+ All Categories
Home > Documents > Chapter 6 Plane Kinetics of Rigid Body

Chapter 6 Plane Kinetics of Rigid Body

Date post: 13-Nov-2014
Category:
Upload: zoom2
View: 363 times
Download: 3 times
Share this document with a friend
38
Jump to first page Chapter 6 Plane Kinetics of Rigid Body
Transcript
Page 1: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Chapter 6

Plane Kinetics of Rigid Body

Page 2: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Plane Kinetics of Rigid Body

Rotation about a fixed axis :

GamF

QQ MH and

if Q :(1) has zero acceleration, (2) is the centre of mass G or (3)has acceleration parallel to

iiiiQ

QQ

vrmH

MH

Q is an arbitrary point on z-axis (zero acceleration).

For a system of particles :

GQr /

z

iQH

iv

Q

i

i

ir im

iR

Page 3: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

For the angular momentum of the whole rigid body about a fixed axis z :

)( iiiiiiiQ RrmvrmH

2

)sin(

sin

sin

ii

iiii

iiii

iiQiQ

Rm

Rrm

Rrm

HHz

zz

iiizQz

IH

RmHH

)( 2

QzQz MH The z-component of : QH

Page 4: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Where i

iiz RmI 2

zz MH

(moment of inertia of a rigid body about z axis)

zz

zz

MI

MI

Page 5: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

If Mz is zero or the time for integration is small enough, we have

Kinetic energy :

2

112

t

t zzzz dtMHHH

222

222

2

1

2

1

2

1

2

1

zi

ii

iii

iii

IRm

RmvmT

zzz HHorH 120 (conservation of angular momentum)

Page 6: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Rectilinear motion Rotation about a fixed axis

ntdisplacemeangularsntDisplaceme

velocityangularvvelocity

onacceleratiangularaonaccelerati

zIinertiaofmomentmmass

zMtorqueFforce

zHmomentumangularGmomentum

zz IMmaF

sva

sv

Page 7: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

dMVVFdsVV

ITmvT

IHmvG

MPFvP

dMUFdsU

OO

zO

S

S

O

z

zz

z

z

22

2

1

2

1

Rectilinear motion Rotation about a fixed axis

Page 8: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

e.g. cylinder : -density of rigid body

dr

r

L

a

adrrL

rdrLrdmrI

0

3

22

2

2

2

4

0

4

2

1

2

1

4

12

maI

LarLa

Lam 2

Calculation of moment of inertia :dmRRmI i

ii 22

)2( rdrLdm

Page 9: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Moment of Inertia :

44

2

1

22

2

aam

maI

43

22 bamI

dmrI 2

a2

axis

axis

b2

aa

Page 10: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

b2

a

aaxis

33

22 bamI

sphere

axis

a 222

5

2

55ma

aamI

Page 11: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

k

b

n

amIG

22

spherical

circular

straight

kn

5

4

3

,

Page 12: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Parallel axis theorem :

2mhII G

x

G

axis

h

Page 13: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

'xx

'yy

im

G

iy'

ix'

iR'iR

hO

Gx

Gy

ix

iy

)( 222ii

ii

iiiO yxmRmI

iGi

iGi

yyy

xxx

'

'

22

2222

22

00'

'2'2''

''

mhRm

yxmymyxmxyxm

yyxxmI

ii

i

GGi

ii

iiGii

iGiii

i

iGiGi

iO

2mhII GO

Page 14: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

2

2

1

2

2

rR

mR

mrI

g

g

G

e.g. Circular disc

2gG mRI

Rg - radius of gyration about G G

shapeAny

Gr

Page 15: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

General Plane motion(rigid body)

y

x

G

G

System of particlesGG

G

HM

amF

For general plane motion :

GGG

G

IHM

amF

} 3 different equations

Page 16: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Kinetic energy :

22

222

22

22

2

1

2

1

)(2

1

2

1

)(2

1

2

1

2

1

2

1

GG

iii

G

iii

G

iGii

G

Imv

Rmmv

Rmmv

vmmvT

y

x

im

ir

Gr G

Gir /

iGi Rr /

Page 17: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Find : T1 , T2 and aG .

The motion of ABC is purely translational. AG aa

0.3m 0.3m

0.3m

n̂Cut

Av

o700.1m

o70

1T 2T

A B

C kg10

DE

G F

Example

Page 18: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

free body diagram

0GG

G

IM

amF

070sin3.070cos1.0

70sin3.070cos1.0

108.91070sin)(

1070cos

22

11

21

21

oo

ooG

Gyo

y

Gxo

x

TT

TTM

aTTF

aTTF

kg10

o70 0.1mo70

1T 2T

A B

C

Gx

y

Page 19: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

G

oA

oA

AA

A

AAA

a

jviv

tva

v

nAE

vtva

70cos70sin

ˆ

0

ˆˆ2

oAGy

oAGx

va

va

70cos

70sin

(while BF is cut)

oA

o

oA

o

vTT

vTT

70cos108.91070sin

70sin1070cos

21

21

Page 20: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Hence

070sin3.070cos1.070sin3.070cos1.0 2211 oooo TTTT

#2#1 5.407.51 NTNT

#2ˆ36.3 smtaG

#236.3 msvA

Problems on Plane Kinetics of Rigid Bodies :

(3), (7), (8), (11), (12), (15), (17), (18), (22).

Page 21: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

222

22

2

2

1)5.0(3)5.03(3

1

)(3

1

5.060cos/8.93

5.060cos

mkg

mrmr

mhII

msmkg

mmgM

GA

o

oA

Example

A

B

f

NR

G

o60mg

omg 60cos hr

x

yFind and S .

Take moment about A : MA=IA

mrkgmsrad 5.032

Page 22: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Ns

A

A

R

f

sradI

M

#2/358.7

ooAG jirkk 60sin60cos5.0;2;358.7 /

ji

jikk

jik

rraa

oo

oo

AGAGAG

572.3186.2

60sin60cos5.022

60sin60cos5.0358.70

//

Page 23: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Nf

maF Gxx

558.6)186.2(3

#35.0714.18

558.6

714.18

572.338.93

Ns

N

N

Gyy

R

f

NR

R

maF

Page 24: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Example

A B

CDP Q

h

FG

m3.1

m2.0Em4.2

m4.2

m6.0

m65.0

x

yFind aEx and aEy.

E-accelerometer

0

PP IM

pEpEpE rraa //

)0( Pa

65.01065.0

8.9/10106

66

mgM

mNmg

P

Page 25: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

26

22222

1047.0

65.08.12.12.13

1

mkg

mmmhII Gp

#

//

2

55.210.1

8.085.138.1

8.085.1;

38.1

/38.1

ji

jik

jirra

k

srad

PEPEE

Page 26: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Example

GT

Ga

f NR

mm450

mm150

x

y

Find aG.

Radius of gyration about G = Rg= 0.25m

NT

kgm

k

S

15520.0

25.070

2gG mRI

08.970;0

70155;

Ny

GGxx

RF

afmaF

2)25.0(7015515.045.0 fIM GG

,,,: NG RfaunknownsFour

Page 27: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

45.0.: GaslippingwithoutrollingisItAssume

We can then solve :

NRNfsmasrad NG 68776/13.1/51.2 22

For static friction :

NNNRNS 7617268725.0

Page 28: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Example

NS

NG

RNf

NRsmasrad

NTIf

186

687/77.2/15.6

38022

So there must be slipping in the motion, then

NkRf (k is the kinetic frictional coefficient)

4 equations and 4 unknowns

NfNR

sradsma

N

G

4.137687

/10.1/47.3 22

45.0 Ga

Page 29: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

ExampleT

TGaA B

o30

Rolling without slipping

mB=4.5kg

Find aG and T.

Ba B

T

gmB

B 4.5 9.8 x 4.5 - T a

raG

GGB araa 2

)()2(5.48.95.4 AaT G

Page 30: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

x

Ga

gmA

fNR

G

T

rmrkgmA 76.023

)(232

1CaTf G

r

aG 276.0232

1

)(23

30sin8.923

Ba

fTF

G

ox

GG ITrfrM

Solve the above three equations

##2 3.48/467.0 NTsmaG

Page 31: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Example

o10

N200

m5)(

15.040

gyrationofradius

mRkgm g

Find vG.

N200

mgf NR

Gm1.0

m25.0Gv

5

0200 dsf

dsdFW G

2GG mRI

The workdone on the spool :

5

0 25.0)2001.025.0(ds

f

)25.0/( dsd

Page 32: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

)(1400

5805200

forcesveconservatinonfromJ

fdsfds

#

222

22

/24.6

140010sin58.940

25.015.040

2

140

2

1

10sin581.9402

140

2

1

smv

J

vv

Iv

VTW

G

o

GG

oGG

Page 33: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Examplem22.1 m92.0

Gv

NRCG

omrkgm 603.08.6

Find vG, RN when = 0o.

0

60cos192.08.98.6

2

1

2

1 22

VT

V

ImvT

o

GG

#2 /54.230.08.6

5

2smvI GG

Rolling without slipping 0Cv

rvrvv GCGCG /

By conservation of energy :

#2 11492.0/8.68.68.9 NRvR NGN

Page 34: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Example

Unstrained length = 95mm

Find : of the block,

K.E. of the block

after impact.

Let v be the velocity of the block before impact.

smv

v

/378.0

1.08.3108010951042

198.0

2

1 23332

Regard to point O, there is no torque acting to the block.Therefore the angular momentum about O will be conserved.

mm mm

A B

80 50 100mm

mm25vFO

m

Nf 8.3h

Page 35: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Before the impact, the angular momentum about 0 = mv x r = 0.98 x 0.378 x 25 x 10-3

#

23

232323

2

/68.5

1063.1

2102598.01025102598.03

1

srad

mkg

mhII Go

After the impact, the angular momentum = Io

K.E. after impact :

#232 026.068.51063.1

2

1

2

1JIo

Page 36: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Example

A

B

yR

xR

h

m1

m5.0G

AF

srada /3

x

y

C

kgm 20

Find : (i) h with min reaction at B. (ii) FA.

Let b be the angular velocity of the rod just before impact :

5.08.9202

1 2 bBI

srad

I

b

B

/425.5

)5.0(205.0203

1 22

(Lost of P.E.)GI

2mh

Page 37: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

Refer to the centre of mass G :

4213

425.55.035.02002.0

]425.55.035.0[02.0

0

Ax

Ax

GG

Ax

FR

FR

mGdtFRba

hFM

I

IHdtM

AB

B

BBB

425.53

02.0

0

Page 38: Chapter 6 Plane Kinetics of Rigid Body

Jump to first page

42132808

2808)425.8(02.0

hR

hFIhF

X

ABA

If RX = 0, h = 0.67 m #

(So the point at h is called the centre of percussion.)

FA = 4213 N #


Recommended