+ All Categories
Home > Documents > Chapter 7 Integration Technology using TSV

Chapter 7 Integration Technology using TSV

Date post: 11-Dec-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
35
Chapter 7 Introduction to 3D Integration Technology using TSV Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Transcript
Page 1: Chapter 7 Integration Technology using TSV

Chapter 7 Introduction to 3D

Integration Technology using TSV

Jin-Fu LiDepartment of Electrical Engineering

National Central UniversityJungli, Taiwan

Page 2: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Why 3D Integration An Exemplary TSV Process Flow Stacking Strategies Concept of 3D IC Design Summary

Outline

Page 3: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

IC Technology Evolution

Chip

Single-chip package

Printed wiring board(PCB)

3D-SIP

3D-IC Energy/Power

Processor

Memory Stack

RFADCDAC

NanoDeviceMEMS

Other Sensors,Imagers

Chemical &Bio Sensors

Page 4: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

Why 3D Integration Integrating more and more transistors in a

single chip to support more and more powerful functionality is a trend Using 2D integration technology to implement such

complex chips is more and more expensive and difficult

Some alternative technologies attempting to cope with the bottlenecks of 2D integration technology have been proposed

3D integration technology using through silicon via (TSV) has been acknowledged as one of the future chip design technologies

Page 5: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

3D Integration Technology Using TSV

3D integration technology using TSV Multiple dies are stacked and TSV is used for the

inter-die interconnection

The fabrication flow of a 3D IC Die/wafer preparation Die/wafer assembly

Die 1Die 2

Die 3

TSV

Page 6: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

What is TSV Through Silicon Via (TSV):

A via that goes through the silicon substrate Used for dies stacking

Typical TSV technologies Via-first, via-middle, and via-last technologies

CMOS

Top Bump

Top Bump

SiO2 insulatorVia made by laser

Diameter

Al wiring TSVWiring layer

50 um or less

Page 7: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

Via-First TSV

Via-First TSV Technology

Source: Yole, 2007.

(1) Before CMOS

(2) After CMOS & BEOL

Page 8: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Via-Last TSV

Via-Last TSV Technology

Source: Yole, 2007.

(1) After BEOL & before bonding

(2) After bonding

Page 9: Chapter 7 Integration Technology using TSV

Step 1: A wafer with CMOS circuits

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

An Exemplary Via-Last Process Flow (1/6)

… …

MOSFET

MOSFET

Substrate

Ref :ITRI

Page 10: Chapter 7 Integration Technology using TSV

Step 2: via etching

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

An Exemplary Via-Last Process Flow (2/6)

… …

MOSFET

MOSFET

Substrate

Via machining(by etching or laser dilling)

Ref :ITRI

Page 11: Chapter 7 Integration Technology using TSV

Step 3: via filling

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

An Exemplary Via-Last Process Flow (3/6)

… …

MOSFET

MOSFET

Substrate

Via filling

Ref :ITRI

Page 12: Chapter 7 Integration Technology using TSV

Step 4: wafer thinning

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

An Exemplary Via-Last Process Flow (4/6)

… … …

Wafer thinning

50 ~ 100 μm

Ref :ITRI

Page 13: Chapter 7 Integration Technology using TSV

Step 5: micro bump forming

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

An Exemplary Via-Last Process Flow (5/6)

… … …

Micro Bump

Ref :ITRI

Page 14: Chapter 7 Integration Technology using TSV

Step 6: stacking

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

An Exemplary Via-Last Process Flow (6/6)

TSV

Micro (μ) Bump

ABF(Ajinomoto Built-in Film)

… … …

… … …

Ref :ITRI

Page 15: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

An Exemplary 3D IC using Via-Last TSV

N Well N Well N Well

P-Substrate 2nd Chip

TSVN+ N+ N+ N+ N+ N+ N+P+P+P+P+P+

N Well N Well N Well

P-Substrate 1st Chip

TSVN+ N+ N+ N+ N+ N+ N+P+P+P+P+P+

P-Substrate 3rd Chip

BondingAdhesive

BondingAdhesive

Page 16: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

3-Tier 3D IC Cross-Section

Source: E. G. Friedman, University of Rochester.

Page 17: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Die/Wafer Assembly Bonding technologies for 3D ICs Wafer-to-wafer (W2W), Die-to-Wafer (D2W), and

Die-to-Die (D2D) Comparison of different bonding technologies

D2D D2W W2WYieldFlexibilityProduction Throughput

HighHighLow

HighGoodGood

LowPoorHigh

Page 18: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Stacking Strategies

Lewis, D.L. et al, “A ScanIsland Based Design Enabling Prebond Testability in DieStacked Microprocessors,” in proc. IEEE International Test Conference (ITC), 2007, pp. 1-8

Metal

Active Si

Bulk Si

D2D Vias

Die2

Die1

μ Bump

TSV

face-to-face back-to-back face-to-back

μ Bump μ Bump

Page 19: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

Fabrication Steps for Face-to-Face Stacking

Metal

Active Si

Bulk Si

Die1 Die2 Die1

Metal

Active Si

Bulk Si

Die1 Die2

Metal

Active Si

Bulk Si

Die2

Metal

Active Si

Bulk Si

Die1

Die2

Metal

Active Si

Bulk Si

Die1

Die211 22 33 44 55

Loh, Gabriel H. et al, “Processor Design in 3D Die-Stacking Technologies,” in IEEE Micro, vol.27, issue 3, pp. 31-48, 2007

Page 20: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

Fabrication Steps for Face-to-Back Stacking

Metal

Active Si

Bulk Si

Die1 Die2

Metal

Active Si

Bulk Si

Die1 Die2

Metal

Active SiBulk Si

Die1 Die2

Metal

Active Si

Bulk Si

Die1

Die2

Metal

Active Si

Bulk Si

Die1

Die211 22 33 44 55

Handle wafer

Loh, Gabriel H. et al, “Processor Design in 3D Die-Stacking Technologies,” in IEEE Micro, vol.27, issue 3, pp. 31-48, 2007

Page 21: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

Electrical Characteristics of TSV

Capacitance of TSV

CMOS

Top Bump

Diameter

Al wiring TSVWiring layer

TSV Length

Dielectric Thickness

TSV Dia[um]

TSV DielThk [nm]

TSV Length[um]

Cap [fF]

5 50 20 239.5

5 100 20 135.2

10 50 20 496.4

10 100 20 288.3

Source: Proceedings of IEEE, pp. 101, Jan. 2009

Page 22: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

RC Characteristics of TSV

… …Die1

Die2

MOSFET

M1

M2

M9

via9

via1

via2RCviastack

~ 0.35*RCviastackD

2D v

ia

1-mm top-level metal

4x minimum size

F2F D2D via

1 FO4 = 22 ps(BSIM 70nm)

225 ps> 11 FO4

8 ps~ 1/3*FO4

Loh, Gabriel H. et al, “Processor Design in 3D Die-Stacking Technologies,” in IEEE Micro, vol.27, issue 3, pp. 31-48, 2007

Page 23: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Benefits of 3D integration over 2D integration High functionality High performance Small form factor Low energy

Benefits of 3D Integration

Source: Proceedings of IEEE, Jan. 2009

Page 24: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

High Functionality

Heterogeneous integration Combine disparate

technologies DRAM, flash, RF, etc.

Combine different technology nodes E.g., 65nm technology and 45nm

technology

Energy/Power

Processor

Memory Stack

RFADCDAC

NanoDeviceMEMS

Other Sensors,Imagers

Chemical &Bio Sensors

Source: Proceedings of IEEE, Jan. 2009

Page 25: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

High Performance

3D integration technology can reduce the length of the long interconnections using TSV

For example,

3 4

1 2

A

By

y

x x

y 3 4

A

1 2

B

x x

z

L2D=x+2y L3D=x+y+z

Page 26: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

High Bandwidth 3D IC allows much more IO resources than 2D

IC For example, Stacking of processor and memory

Memory

CPU

Bandwidth is limited by IOs

CPU

Memory

Many TSVs are allowed for high bandwidth transportation

Page 27: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Low Energy

SIP

3D-IC

SOBEnergy

Technology

Page 28: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

3D IC Design Approaches

CPU

L2

L2

L2

MultipleCores

L2

I$

D$tlb

robIdq

IFbpred

rfrs

aludec

stq

VDD

gndX

Y

Transistors (circuit) LevelLogic gates (FUB splitting)

Function Unit Block (FUB)Entire Core

Page 29: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

2D RAM

Blo

ck 0

WL

Dec

Mux & SA

Blo

ck 1

WL

Dec

Mux & SA

Blo

ck 2

WL

Dec

Mux & SA

Blo

ck 3

WL

Dec

Mux & SA

Blo

ck 4

WL

Dec

Mux & SA

Blo

ck 4

WL

Dec

Mux & SA

Blo

ck 4

WL

Dec

Mux & SA

Blo

ck 4

WL

Dec

Mux & SA

WL Pre-DecAddress input

Data output

WordlinesBitlines

128

WLs

256 BLsRAM Subarray

Y.-F. Tsai et al, “Design Space Exploration for 3-D Cache,” IEEE Transactions on Very Large Scale Integration (TVLSI), vol.16, issue 4, pp. 444-555, 2008

Page 30: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

3D Wordline-Partitioned RAM

128

WLs

Blo

ck 0

-2

WL

Dec

SA 0-2

WL Pre-Dec

Blo

ck 1

-2

WL

Dec

SA 1-2

Blo

ck 2

-2

WL

Dec

SA 2-2

Blo

ck 3

-1

WL

Dec

SA 3-1

Blo

ck 4

-2

WL

Dec

SA 4-2

Blo

ck 5

-2

WL

Dec

SA 5-2

Blo

ck 6

-2

WL

Dec

SA 6-2

Blo

ck 7

-1

WL

Dec

SA 7-1

Blo

ck 0

-2

WL

Dec

SA 0-2

WL Pre-DecAddress inputData output

Blo

ck 1

-2

WL

Dec

SA 1-2

Blo

ck 2

-2

WL

Dec

SA 2-2

Blo

ck 3

-2

WL

Dec

SA 3-2

Blo

ck 4

-2

WL

Dec

SA 4-2

Blo

ck 5

-2

WL

Dec

SA 5-2

Blo

ck 6

-2

WL

Dec

SA 6-2

Blo

ck 7

-2

WL

Dec

SA 7-2

128 BLs

Y.-F. Tsai et al, “Design Space Exploration for 3-D Cache,” IEEE Transactions on Very Large Scale Integration (TVLSI), vol.16, issue 4, pp. 444-555, 2008

Page 31: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 31

3D Bitline-Partitioned RAM

Block 0-2WL

Dec

Mux & SA

WL Pre-Dec

Block 1-2WL

Dec

Mux & SA

Block 2-2WL

Dec

Mux & SA

Block 3-1WL

Dec

Mux & SA

Block 4-1

WL

Dec

Mux & SA

Block 5-1

WL

Dec

Mux & SA

Block 6-1

WL

Dec

Mux & SA

Block 7-1

WL

Dec

Mux & SA

64 W

Ls

256 BLs

Block 0-2

WL

Dec

Mux & SA

WL Pre-DecAddress inputData output

Block 1-2

WL

Dec

Mux & SA

Block 2-2

WL

Dec

Mux & SA

Block 3-2

WL

Dec

Mux & SA

Block 4-2

WL

Dec

Mux & SA

Block 5-2W

L D

ec

Mux & SA

Block 6-2

WL

Dec

Mux & SA

Block 7-2

WL

Dec

Mux & SA

Y.-F. Tsai et al, “Design Space Exploration for 3-D Cache,” IEEE Transactions on Very Large Scale Integration (TVLSI), vol.16, issue 4, pp. 444-555, 2008

Page 32: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 32

Design Example: 3D RAM

Source: G. H. Loh, ISCA 2008

Page 33: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 33

Design Example

Source: ASP-DAC 2009.

Page 34: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 34

Road Map of 3D Integration with TSVs

Source: Proceedings of IEEE, Jan. 2009

Page 35: Chapter 7 Integration Technology using TSV

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 35

Summary

3D integration technology using TSV is one of future IC design technologies

It can offer many advantages over the 2D integration technology

However, there are some challenges should be overcome before volume-production of TSV-based 3D IC becomes possible


Recommended