - KOCW

25 Membrane Filtration Process Hankyong National University

1. Rejection of inorganic > organic

2. Rejection of electrolyte > non-electrolyte

3. Valence↑ → Rejection ↑

4. Hydration number and ion size of inorganic ions ↑ → Rejection ↑

5. Molecular size of non-electrolyte ↑ → Rejection ↑

6. Gaseous salt, Gas(NH3, Cl2, CO2, O2, H2S) : low rejection

7. Weak acid : low rejection

※ Rejection of organic acid : Citric acid > Tartaric acid > Acetic acid

Characteristics

of RO 3. Reverse Osmosis

Page 26: Chapter 5. Membrane Filtration Process - KOCW

26 Membrane Filtration Process Hankyong National University

Operation Mode

Permeate R O

Raw

Water

Tank

Raw Water

Concentrate

Boosting Pump

High pressure Pump

Batch

R O

Raw

Water

Tank

Continuous (Feed & Bleed)

R O

Raw

Water

Tank

R O

R O

Continuous (One-Through)

Permeate

Permeate

Concentrate

Concentrate

Concentrate

Concentrate

High Pressure

Pump

Boosting Pump

Boosting Pump

High Pressure

Pump Permeate

Permeate

Raw Water

Raw Water

3. Reverse Osmosis

Page 27: Chapter 5. Membrane Filtration Process - KOCW

27 Membrane Filtration Process Hankyong National University

S/W for Simulation

of RO Block 3. Reverse Osmosis

Page 28: Chapter 5. Membrane Filtration Process - KOCW

28 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO) 4. Desalination

Page 29: Chapter 5. Membrane Filtration Process - KOCW

29 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO) 4. Desalination

Page 30: Chapter 5. Membrane Filtration Process - KOCW

30 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO) 4. Desalination

Page 31: Chapter 5. Membrane Filtration Process - KOCW

31 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO)

with Energy Recovery 4. Desalination

Page 32: Chapter 5. Membrane Filtration Process - KOCW

32 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO)

with Energy Recovery 4. Desalination

Page 33: Chapter 5. Membrane Filtration Process - KOCW

33 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO)

with Energy Recovery 4. Desalination

Page 34: Chapter 5. Membrane Filtration Process - KOCW

34 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO)

with Energy Recovery 4. Desalination

Page 35: Chapter 5. Membrane Filtration Process - KOCW

35 Membrane Filtration Process Hankyong National University

Reverse Osmosis(RO)

with Energy Recovery 4. Desalination

Page 36: Chapter 5. Membrane Filtration Process - KOCW

36 Membrane Filtration Process Hankyong National University

Forward Osmosis(FO) 4. Desalination

Draw Solution

Page 37: Chapter 5. Membrane Filtration Process - KOCW

37 Membrane Filtration Process Hankyong National University

Forward Osmosis(FO) 4. Desalination

Membrane Distillation

Page 38: Chapter 5. Membrane Filtration Process - KOCW

38 Membrane Filtration Process Hankyong National University

Forward Osmosis(FO) 4. Desalination

Membrane Distillation

Page 39: Chapter 5. Membrane Filtration Process - KOCW

39 Membrane Filtration Process Hankyong National University

Forward Osmosis(FO) 4. Desalination

Combination Process of Membrane(Hybrid System)

Page 40: Chapter 5. Membrane Filtration Process - KOCW

40 Membrane Filtration Process Hankyong National University

Overview 5. Waste Water Reuse

WWTP

WW Sewage

Discharge

WWTP

(Existing)

Return(20~30%)

Reuse Plant

(New)

Reuse(70~80%)

1. Purpose

Reuse the effluent of the WWTP by treating up to industrial water quality.

Solve problems caused by water shortage at the dry season.

Design to be minimize the cost by adequate combination of the unit equipment.

Minimize the initial investment by connecting with existing the WWTP.

2. Concept

WW Sewage

Discharge

Page 41: Chapter 5. Membrane Filtration Process - KOCW

41 Membrane Filtration Process Hankyong National University

Reverse Osmosis (RO)

Ion Exchange Resin (IX)

Electro Dialysis (ED or EDR)

3. Usage

4. Main Equipments

General purpose(Toilet, Landscape etc.) colloid/SS removal & disinfection by regulation

Replace industrial water colloid/SS, BOD, COD and ions removal

Separation processes are simple isolation of pollutants from water physically,

not vanish them. So, they basically have a problem that generate the concentrate

containing highly concentrated pollutants.

Overview 5. Waste Water Reuse

Page 42: Chapter 5. Membrane Filtration Process - KOCW

42 Membrane Filtration Process Hankyong National University

1st Pre-treatment(Remove particle)

▶ Screen

▶ Sand Filter(SF)

▶ Multi-Media Filter(MMF)

▶ Fiber Filter

2nd Pre-treatment(Remove soluble organic)

▶ Activated Carbon(AC)

▶ Advanced Oxidation Process(AOP)

3rd Pre-treatment(Remove Colloid)

▶ Micro Filter(MF)

▶ Ultra Filter(UF)

▶ Double Stage Fiber Filter

Safety Filter

▶ Cartridge Filter(1∼2 ㎛)

RO / NF(Salt rejection)

Filtrate to Service

Concentrate

(to WWTP)

Raw Water

Basic Concept

※ SDI : Silt Density Index

※ LSI : Langelier Saturation Index

☞ SDI < 5.0

☞ CODCr < 10 mg/ℓ

☞ LSI < - 0.1

5. Waste Water Reuse

Page 43: Chapter 5. Membrane Filtration Process - KOCW

43 Membrane Filtration Process Hankyong National University

Process

Purpose : Pollutants removal to discharge the concentrate

Purpose : Produce ultra pure water(2nd de-ionized water)

Effluent

Discharge

(20~30%)

Pretreatment

Salt Rejection(IX/RO/ED etc.)

Advanced

treatment

Reuse

(70~80%)

Post treatment

Optional

Purpose : Protect the membrane from fouling

Target Pollutants : Organics, SS, Colloid, Scale etc.

Purpose : Produce industrial water(1st de-ionized water)

Target Pollutants : Dissolved salts/ions and organics

1. Pre-treatment

2. RO

3. Advanced treatment

4. Post treatment

5. Waste Water Reuse

Page 44: Chapter 5. Membrane Filtration Process - KOCW

44 Membrane Filtration Process Hankyong National University

Pre-treatment

Optional

Effluents from WWTP

Particle Filter (PF)

Granular Activated Carbon(GAC)

MF / UF Membrane

Disinfectants

RO Process Purpose : Stable pretreatment under 2.0 of SDI15

Purpose : Protect RO from organic fouling

Target Pollutants : Dissolved polymer and organics

Purpose : Protect RO from colloidal fouling

Equipment : SF, MMF, Fiber filters, etc.

Target Pollutants : SS, Colloid

1. Particle Filter(PF)

2. Granular Activated Carbon(GAC)

3. MF / UF Membrane

5. Waste Water Reuse

Page 45: Chapter 5. Membrane Filtration Process - KOCW

45 Membrane Filtration Process Hankyong National University

RO

Optional

Pretreatment

Safety Filter

Heat Exchanger

R O

Scale Inhibitor

Reductants

Reuse or Reuse after advanced treatment

CIP

Purpose : In-site chemical cleaning system of RO

Purpose : Emergency protection from colloidal fouling

Target Pollutants : Foreignbody from pipes and pumps

Purpose : Maintain minimum temperature of inlet water

for the stable recovery rate of RO permeate

Purpose : Reject the salts and ions from inlet water

Rejection Rate : Minimum 99%

1. Safety Filter

2. Heat Exchanger

3. RO (Reverse Osmosis)

4. CIP (Chemical In Place)

5. Waste Water Reuse

Page 46: Chapter 5. Membrane Filtration Process - KOCW

46 Membrane Filtration Process Hankyong National University

Permeate Quality

of RO

Items WWTP Effluents RO Permeate Industrial Water(IW)

pH 6 ~ 8 6 ~ 7 6 ~ 7.5

Conductivity (uS/cm) 1,200 ~ 4,000 < 50 60 ~ 200

COD (mg/L) 30 ~ 80 1 1

SS (mg/L) 10 ~ 60 0 1

Alkalinity (mg/L) 150 ~ 200 < 20 30 ~ 80

Hardness (mg/L) 60 ~ 100 < 5 40 ~ 120

Turbidity (NTU) 2 ~ 10 < 0.5 0.4 ~ 2

5. Waste Water Reuse

Page 47: Chapter 5. Membrane Filtration Process - KOCW

47 Membrane Filtration Process Hankyong National University

Investment

of RO

Equipment

(million ₩)

Unit Capital

(1,000 ₩/(m3/d))

※ Based on standard market price(2007)

5. Waste Water Reuse

Page 48: Chapter 5. Membrane Filtration Process - KOCW

48 Membrane Filtration Process Hankyong National University

Economic Comparison

Particle

FilterMF / UF Ozone RO

60 200 100 360

Electicity(50₩/kwh) 0.4 20 15 110

Chemicals 6 2 0 100

Maintenance 2.6 50 3 33

Total 9 72 18 243

17% PAC: 30mg/ℓ

Life time of filter

media : 3yrs

Life time of

membrane: 5yrs

Ozone Dose : 6mg/ℓ

Maintenance:

3%/yr of capital

Life time of

membrane: 3yrs

Operating

(₩/m3)

Remark

Unit Capital(1000 ₩/(m3/day))

Equipments

Items

※ Based on 5,000 m3/d capacity and standard market price(2007)

5. Waste Water Reuse

Page 49: Chapter 5. Membrane Filtration Process - KOCW

49 Membrane Filtration Process Hankyong National University

Economic Analysis

of Sewage Reuse

Items Price(million ₩) Remarks

Machinery

Pumps 750 Include HP Pump

Pretreatment 930

Activated Carbon Filter 700

MF / UF 2,500

RO 1,800

CIP System 65

Chemical Dose System 45

General Machinery 200

Sub-Total 6,990

Installation with Piping 750

Electricity and Control System 420

Engineering with margin 600

Total 8,760 584,000 ₩/(m3/d)

▶ Feed Q : 22,000m3/d, Permeate Q : 15,000m3/d(68% Recovery), Concentrate : 7,000m3/d

▶ Basis of raw water conductivity : 1,500 μs/cm

1. Initial Investment Effluent

(22,000 m3/d) AC UF RO

Reuse

68% Recovery

15,000 m3/d

5. Waste Water Reuse

Page 50: Chapter 5. Membrane Filtration Process - KOCW

50 Membrane Filtration Process Hankyong National University

Items Price Amount Cost(1000 ₩)

day month year

Pretreatment Filter Media 270 mil ₩/set 1 set/4yrs 188 5,625 67,500

Activated Carbon Filter 95 mil ₩/set 3 set/yr 792 23,750 285,000

RO Membrane 850,000 ₩/ea 936 ea/2yrs 1,105 33,150 397,800

C

H

E

M

CIP Inorganic Chemicals 10 mil ₩/set 1 set/month 333 10,000 120,000

Organic Chemicals 10 mil ₩/set 1 set/month 333 10,000 120,000

Filtration Auxiliary 50,000 ₩/kg 7.5 kg/d 375 11,250 135,000

Disinfectants 85,000 ₩/kg 3 kg/d 255 7,650 91,800

Anti-

foulants

Anti-scalants 85,000 ₩/kg 3 kg/d 255 7,650 91,800

Anti-organic foulants 85,000 ₩/kg 3 kg/d 255 7,650 91,800

Electricity 50 ₩/kwh 11 Mwh/d 550 16,500 198,000

Total (296 ₩/m3) 4,441 133,225 1,598,700

▶ Industrial Water Cost : 15,000 m3/d × 550 ₩/m3 × 360 d/yr = 2,970 million ₩/yr

▶ Save : about 1,300 million ₩/yr

2. Operating

Economic Analysis

of Sewage Reuse 5. Waste Water Reuse

Page 51: Chapter 5. Membrane Filtration Process - KOCW

51 Membrane Filtration Process Hankyong National University

Industry

Item Silicon Wafer Tire Automobile Can Manufacture Steel Manufacture Petro-Chemistry

Starting Date 1995 1995(?) 1996 1998 2002 2002

Background Lack of water No discharge permit No discharge permit Lack of water Replace city water Effluent regulation

Permeate of RO (m3/d) 880 180 2,000 525 10,000 3,128

Characteristics

of Raw Water

Wafer washing WW

High concentration of

peroxide

Fine particle

CODMn : 150 ppm

BOD : 95 ppm

SS : 120 ppm

N-H : 28 ppm

With sewage(1:1)

Cond.: 3,500 μs/cm

Hardness: 200 ppm

CODMn : 50 ppm

N-H : 90 ppm

TDS : 1,580 ppm

CODCr : 362 ppm

Floating Oil

Raw water:STP effluent

CODMn : 16∼28 ppm

Turbidity : 6∼14 NTU

NH3 : 980 ppm

CODMn : 80 ppm

Cond. : 7,000 μs/cm

Pre-treatment AC+MF+O3+UV+AC RSF+AC+ PF SF+AC+Cation Ex DAF+MMF+AC+UF MDF+MMF+VF MMF

SDI 4.0∼5.0 11.0 < 3.0

RO Recovery(%) 70 60 80 75 75 93

RO CIP(days) 90 28 14∼21 4.1∼7.3일

Investment(thousand ₩) 2,000,000 6,000,000 800,000 8,000,000

Unit Capital Cost

(thousand ₩/(m3/d)) 2,273 3,000 1,524 2,558

O

&

M

Fix(₩/day) 1,096

Labor(1000 ₩/day) 199

800

Direct Operation

(1000 ₩/day) 113

Sum(thousand ₩/d) 1,408

Unit Operation(₩/m3) 1,600 400 800

Remark

•MF CIP : 7days

•MF Rec. : 90∼95%

•#2 AC→ SDI 저하

•CF life time : 7days

•Organic SS

•No bio treatment

•Design :96% recovery

•CF life time : 15days

•CODCr : 4 ppm

•CF life time : 30days

•2 stage RO

•Evaporator include

•AC life time : 30days

•Dead-end UF

•No industrial water

•reused as cooling water

•RO life time : 2 months

•RO feed:1∼4 NTU

•3 stage RO

•Explosion design

•Concentrate : use

as a raw material of

fertilizer

▶ Unit Capital : Very High (> 1,000,000 ₩/(m3/d) )

※ Sewage effluent reuse by RO : < 600,000 ₩/(m3/d)

▶ No standard process flow for reuse of industrial WW

Analysis of Reference 6. Reference for Industrial WW Reuse

Page 52: Chapter 5. Membrane Filtration Process - KOCW

52 Membrane Filtration Process Hankyong National University

Characteristics

1. Raw waste water : Silicon wafer washing WW

2. H2O2 concentration in WW = 300 ppm → generate COD

3. Reuse to wafer washing(ultra-pure deionized water, >17 ㏁ )

4. Re-deionization of RO permeate through 2 stages of Mixed Bed

5. A part of COD was removed at activated carbon and O3/UV

6. Most of COD was removed at RO and Mixed Bed

7. Plant was constructed at Nov. of 1994 and operation was started

at Aug. of 1995

Items ① ② ③ ④ ⑤ ⑥ ⑦

Q(m3/d) 1,400 1,260 880

COD(mg/l) 200 10 10 0.5

TOC(mg/l) 30 4

Cond.(㎲/cm) 500 50

SS(mg/l) 80 30 0

SDI15 2∼2.8 2.8 Max. 4-5

Raw

WW

Reservoir → Cool

ing → AC#1

MF

Ozone

→ → →

↑ ↑ pH disinfection Concentrate

↓ Concentrate ↓

Reuse ← MB

(#1+#2)

RO

⑥ Cartridge

Filter

AC#2

UV

← ← ← ←

Operation

1. Temperature : 25℃

2. MF operation cycle : 15 minutes

3. MF CIP cycle : 7 days

4. MF recovery rate : 90-95 %

5. RO feed pressure : 15 atm

6. RO array : 8" module(total 72ea)

- 1st stage : 6 elements/train×4 trains

- 2nd stage : (6 elements/train×2 trains)×2 sets

7. Cartridge filter life time : 7 days

8. RO CIP cycle : 3 months

9. RO recovery : 70 %

Silicon Wafer 6. Reference for Industrial WW Reuse

Page 53: Chapter 5. Membrane Filtration Process - KOCW

53 Membrane Filtration Process Hankyong National University

Specification of unit equipment

1. AC #1 : COD adsorption and degradation

- Original design : Bio-reactor using media

- H2O2 in WW(300 ppm) disturb attachment of bio organism

- Present status : Use only adsorption column

(Organic degradation by H2O2)

2. MF : Removal of SS

- Material : PP(Pore Size : 0.2㎛)

- Equipment cost : 700 million ₩

3. Ozone/UV : COD and TOC break-down

- Ozone generation : 1kg of O3/hr

- Ozone contactor size : 1.5 mΦ×5 mL

- DO of ozonized water : 20 ppm

4. AC #2 : Residual H2O2 breaking(Micro organism growth)

5. Cartridge Filter

- Pore size : absolute 20 ㎛ (normal 5 ㎛)

- Size : 4 "Φ×20 "L×19 ea×3 sets

6. RO system : TOC and Salt removal

- Feed pressure : 15 atm

- Design : 3 stage(high concentration) → Present : 2 stage operation

Economy Analysis

1. Capital Cost upto RO (880m3/d) : 2,000 mil ₩

2. Operation Cost : 1,600 ₩/m3(include labor)

※ 108 ₩/m3(utility, Media, Chemical)

☞ Total : 472.6 million ₩/yr

- Depreciation (10%/yr) : 200 million ₩/yr

- Interest(10%/yr) : 200 million ₩/yr

- Labor : 72.6 million/yr

(2.20 million ₩/mo/person ×3person×12mo)

Silicon Wafer 6. Reference for Industrial WW Reuse

Page 54: Chapter 5. Membrane Filtration Process - KOCW

54 Membrane Filtration Process Hankyong National University

SF AC #1 AC #2

ED

Permeate

(Reuse)

DD Al Electro

Coagulation DAF RSF Sludge

Sludge

Effluent

※ SF : Sand Filter

PF : Particle Filter(Marino Filter)

CF : Cartridge Filter

ED : Electro Dialysis

DD : Drum Dryer

RSF : Rapid Sand Filter

PF CF R O

Concentrate

② ③ ④ ⑤

Characteristics

1. COD Source : Carbon Black(SS)+Soluble Oil

2. SF+AC : Remove 5 ppm of COD

3. Design : 96% recovery upto ED,

(Concentrate : Evaporated by DD)

4. Present : Discharge concentrate(about 40%)

Items ① ② ③ ④ ⑤

Q(m3/d) 240∼300 ← ← ← 144∼180

BOD(mg/l) 95 4 1

CODMn(mg/l) 150 4 2.5 2.7 1.1

CODCr(mg/l) 3.5 4.0

SS(mg/l) 120 3 0.7 0.5

SDI5 12.5 11.0

N-H(mg/l) 28 0.5

TDS(mg/l) 1,500 81.5

Conductivity(㎲/cm) 2,000 95.9

Total Hardness(mg/l) 117 140 2

TOC(mg/l) 1,607

Turbidity(NTU) 2∼4

Operating Conditions

1. Temperature : 34℃

2. Cartridge filter life time : 15 days

3. RO CIP cycle : 28 days

4. RO recovery : 60 %

Tire Manufacture 6. Reference for Industrial WW Reuse

Page 55: Chapter 5. Membrane Filtration Process - KOCW

55 Membrane Filtration Process Hankyong National University

SFF AC Cation

Exchange

1st

Evaporator Sludge

Effluent

(2,000 m3/d)

※ SFF : Sand Flo Filter

CF : Cartridge Filter

VD : Vacuum Dryer

Heat

Exchanger

CF

(3㎛) 1st RO

Concentrate

2nd RO 2nd

Evaporator VD

Characteristics

1. Initial Plan : Discharge to sea(<CODMn 10 mg/l)

(Piping cost : 12 billion ₩)

2. Change Plan : No discharge(6 billion ₩)

3. Flow Rate including Sewage

- Design : 5,000m3/d(Sewage : WW = 1 : 2)

- Operation : 2,000m3/d(Sewage : WW = 1 : 1)

4. CODMn of Effluent : 50 mg/l(Raw : 300 mg/l)

5. Conductivity : 3,000~4,000μS/㎝

6. Total Hardness : max. 200 mg/l

Operation

1. Temperature : 25℃

2. RO Array

- #1 RO : Filmtec BW30 12:6:3×2 blocks(6 ea/vessel)

- #2 RO : Filmtec SW30 8×1 block(4 ea/vessel)

3. Pressure

- #1 RO : 13 atm, - #2 RO : 40 atm

4. RO Recovery

- Design : 95%, - Operation : 80%

6. CF life time : 30 days

7. RO CIP cycle : 2~3 wk(CIP Chemical : NaOH, Citric Acid)

8. Evaporator

- Design : Solidification by using 2 evaporator, Vacuum dryer

- Operation : Partial drain of concentrate

Economics

1. Investment : 6 billion ₩

2. Operation including labor :

- RO : 400 ₩/m3

- Evaporator : 400 ₩/m3

Automobile

Manufacture

Filtrate

(Reuse)

6. Reference for Industrial WW Reuse

Page 56: Chapter 5. Membrane Filtration Process - KOCW

56 Membrane Filtration Process Hankyong National University

DAF MMF 1st AC Permeate

(Reuse)

2nd AC

Raw WW

(700 m3/d)

※ DAF : Dissolved Air Floatation

MMF : Multi-Media Filter

UF R O

Concentrate

Discharge

Operation

1. AC life time : 30 days

2. SDI of UF Filtrate < 3

3. RO

- Temperature : 25℃

- RO Array : Filmtec BW30 3:2:1×1 block(6 ea/vessel)

- Pressure : 13 atm

- Recovery : 75%

Economics

1. Investment : 800 million ₩

2. Operation Cost : 800 ₩/m3

※ DAF+AC : 570 원/m3

Characteristics

1. Flow Rate : 700 m3/day

2. N-H : 90 mg/l

3. NBDCOD > 140 mg/l

4. After DAF

- N-H < 1 mg/l, - COD < 56 mg/l

5. SDI after AC : < 5.0

6. UF : Dead-End Type UF(BUF)

Items Raw

Water DAF MMF 1st AC UF RO 2nd AC

CODCr(mg/l) 362 142 135 10 10 5 32→18

CODMn(mg/l) 52 36 34 3 3 1 10→5

Turbidity(NTU) - 0.53 0.45 0.35 0.30 0.15 2.90→2.86

TDS(mg/l) 1,580 1,690 1,690 1,680 1,680 80 4,700→4,650

Can Manufacture 6. Reference for Industrial WW Reuse

Page 57: Chapter 5. Membrane Filtration Process - KOCW

57 Membrane Filtration Process Hankyong National University

Characteristics

1. Raw WW : Effluent of STP

2. Purpose of Reuse

Make-up of cooling water

Operation

1. Recovery : about 75%

2. Rejection : about 99.4%(1,651→9.8 ㎲/cm)

3. CIP cycle and RO life time

4. Serious fouling by colloidal and micro organism

5. Very unstable operation by low efficiency of pre-treatment equipment

RO Train

Items #1 #2 #3 #4 #5

Ave. CIP Cycle(day) 6.6 7.3 4.7 4.1 5.1

Ave. RO life time교체 33 ? 33 66 66

MDF MMF VF Filtrate

to C/T

Raw WW

(STP Effluent)

※ MDF : Micro Disk Filter

MMF : Multi-Media Filter

VF : Vortisand Filter

CF R O

Concentrate

To WWTP

Items Raw WW MDF MMF VF CF

CODMn(mg/l) 16∼28

Turbidity(NTU) 6.0∼14.0 5.5∼13.0 1.0∼4.0 1.0∼4.0 1.0∼4.0

E.coli(CFU/ml) 107,600 123,400

Steel Manufacture 6. Reference for Industrial WW Reuse

Page 58: Chapter 5. Membrane Filtration Process - KOCW

58 Membrane Filtration Process Hankyong National University

WW Filtrate

Concentrate(raw material fertilizer)

#1 RO Block

#3 RO Block

#2 RO Block

VMMF

Permeate

Concentrate

Items Raw WW Water Quality

P9026 P9019 Filtrate Concentrate

Q m3/day 1,440 1,920 - -

CODMn mg/L 100 40 <1 > 600

T-N Mg NH3/L 971 1,000 < 10 > 15,000

Conductivity uS /cm 7,000 7,000 < 20 > 100,000

Recovery % 93.1 6.9

Petro-chemistry 6. Reference for Industrial WW Reuse

Page 59: Chapter 5. Membrane Filtration Process - KOCW

59 Membrane Filtration Process Hankyong National University

Question and Answer

Dr. Chang-Han Yun

E-mail : [email protected]

Mobile : 010-288-2250

Contact ☞

Page 60: Chapter 5. Membrane Filtration Process - KOCW

60 Membrane Filtration Process Hankyong National University

Microporous

Hydrophobic

membrane

gas-filled pore

LIQUID

gas-liquid

interference

immobilized GAS

Pb

Membrane wall

Pgi

Pli

Ci

Cb

Pgas < Paq

MC Module

Feed Water

Degasfied Water

Sweep(N2)gas Vacuum

Membrane Contactor

Membrane Stripping Appendix – Membrane Contactor

Page 61: Chapter 5. Membrane Filtration Process - KOCW

61 Membrane Filtration Process Hankyong National University

Advantage of Membrane Contactor High contact area

No flooding

Independent control of each phase

Immiscible flow

<Example> Contact Area per Volume in Air Stripping

Data Equipment

ft2 / ft3 m2 / m3

Free Dispersion Columns 1 ∼ 10 3 ∼ 33

Packed / Trayed Columns 10 ∼ 100 33 ∼ 330

Agitated Columns 50 ∼ 150 164 ∼ 492

Membrane Contactors 500 ∼ 2,000 1,640 ∼ 6,562

Advantage Appendix – Membrane Contactor

Page 62: Chapter 5. Membrane Filtration Process - KOCW

62 Membrane Filtration Process Hankyong National University

Industrial Application of

Membrane Stripping and Membrane Absorption

Ultra pure water degassing (DO<10 ppb)

Process water deaeration

Boiler feed water degassing

Water decarbonation

Ammonia stripping/absorption

Culture media oxygenation

Application Field

of MS and MA Appendix – Membrane Contactor

Page 63: Chapter 5. Membrane Filtration Process - KOCW

63 Membrane Filtration Process Hankyong National University

Schematic Diagram of Facilitated Transport of Olefin

Olefin Olefin

Olefin

|

M+

M+

M+ = Complexing

Agent(Ag+)

Paraffin

Membrane

Appendix – Membrane Contactor


Recommended