+ All Categories
Home > Documents > Chapter 5 On-Line Computer Control – The z Transform.

Chapter 5 On-Line Computer Control – The z Transform.

Date post: 02-Jan-2016
Category:
Upload: geraldine-hardy
View: 220 times
Download: 4 times
Share this document with a friend
Popular Tags:
57
Chapter 5 On-Line Computer Control – The z Transform
Transcript
Page 1: Chapter 5 On-Line Computer Control – The z Transform.

Chapter 5

On-Line Computer Control – The z Transform

Page 2: Chapter 5 On-Line Computer Control – The z Transform.

Analysis of Discrete-Time Systems

1. The sampling process

2. z-transform

3. Properties of z-transforms

4. Analysis of open-loop and closed-loop discrete time systems

5. Design of discrete-time controllers

Page 3: Chapter 5 On-Line Computer Control – The z Transform.

Continuous signal and its discrete-time representation with different sampling rates

3 t (sec)

y*

6

9 12

3 t (sec)1

y

7 9 115 3 t (sec)1

y*

6

9 12

y y*Continuoussignal

Disontinuoussignal

t

t = nT t

y*

t

t = nT t

y*

t = nT t

y*

nT area Impulse

From the response of a real sampler to the response of an ideal impulse sample

(a) (b)

(c)

(a) (b)

(c)

T = 1 sec

T = 3 sec

Page 4: Chapter 5 On-Line Computer Control – The z Transform.

The Sampling Process

1. At sampling times, strength of impulse is equal to value of input signal.2. Between sampling times, it is zero.

0n

*

nT)-(ty(nT)

...nT)-(ty(nT)....T)-(ty(T)(t)y(0)ty

ImpulseSamplery (t) y*

nT)]-(t[y(nT)(s)y0n

* L

nTs-

0n

* e y(nT)(s)y

or

Laplacing

Page 5: Chapter 5 On-Line Computer Control – The z Transform.

The Hold Process :From Discrete to Continuous Time

Zero – Order Hold :

m* (t) m (t)

Continuousoutput

discreteimpulses

Hold Device

t

t

m* (t)

T

m (t)

1

Transfer Function :Response of an impulse input : (t)

Ts--Ts

e-1s

1

s

e-

s

1 H(s)

1)T(n t nTfor (t)m m(t) *

Page 6: Chapter 5 On-Line Computer Control – The z Transform.

First Order Hold

tc2,3,4....en 1)T(n t nT

nT)-(tT

1)T]-m[(n -m(nT) m(nT) m(t)

Response to an impulse input

1

1

2

T 2T

-1

Transfer function:2-sT

s

e-1

T

sT1 H(S)

Page 7: Chapter 5 On-Line Computer Control – The z Transform.

First Order versus Zero Order Hold

Comparison of reconstruction with zero-order and first-order holds, for slowly varying signals.

Comparison of reconstruction with zero-order and first-order holds, for rapidly changing signals.

0 2T 4T 6T 8T 10T t

m* (nT)

0 2T 4T 6T 8T 10T t

m (t)

0 2T 4T 6T 8T 10T t

m (t)

0 1T 3T 5T 7T t

m (t)

0 1T 3T 5T 7T t

m (t)

0 1T 3T 5T 7T t

m* (nT)

(a)

(a)

(b)

(b)

(c)

(c)

Page 8: Chapter 5 On-Line Computer Control – The z Transform.

Z-Transforms

y(t) yz(t)

Remarks1. z-transform depends only on the discrete values y(0), y(ז),y(ז)..etc. If two

continuous functions have the same sampled values , then z-transform will be the same.

2. It is assumed that the summation exists and is finit.

3. We can also view t in the form Z[ y (s) ] = ŷ(z)

Sample

z)y(n (z)y )(

)(y

)()(

)()(

n-

0n

0

0

tyΖ

z

znysy

ezLet

enysy

z

n

nz

Ts

n

nTsz

Page 9: Chapter 5 On-Line Computer Control – The z Transform.

Z-Transforms of Basic Functions

11

1

1111

1

321

z-

z

z

......zzz Z[u(t)]

1. Unit Step Function

onvergence for c ze

z-e

z

z-e

λ

ze , λλzeeZ

-aT

-aT

-aT

-aT

n

nn

n

anT-at

1

1

11

1

1

1

1

00

2. Exponential Function

Page 10: Chapter 5 On-Line Computer Control – The z Transform.

Z-Transforms of Basic Functions - Continued

12zcoswTz

zcoswTzcoswt Z

12zcoswTz

zsinwTsinwt Z

2

2

2

1

13211

321

321

10)1(

2

320

z

aTz...(aT)z(aT)z)aT(zSz

(aT)zaTzSz

...(aT)z(aT)z)aT(zSatZ

3. Ramp Function

4. Trigonometric Functions

Page 11: Chapter 5 On-Line Computer Control – The z Transform.

Z-Transforms of Basic Functions - Continued

5. Translation

( )kTs k

n

n 0

k

n k

Z f(t - kT) Z e f s f (z)z

Z f(t - kT) f(nT kT)z

let n - k,assume f( τ) 0 for 0

f( τ)z

- k

0

k

f( τ)z z

f (z) z

Page 12: Chapter 5 On-Line Computer Control – The z Transform.

Z-transform for Numerical Derivative

y(z)

T

z1

T

yyZ

T

yydtdy

11nn

1nnt

1(z)zfT)-f(tz

z-1 is like a back shift operator

Page 13: Chapter 5 On-Line Computer Control – The z Transform.

Properties of z-Transforms

y(t)t

nTyn

(z)y)z(z

As z

y(nT)....z-T)zT)-y(y(z--y(T)zy(T -)z)-y(y( n

n

nzy(nTn

nzy(nT n

zy(nT)z( y(z)f)-zoof: (

(z)y)-z( z

y(t) t

n--

-

limlimˆ111

lim1

212211)100lim

0

1)0

)0

)1ˆ1Pr

ˆ11

limlim

11

1

(z)fa(z)f a fafaZ

22112211

1. Linearity

2. Final Value Theorem

Page 14: Chapter 5 On-Line Computer Control – The z Transform.

zf zz zy T ˆ

11

1

1

nT

)T(n-f(t)dt )T(n- ynT y

dtnTt

tft) y(

11

0

Numerical Integration in z-transform

Using Trapezoidal Rule

(z)fz(z)fz(z)y(z) y

T

Tn-ff(nT )T(ny

T ˆ1ˆ2

1ˆˆ

2

1)1

or solving

Page 15: Chapter 5 On-Line Computer Control – The z Transform.

1.Partial fraction expansion

λ1, λ2,… λn are low-order polynomials in z-1 compute c1,c2,…cn.

Invert each part separately, we able

)(...

)()()(

)()(ˆ

112

21

1

11

1

z

c

z

c

z

c

zP

zQzy

n

n

11

311

1

1

11

1

1

12

11

11

1

21

1

2

31

21

1

21)(ˆ

2

1

1

2

1

31

311)31)(1(

34134)(ˆ

1

1

zzzy

z

zc

z

zc

z

c

z

c

zz

z

zz

z

zz

zzy

z

z

Inversion of z-transforms

Page 16: Chapter 5 On-Line Computer Control – The z Transform.

y(nT) = -1/2 + 1/2 e11n

y:0,1,4,13,0,…

2.Inversion by Long-Division

1z-1+4z-2+13z-3

1-4z-1+3z-2 z-1

z-1-4z-2+3z-3

4z-2+3z-3

4z-2-16z-3+12z-4

13z-3-12z-4

y(0) = 0y(T) = 1y(2T) = 4y(3T) = 13

21

1

341)(ˆ

zz

zzy

From Tables of z-transforms

Page 17: Chapter 5 On-Line Computer Control – The z Transform.

z-transforms of various functions

Function Lalpace transform z-transformin time domain

unit impluse 1

unit step 1/s

ramp: f(t) = at a/s2

f(t) = tn n!/sn+1

f(t) = e-at 1/s+a

f(t) =te-at 1/(s+a)2

21

1

1

10

21

1

1

)1(

1

1

1

1)1(

)1(

1

1

1

lim

ze

ze

ze

zea

z

aTz

z

aT

aT

aT

aTn

nn

a

Page 18: Chapter 5 On-Line Computer Control – The z Transform.

z-transforms of various functions

Function Lalpace transform z-transformin time domain

f(t) = sinωt

f(t) = cosωt

f(t) = 1-e-at

f(t) = e-at sinωt

f(t) = e-at cosωt

221

1

221

1

21

21

1

cos21

cos1

cos21

sin

)1)(1(

)1(

cos21

cos1

cos21

sin

zeTez

Tez

zeTez

Tez

zez

ze

zTz

Tz

zTz

Tz

aTaT

aT

aTaT

aT

aT

aT

22

22

22

22

)(

)(

)(

as

as

as

ass

as

ss

Page 19: Chapter 5 On-Line Computer Control – The z Transform.

Discrete-Time Response of systems

In computer control:

measurements are taken periodically and

control actions implemented periodically,

This results in a discrete input/discrete

output dynamic system.

Discrete System

encn

Page 20: Chapter 5 On-Line Computer Control – The z Transform.

Example of Discrete Systems

Let

a discrete time approximation is

ckedt

dcn

nnn

nnnn

nnnn

kecT

cT

ckccT

cT

ckeT

cc

1

1

1

)1(

1

1

)1()(

)(ˆ

)(ˆ)(ˆ)(ˆ)1(

zTT

k

ze

zcor

zekzczT

zcT

Taking z-transform

Page 21: Chapter 5 On-Line Computer Control – The z Transform.

Z-transform for a given continuous system with transfer function G(s) and a ZOH

1

1

1( ) ( ) ( )

1

Ts

Ts

eZ H s G s Z G s

s

G s G sZ Z e

s s

G s G sZ z Z

s s

G sz Z

s

Page 22: Chapter 5 On-Line Computer Control – The z Transform.

Example: Pure Integrator with Hold

)1()1(]1[][]-[1

][][].1

[)(

1)(

1

1

21

11

21-

22

z

zTK

z

TzKz

s

KZz

s

eKZ

s

KZ

s

K

s

eZsHGZ

s

K

s

esHG

ppp

Tsppp

Ts

pTs

p

s

e ST1

c*(s) s

K p

y*(s)

Step response

Hence of

which impulse a ramp response

21

1

11

1

1

)1()1(

1

)1()(ˆ

1

1)(ˆ

1)(

z

zK

zz

zKzy

zzc

ssc

pp

Page 23: Chapter 5 On-Line Computer Control – The z Transform.

Example: First order lag system

1

1

11 1

1( ) ( )

1

1[ ( )] [ ]

( 1)

[1 ] [ ]( 1)

1 1 [1 ] [ ]

1

1 1 [1 ][ ]

1 1

(

p

STp

pp

STp

p

p

p

pp

p T

p

KeH s G s

s s

KeZ HG s Z

s s s

Kz Z

s s

K z Zs s

K zz e z

K

1

1

1 )

1

p

p

T

T

e z

e z

Page 24: Chapter 5 On-Line Computer Control – The z Transform.

Step Response for 1st order lag system

tKty

eKnTy

ze

K

z

K

zez

zeK(z)y

zzc

ssc

p

nTp

pp

p

p

p

p

p

to)(

]1[)(

)1()1(

)1)(1(

)1(ˆ

1

1)(ˆ

1)(

11

11

1

1

y(t)

time

**

* * ** ** *

Note: Compare with discrete approximation to First-order system

From tables, for

Page 25: Chapter 5 On-Line Computer Control – The z Transform.

Generalization

mm

kk

mnmn

nknknnn

zzcbzzcbzzcb

zzeazezazeazc

cbcb

cbeaeaeac

)(ˆ...)(ˆ)(ˆ

)(ˆ...)(ˆ)(ˆ)(ˆ

...

...

22

11

110

22

11110

)(...1

...

)(ˆ)(ˆ

22

11

22

110 zD

zbzbzb

zazazaa

ze

zcm

m

kk

or

D (z)=Transfer function relating e and c

Analogous to Laplace transfer

Discrete time input/output model

Remark:Note that D(z) is the z-transform of the response of the system to an impulse input 1)(ˆ ze

Page 26: Chapter 5 On-Line Computer Control – The z Transform.

Z-transform of a continuous process with Sample and Hold

HoldH (s)

ProcessGp (s)

discrete input

c*(s)

continuousvariables

y (s) y*(s)

discreteoutput

we seek a relationship (Z-transfer function) between c and y.

Consider a impulse input c*(z)=1 c*(s)=1

)(

)]([

)(ˆ

)()(

)()()()(

zHG

sGsHZ

syZzy

sGsH

scsGsHsy

P

p

p

p

HGp(z) called the pulse transfer function (since it represents the z-transform of the pulse response of Gp (s) )

Then

Page 27: Chapter 5 On-Line Computer Control – The z Transform.

Properties of pulse Transfer Function

1.

2.An impulse input is converted into a pulse input by the first order hold element . Hence HG(z) is the pulse response of G(s) sampled at z internals of T.

3.The pulse transfer function of two systems in series can be combined if there is a sample and hold in between.

)()()()( 2121 sGZsGZsGsGZ

)()(

)(1

1

2 zGzc

zc )(

)(2

)(2

3 zGzc

zc)(

)(

)(3

1

3 zGzc

zc

G1(z) G2(z)c1

Tc3

c2

Page 28: Chapter 5 On-Line Computer Control – The z Transform.

Closed-Loop System)(ˆ ze

)(ˆ zc

)(2 sy

D (z) H (s) Gp (s)

set point

Hold Processdisturbance

ysp (z)

+

-

T

m (s)

T

y(2)y1(s)

sampled output)(ˆ zy

)(ˆ)(ˆ)()()(

)(ˆ)(ˆ)()(

)(ˆ)(ˆ)(

)()(

)()()()(ˆ

2

2

2

21

21

zyzyzyzDzHG

zyzezDzHG

zyzezHG

syZsyZ

sysyZsyZzy

spp

p

p

)()(1

)(ˆ

)()(1

)()()()(ˆ 2

zDzHG

zy

zDzHG

zyzDzHGzy

pp

spp

or

1. Roots of the Characteristic equation 1+HGp(z)D(z)=0 Determine stability of the closed-loop system2. Note similarity to continuous system.

Page 29: Chapter 5 On-Line Computer Control – The z Transform.

Example: closed-loop response of a first-order system

1/

1/

1

)1()(

1)(

ze

zekzHG

S

ksG

p

p

T

T

pp

p

pp

)(ˆ11

)1(

1

)1(1

)(ˆ1

)1(

)(ˆ

)(

1

1

1/

1/

1/

1/

zyzkkbkk

zbkk

kze

zek

zykze

zek

zy

kzD

spcpcp

cp

cT

T

p

spcT

T

p

c

p

p

p

p

pTeb /

For proportional control

where

Page 30: Chapter 5 On-Line Computer Control – The z Transform.

cp

pp

nT

cp

cp

cpcp

cp

kk

ekk

kknTy

zzkkbkk

zbkkzy

p

1

11

)(

)1(

1

)]1([1

)1()(ˆ

/

11

1

For a unit step change in set point

and

11

1)(ˆ

zzysp

Page 31: Chapter 5 On-Line Computer Control – The z Transform.

The response is very similar to continuous control.

The steady state value of y(t) is

Hence the offset is

cp

pc

KK

KKy

1

cppc

pc

KKKK

KKoffset

1

1

11

Page 32: Chapter 5 On-Line Computer Control – The z Transform.

Stability of Discrete Systems

0 zb.....zbzb1 -nn

-22

-11

1n

n1

2

21

1

1

nn

11

mm

110

zP1

c

zP1

c

zP1

c

zbzb1

zazaa

(z)e

(z)cD(z)

A system is consider to be stable if output remains bounded for boundedInputs. Consider a discrete system with transfer function

Where P1,P2,…,Pn are n roots of:

Page 33: Chapter 5 On-Line Computer Control – The z Transform.

1) and between(-1 bounded always is termsecond The

eee

eee

jw)ln(PPkln

e|P|jβαPLet

eC(nT)f

zP-1

C(z)f

njw)nln(PnlnP

jw)ln(PlnP

K

jwKK

nlnPKk

1K

kK

KK

KK

K

termk heconsider t

D(z)C(z) and 1(z)eimput impulsean For th

Page 34: Chapter 5 On-Line Computer Control – The z Transform.

bounded.remain willPplane,

complex on the circle-unit e within thlies P if:Hence

n as e and 0|P|ln then 1|P|

1e and 0|P|ln then 1|P|

n as 0e and 0|P|ln then 1|P|

IF

K

K

nlnPKK

|P|nlnKK

|P|nlnKK

K

K

K

plane"complex in the circleunit on theor

inside lies poles its all if stable is system discreteA "

Im

Unstable roots

real

Unit circle

STABLE

REGION

Page 35: Chapter 5 On-Line Computer Control – The z Transform.

yoscillator:0y(t) then 0P1-

decay lexponentia:0y(t) then 1P0

tas y(t)1,|P| if

Py(nT)

Py(1)

....zPzP1zP-1

1(z)y

zP-1

1D(z)

withsystem a of response impule heConsider t

1

i

1

na1

1

2-21

1-11

1

11

poles of Location

Page 36: Chapter 5 On-Line Computer Control – The z Transform.

Example: Stability of closed-loop

1][eKKe

KK- )eKK(1

KK-)bKK(1P

0)]zKKb(1-K[K1

PP

P

τ

T-

CPτ

T-

CPτ

T-

CP

CPCP1

1-CPCP

equation sticcharacteri Processorder -First of control lProporhona

Page 37: Chapter 5 On-Line Computer Control – The z Transform.

Example: Stability of closed-loop - Continued

T of values highor K of values high by caused be may instabitythat note

where circle unti the cross will p

C

1

P

P

P

PP

PP

τ

T-

τ

T-

CP

CPτ

T-

τ

T-

CPτ

T-

τ

T-

CPτ

T-

e-1

e1KKor

-1KK 1 e sinceor

]e-[1KK-)e-1or(

]e-[1KK-e1

Page 38: Chapter 5 On-Line Computer Control – The z Transform.

t

C 0 st 0

nD

n C n k n n-1 sk 0 I

n-1 C

1 de C(t) K [e(t) e(t)dt τ ] C

τ dt

τT C K [e (e ) (e -e )] C

τ T

C K [

1.Digital Apperoximation of classical controllers

Displacement form

Alternative form :

Velocity formn 1

Dn-1 k n-1 n-2 s

k 0 I

D D Dn C n C n-1 C n-2

I

-1 -2D D DC

I

τTe e (e -e )] C

τ T

τ 2τ τT ΔC K [1 ]e -K [1 ]e K e

τ T T T

τ 2τ τΔ τ(z) T D(z) K [(1 )-(1 )z z ]

τ T T Te(z)

Digital Feedback - Control

Page 39: Chapter 5 On-Line Computer Control – The z Transform.

1. No initialization is necessary. [ Cs is not needed ] Bumpless transfer from manual / automatic

2. Automatic ‘reset-windup’ protection.3. Protection in case of computer failure

1. Since different modes are indistinguishable, on-line tuning methods will not work.

2. Difficult to put constraints on integral and / or derivative term.

1. Ziegler – Nichols

2. Cohen – Coon settings

3. Time - integral performance criteria

Disadvantages:

Tuning Digital Controllers:

Advantages of velocity Form

Page 40: Chapter 5 On-Line Computer Control – The z Transform.

:responses Possible

controller Prototype Minimalor Deadbeat

1-

1-

1-

1-

1-sp

sp

z-1

z

HG(z)

1D(z)

:D(z)for solving

sampling oneafter 1 togoes ex.y(t) z-1

z)(y

want we

change-step z-1

1yLet

(z)yHG(z)D(z)1

HG(z)D(z)(z)y

have we

:changepoint set a following samplingfrist at theerror no

values)pledoutput(sam thesuch that designed is law-control This

2.

z

Y(t)

actual

time

ideal

Page 41: Chapter 5 On-Line Computer Control – The z Transform.

Derivation of Deadbeat Controller- Continued

sp

1

sp 1 1

1

sp

-1

-1

-1

-1

HG(z)D(z)y (z) y (z)

1 HG(z)D(z)

1ˆy ;

1 1ˆ( ) HG(z)D(z)

y 1 1 HG(z)D(z)

z HG(z)D(z)

1-z 1

z 1

1-z HG(z)

zz y z

z z

y z z

z

D z

Page 42: Chapter 5 On-Line Computer Control – The z Transform.

Deadbeat

Page 43: Chapter 5 On-Line Computer Control – The z Transform.

Deadbeat

0~10 sec

Page 44: Chapter 5 On-Line Computer Control – The z Transform.

Deadbeat control for (1/(s+1)3)

Sampling time: 2

321

321

1

1

2

23

1

1

01584.02915.0016.03233.0

002479.005495.0406.01

101584.03073.03233.0

002479.005495.0406.0

1)(

1

ZZZ

ZZZ

Z

Z

ZZ

ZZZ

Z

Z

ZHGZD

Page 45: Chapter 5 On-Line Computer Control – The z Transform.

Ringing and Pole-placement

Ringing refers to excessive value movement caused by a widely oscillating controller output.

Caused by negative poles in D(z).

Hence avoid poles near -1.

Change controller design such that poles are on the side or near zero on negative side

Page 46: Chapter 5 On-Line Computer Control – The z Transform.

SYS = TF(1,[1 3 3 1]) Transfer function: 1 --------------------- s^3 + 3 s^2 + 3 s + 1 >> sysd=c2d(SYS,2) Transfer function: 0.3233 z^2 + 0.3073 z + 0.01584 -------------------------------------- z^3 - 0.406 z^2 + 0.05495 z - 0.002479 Sampling time: 2 0.3233 0.6306 0.3231 0.0158

>> p1=[1 -1];p2=[0.3233 0.3073 0.01584]

p2 =

0.3233 0.3073 0.0158

>> c=conv(p1,p2)

c =

0.3233 -0.0160 -0.2915 -0.0158

Page 47: Chapter 5 On-Line Computer Control – The z Transform.

Canceling the ringing pole at z=-0.8958

ans =

1.0000 -0.8958 -0.0547

>> p1=[1 0];p2=[1 -0.99];p3=[1 0.0547]; >> c=conv(p1,p2)

c =

1.0000 -0.9900 0

>> c=conv(c,p3)

c =

1.0000 -0.9353 -0.0542 0

Warning: Using a default value of 1 for maximum step size. The simulation step size will be limited to be less than this value.

>>

Page 48: Chapter 5 On-Line Computer Control – The z Transform.

Smoothing the Control Action

p=[0.3233 -0.016 -0.2915 -0.01584]; r=roots(p) r = 1.0001 -0.8959 -0.0547 Delete the unstable pole z=-0.8959

p1=[1 -0.99]; p2=[1 0.0547]; c=conv(p1,p2)

c =

1.0000 -0.9353 -0.0542

Page 49: Chapter 5 On-Line Computer Control – The z Transform.

Reconstruct the Control Loop

Zero-OrderHold

1

den(s)

Transfer FcnSubtract

Step

Scope1

Scope

num(z)

den(z)

DiscreteTransfer Fcn

Page 50: Chapter 5 On-Line Computer Control – The z Transform.

0 5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1

1.2

1.4

Page 51: Chapter 5 On-Line Computer Control – The z Transform.

The treatment of unstable poles sysd=c2d(SYS,1) Transfer function: 0.0803 z^2 + 0.1544 z + 0.01788 ----------------------------------- z^3 - 1.104 z^2 + 0.406 z - 0.04979

>> p2=[ 0.0803 0.1544 0.01788]

p2 =

0.0803 0.1544 0.0179

>> p1=[1 -1]

p1 =

1 -1

>> c=conv(p1,p2)

c =

0.0803 0.0741 -0.1365 -0.0179

Page 52: Chapter 5 On-Line Computer Control – The z Transform.

The treatment of unstable poles

>> roots(c)

ans =

-1.7990 1.0000 -0.1238

>> p1=[1 0];p2=[1 -0.99];p3=[1 0.1238]; >> c=conv(p1,p2)

c =

1.0000 -0.9900 0

>> c=conv(c,p3)

c =

1.0000 -0.8662 -0.1226 0

0 5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 53: Chapter 5 On-Line Computer Control – The z Transform.

3.Dahlin’s Method

Require that the closed–loop system behave like a first-order system with dead-time.

response) (step S

1

1S

e y(S)

S -

)ze-)(1z-(1

)ze-(1z (z)y

1-T/-1-

-1-T/k-

1-sp z-1

1(z)y

1-k-T/-1-T/-

1--k-T/

)ze-(1-ze-1

)ze-(1

HG(z)

1 D(z)

1. Choose , such that D(z) is realizable2. Lot of algebra

Solving for D

we want

for

Page 54: Chapter 5 On-Line Computer Control – The z Transform.

Dahlin’s Method

Page 55: Chapter 5 On-Line Computer Control – The z Transform.

Dahlin’s Method

0~10sec0~50 sec

Page 56: Chapter 5 On-Line Computer Control – The z Transform.

Dahlin’s Method for for (1/(s+1)3)

Sampling time: 2

4321

4321

11

1

2

23

11

1

01001.02001.03016.01884.03233.0

001567.003474.02566.06321.0

)1(1

)1(

01584.03073.03233.0

002479.005495.0406.0

)1(1

)1(

)(

1

ZZZZ

ZZZZ

ZeZe

Ze

ZZ

ZZZ

ZeZe

Ze

ZHGZD

k

TT

k

T

k

TT

k

T

Page 57: Chapter 5 On-Line Computer Control – The z Transform.

Regulatory Control

Consider a process described by

yn = a1yn-1 + a2yn-2 + … + b1mn-1 + … + bk mn-k

In regulatory control, we want to keep y close to zero in presence of disturbances.

Ideally choose mn such that

yn ≡ ysp

ysp = a1yn + a2yn-2 + … + bkyn-k+1 + b1 mn + b2mn-1 + bkmn-k+1

Or mn = -1/b1 [ ysp – a1yn – a yn-1 - akyn-k+1 – b2mn-1 + … - bkmn-k+1 ]

Remark1. Problems can arise in practice if model parameters are not known

2. The above choice is equivalent to minimizing

3. If dead-time is present control will be unrealizable

N

0n

2spn )y-(y

N

1 P


Recommended