+ All Categories
Home > Documents > Chapter 8

Chapter 8

Date post: 22-Feb-2016
Category:
Upload: savea
View: 45 times
Download: 0 times
Share this document with a friend
Description:
ECON 4551 Econometrics II Memorial University of Newfoundland. Heteroskedasticity. Chapter 8. Adapted from Vera Tabakova’s notes . Chapter 8: Heteroskedasticity. 8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator - PowerPoint PPT Presentation
Popular Tags:
57
Chapter 8 Heteroskedasticity Adapted from Vera Tabakova’s notes ECON 4551 Econometrics II Memorial University of Newfoundland
Transcript
Page 1: Chapter  8

Chapter 8

Heteroskedasticity

Adapted from Vera Tabakova’s notes

ECON 4551 Econometrics IIMemorial University of Newfoundland

Page 2: Chapter  8

Chapter 8: Heteroskedasticity

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.4 Detecting Heteroskedasticity

Slide 8-2Principles of Econometrics, 3rd Edition

Page 3: Chapter  8

8.1 The Nature of Heteroskedasticity

Slide 8-3Principles of Econometrics, 3rd Edition

(8.1)

(8.2)

(8.3)

1 2( )E y x

1 2( )i i i i ie y E y y x

1 2i i iy x e

Page 4: Chapter  8

8.1 The Nature of Heteroskedasticity

Figure 8.1 Heteroskedastic Errors

Slide 8-4Principles of Econometrics, 3rd Edition

Page 5: Chapter  8

8.1 The Nature of Heteroskedasticity

Slide 8-5Principles of Econometrics, 3rd Edition

(8.4)

2( ) 0 var( ) cov( , ) 0i i i jE e e e e

var( ) var( ) ( )i i iy e h x

ˆ 83.42 10.21i iy x

ˆ 83.42 10.21i i ie y x

Food expenditure example:

Page 6: Chapter  8

8.1 The Nature of Heteroskedasticity

Figure 8.2 Least Squares Estimated Expenditure Function and Observed Data Points

Slide 8-6Principles of Econometrics, 3rd Edition

Page 7: Chapter  8

8.2 Using the Least Squares Estimator

The existence of heteroskedasticity implies: The least squares estimator is still a linear and unbiased estimator, but

it is no longer best. There is another estimator with a smaller

variance. The standard errors usually computed for the least squares estimator

are incorrect. Confidence intervals and hypothesis tests that use these

standard errors may be misleading.

Slide 8-7Principles of Econometrics, 3rd Edition

Page 8: Chapter  8

8.2 Using the Least Squares Estimator

Slide 8-8Principles of Econometrics, 3rd Edition

(8.5)

(8.6)

(8.7)

21 2 var( )i i i iy x e e

2

22

1

var( )( )

N

ii

bx x

21 2 var( )i i i i iy x e e

Page 9: Chapter  8

8.2 Using the Least Squares Estimator

Slide 8-9Principles of Econometrics, 3rd Edition

(8.8)

(8.9)

2 2

2 2 12 2

1 2

1

( )var( )

( )

N

i iNi

i i Nii

i

x xb w

x x

2 2

2 2 12 2

1 2

1

ˆ( )ˆvar( )

( )

N

i iNi

i i Nii

i

x x eb w e

x x

Page 10: Chapter  8

8.2 Using the Least Squares Estimator

Slide 8-10Principles of Econometrics, 3rd Edition

ˆ 83.42 10.21(27.46) (1.81) (White se)(43.41) (2.09) (incorrect se)

i iy x

2 2

2 2

White: se( ) 10.21 2.024 1.81 [6.55, 13.87]

Incorrect: se( ) 10.21 2.024 2.09 [5.97, 14.45]

c

c

b t b

b t b

We can use a robust estimator: GRETL offers several options…check the defaults

Page 11: Chapter  8

8.2 Using the robust estimator

The existence of heteroskedasticity implies: Why not use robust estimation all the time? Well, that is a good idea for large samples but for small samples,

homoskedasticity plus normality guarantees that the t ratios are

distributed as t But robust estimates do not guarantee that, so our inference could be

misleading! If you have a small sample, check whether there is homoskedasticity

or not!Slide 8-11Principles of Econometrics, 3rd Edition

Page 12: Chapter  8

8.3 The Generalized Least Squares Estimator

Slide 8-12Principles of Econometrics, 3rd Edition

(8.10)1 2

2( ) 0 var( ) cov( , ) 0

i i i

i i i i j

y x e

E e e e e

Page 13: Chapter  8

8.3.1 Transforming the Model

Slide 8-13Principles of Econometrics, 3rd Edition

(8.11)

(8.12)

(8.13)

2 2var i i ie x

1 21i i i

i i i i

y x ex x x x

1 21 i i i

i i i i ii i i i

y x ey x x x ex x x x

Page 14: Chapter  8

8.3.1 Transforming the Model

Slide 8-14Principles of Econometrics, 3rd Edition

(8.14)

(8.15)

1 1 2 2i i i iy x x e

2 21 1var( ) var var( )ii i i

i ii

ee e xx xx

Page 15: Chapter  8

8.3.1 Transforming the Model

To obtain the best linear unbiased estimator for a model with

heteroskedasticity of the type specified in equation (8.11):

1. Calculate the transformed variables given in (8.13).

2. Use least squares to estimate the transformed model given in (8.14).

Slide 8-15Principles of Econometrics, 3rd Edition

Page 16: Chapter  8

8.3.1 Transforming the Model

The generalized least squares estimator is as a weighted least

squares estimator. Minimizing the sum of squared transformed errors

that is given by:

When is small, the data contain more information about the

regression function and the observations are weighted heavily.

When is large, the data contain less information and the

observations are weighted lightly.Slide 8-16Principles of Econometrics, 3rd Edition

22 1/2 2

1 1 1( )

N N Ni

i i ii i ii

ee x ex

ix

ix

Page 17: Chapter  8

8.3.1 Transforming the Model

Slide 8-17Principles of Econometrics, 3rd Edition

(8.16)ˆ 78.68 10.45

(se) (23.79) (1.39)i iy x

2 2ˆ ˆse( ) 10.451 2.024 1.386 [7.65,13.26]ct

Food example again, where was the problem coming from?

regress food_exp income [aweight = 1/income]

Page 18: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-18Principles of Econometrics, 3rd Edition

(8.17)

(8.18)

2 2var( )i i ie x

2 2ln( ) ln( ) ln( )i ix

2 2

1 2

exp ln( ) ln( )

exp( )

i i

i

x

z

Page 19: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-19Principles of Econometrics, 3rd Edition

(8.19)

(8.20)

21 2 2exp( )i i s iSz z

21 2ln( )i iz

1 2( )i i i i iy E y e x e

Page 20: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-20Principles of Econometrics, 3rd Edition

(8.21)2 21 2ˆln( ) ln( )i i i i ie v z v

2ˆln( ) .9378 2.329i iz

21 1ˆ ˆˆ exp( )i iz

1 21i i i

i i i i

y x e

Page 21: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-21Principles of Econometrics, 3rd Edition

(8.22)

(8.24)

(8.23)

22 2

1 1var var( ) 1ii i

i i i

e e

1 21

ˆ ˆ ˆi i

i i ii i i

y xy x x

1 1 2 2i i i iy x x e

Page 22: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-22Principles of Econometrics, 3rd Edition

(8.25)

(8.26)

1 2 2i i k iK iy x x e

21 2 2var( ) exp( )i i i s iSe z z

Page 23: Chapter  8

8.3.2 Estimating the Variance Function

The steps for obtaining a feasible generalized least squares estimator

for are:

1. Estimate (8.25) by least squares and compute the squares of

the least squares residuals . 2. Estimate by applying least squares to the equation

Slide 8-23Principles of Econometrics, 3rd Edition

1 2, , , K

2ie

1 2, , , S

21 2 2ˆln i i S iS ie z z v

Page 24: Chapter  8

8.3.2 Estimating the Variance Function

3. Compute variance estimates .

4. Compute the transformed observations defined by (8.23),

including if .

5. Apply least squares to (8.24), or to an extended version of

(8.24) if .

Slide 8-24Principles of Econometrics, 3rd Edition

21 2 2ˆ ˆ ˆˆ exp( )i i S iSz z

3, ,i iKx x 2K

2K

(8.27)ˆ 76.05 10.63

(se) (9.71) (.97)iy x

Page 25: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-25Principles of Econometrics, 3rd Edition

For our food expenditure example (GRETL:

#Estimating the skedasticity function and GLS ols y const xgenr lnsighat = log($uhat*$uhat)genr z = log(x)

#Obtain prediction of variance:ols lnsighat const zgenr predsighat = exp($yhat)

#generate weights;genr w = 1/predsighat

wls w y const x

Page 26: Chapter  8

8.3.2 Estimating the Variance Function

Slide 8-26Principles of Econometrics, 3rd Edition

For our food expenditure example (STATA):

gen z = log(income)regress food_exp incomepredict ehat, residualgen lnehat2 = log(ehat*ehat)regress lnehat2 z

* --------------------------------------------* Feasible GLS* --------------------------------------------predict sig2, xbgen wt = exp(sig2)regress food_exp income [aweight = 1/wt]

Page 27: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-27Principles of Econometrics, 3rd Edition

(8.28)

(8.29b)

(8.29a)

9.914 1.234 .133 1.524(se) (1.08) (.070) (.015) (.431)WAGE EDUC EXPER METRO

1 2 3 1,2, ,Mi M Mi Mi Mi MWAGE EDUC EXPER e i N

1 2 3 1,2, ,Ri R Ri Ri Ri RWAGE EDUC EXPER e i N

1 9.914 1.524 8.39Mb

Using our wage data (cps2.dta):

???

Page 28: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-28Principles of Econometrics, 3rd Edition

(8.30)2 2var( ) var( )Mi M Ri Re e

2 2ˆ ˆ31.824 15.243M R

1 2 3

1 2 3

9.052 1.282 .1346

6.166 .956 .1260

M M M

R R R

b b b

b b b

Page 29: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-29Principles of Econometrics, 3rd Edition

(8.31b)

(8.31a)1 2 3

1Mi Mi Mi MiM

M M M M M

WAGE EDUC EXPER e

1,2, , Mi N

1 2 31Ri Ri Ri Ri

RR R R R R

WAGE EDUC EXPER e

1,2, , Ri N

Page 30: Chapter  8

8.3.3 A Heteroskedastic Partition

Feasible generalized least squares:

1. Obtain estimated and by applying least squares separately to

the metropolitan and rural observations.

2.

3. Apply least squares to the transformed model

Slide 8-30Principles of Econometrics, 3rd Edition

(8.32)

ˆ M ˆ R

ˆ when 1ˆ

ˆ when 0

M i

i

R i

METRO

METRO

1 2 31

ˆ ˆ ˆ ˆ ˆ ˆi i i i i

Ri i i i i i

WAGE EDUC EXPER METRO e

Page 31: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-31Principles of Econometrics, 3rd Edition

(8.33) 9.398 1.196 .132 1.539(se) (1.02) (.069) (.015) (.346)WAGE EDUC EXPER METRO

_cons -9.398362 1.019673 -9.22 0.000 -11.39931 -7.397408 metro 1.538803 .3462856 4.44 0.000 .8592702 2.218336 exper .1322088 .0145485 9.09 0.000 .1036595 .160758 educ 1.195721 .068508 17.45 0.000 1.061284 1.330157 wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

Total 36081.2155 999 36.1173328 Root MSE = 5.1371 Adj R-squared = 0.2693 Residual 26284.1488 996 26.3897076 R-squared = 0.2715 Model 9797.0667 3 3265.6889 Prob > F = 0.0000 F( 3, 996) = 123.75 Source SS df MS Number of obs = 1000

(sum of wgt is 3.7986e+01). regress wage educ exper metro [aweight = 1/wt]

Page 32: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-32Principles of Econometrics, 3rd Edition

* --------------------------------------------* Rural subsample regression* --------------------------------------------regress wage educ exper if metro == 0 scalar rmse_r = e(rmse)scalar df_r = e(df_r)* --------------------------------------------* Urban subsample regression* --------------------------------------------regress wage educ exper if metro == 1 scalar rmse_m = e(rmse)scalar df_m = e(df_r)* --------------------------------------------* Groupwise heteroskedastic regression using FGLS* --------------------------------------------gen rural = 1 - metrogen wt=(rmse_r^2*rural) + (rmse_m^2*metro)regress wage educ exper metro [aweight = 1/wt]

STATA Commands:

Page 33: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-33Principles of Econometrics, 3rd Edition

#Wage Exampleopen "c:\Program Files\gretl\data\poe\cps2.gdt"ols wage const educ exper metro

# Use only metro observationssmpl metro --dummyols wage const educ experscalar stdm = $sigma

#Restore the full samplesmpl full

GRETL Commands:

Page 34: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-34Principles of Econometrics, 3rd Edition

#Create a dummy variable for ruralgenr rural = 1-metro

#Restrict sample to rural observationssmpl rural --dummyols wage const educ experscalar stdr = $sigma

#Restore the full samplesmpl full

GRETL Commands:

Page 35: Chapter  8

#Generate standard deviations for each metro and rural obs

genr wm = metro*stdm genr wr = rural*stdr

#Make the weights (reciprocal) #Remember, Gretl's wls needs these to be variances so

you'll need to square them genr w = 1/(wm + wr)^2

#Weighted least squares wls w wage const educ exper metro

Principles of Econometrics, 3rd Edition

Page 36: Chapter  8

8.3.3 A Heteroskedastic Partition

Slide 8-36Principles of Econometrics, 3rd Edition

Remark: To implement the generalized least squares estimators

described in this Section for three alternative heteroskedastic

specifications, an assumption about the form of the

heteroskedasticity is required. Using least squares with White

standard errors avoids the need to make an assumption about the

form of heteroskedasticity, but does not realize the potential

efficiency gains from generalized least squares.

Page 37: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.1 Residual Plots

Estimate the model using least squares and plot the least squares

residuals. With more than one explanatory variable, plot the least squares

residuals against each explanatory variable, or against , to see if

those residuals vary in a systematic way relative to the specified

variable.

Slide 8-37Principles of Econometrics, 3rd Edition

ˆiy

Page 38: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.2 The Goldfeld-Quandt Test

Slide 8-38Principles of Econometrics, 3rd Edition

(8.34)

(8.35)

2 2

( , )2 2

ˆˆ M M R R

M MN K N K

R R

F F

2 2 2 20 0: against :M R M RH H

2

2

ˆ 31.824 2.09ˆ 15.243

M

R

F

Page 39: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.2 The Goldfeld-Quandt Test

Slide 8-39Principles of Econometrics, 3rd Edition

2

2

ˆ 31.824 2.09ˆ 15.243

M

R

F

STATA:* --------------------------------------------* Goldfeld Quandt test* --------------------------------------------

scalar GQ = rmse_m^2/rmse_r^2scalar crit = invFtail(df_m,df_r,.05)scalar pvalue = Ftail(df_m,df_r,GQ)scalar list GQ pvalue crit

GRETL:

#Goldfeld Quandt statisticscalar fstatistic = stdm^2/stdr^2

Page 40: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.2 The Goldfeld-Quandt Test

Slide 8-40Principles of Econometrics, 3rd Edition

21ˆ 3574.8

22ˆ 12,921.9

2221

ˆ 12,921.9 3.61ˆ 3574.8

F

More generally, the test can be based Simply on a continuous variable

Split the sample in halves (usually omittingsome from the middle) after orderingthem according to the suspected variable(income in our food example)

Page 41: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.2 The Goldfeld-Quandt Test

Slide 8-41Principles of Econometrics, 3rd Edition

21ˆ 3574.8

22ˆ 12,921.9

2221

ˆ 12,921.9 3.61ˆ 3574.8

F

For the food expenditure data

You should now be able to obtain this test statistic

And check whether it exceeds the critical value

Remember that you can probably use the one-tail version of this testWhy?

Page 42: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.3 Testing the Variance Function

Slide 8-42Principles of Econometrics, 3rd Edition

(8.36)

(8.37)

1 2 2( )i i i i K iK iy E y e x x e

2 21 2 2var( ) ( ) ( )i i i i S iSy E e h z z

1 2 2 1 2 2( ) exp( )i S iS i S iSh z z z z

21 2( ) exp ln( ) ln( )i ih z x

For the mean:

For the variance, in general:

For example::

Page 43: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.3 Testing the Variance Function

Slide 8-43Principles of Econometrics, 3rd Edition

(8.38)

(8.39)

1 2 2 1 2 2( )i S iS i S iSh z z z z

1 2 2 1( ) ( )i S iSh z z h

0 2 3

1 0

: 0

: not all the in are zero

S

s

H

H H

Page 44: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.3 Testing the Variance Function

Slide 8-44Principles of Econometrics, 3rd Edition

(8.40)

(8.41)

2 21 2 2var( ) ( )i i i i S iSy E e z z

2 21 2 2( )i i i i S iS ie E e v z z v

(8.42)2

1 2 2i i S iS ie z z v

(8.43)2 2 2

( 1)SN R

S is the number of variables used

Page 45: Chapter  8

This is a large sample test It is a Lagrange Multiplier (LM) test,

which are based on an auxiliary regression

In this case named after Breusch and Pagan

Here (and in the textbook) we saw a test statistic based on a linear function of the squared residual, but the good thing about this test is that this form can be used to test for any form of heteroskedasticity

Principles of Econometrics, 3rd Edition

Page 46: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.3a The White Test

Slide 8-46Principles of Econometrics, 3rd Edition

1 2 2 3 3( )i i iE y x x

2 22 2 3 3 4 2 5 3z x z x z x z x

Since we may not know which variables explain heteroskedasticity…

Page 47: Chapter  8

8.4 Detecting Heteroskedasticity

8.4.3b Testing the Food Expenditure Example

Slide 8-47Principles of Econometrics, 3rd Edition

4,610,749,441 3,759,556,169SST SSE

2 1 .1846SSERSST

2 2 40 .1846 7.38N R

2 2 40 .18888 7.555 -value .023N R p

whitetst

Or

estat imtest, whiteBreusch-Pagan test

White test

STATA:

GRETL: ols y const xmodtest --breusch-paganmodtest –white

Page 48: Chapter  8

Keywords

Slide 8-48Principles of Econometrics, 3rd Edition

Breusch-Pagan test generalized least squares Goldfeld-Quandt test heteroskedastic partition heteroskedasticity heteroskedasticity-consistent

standard errors homoskedasticity Lagrange multiplier test mean function residual plot transformed model variance function weighted least squares White test

Page 49: Chapter  8

Chapter 8 Appendices

Slide 8-49Principles of Econometrics, 3rd Edition

Appendix 8A Properties of the Least Squares

Estimator Appendix 8B Variance Function Tests for

Heteroskedasticity

Page 50: Chapter  8

Appendix 8A Properties of the Least Squares Estimator

Slide 8-50Principles of Econometrics, 3rd Edition

(8A.1)

1 2i i iy x e

2( ) 0 var( ) cov( , ) 0 ( )i i i i jE e e e e i j

2 2 i ib w e

2i

ii

x xwx x

Page 51: Chapter  8

Appendix 8A Properties of the Least Squares Estimator

Slide 8-51Principles of Econometrics, 3rd Edition

2 2

2 2

i i

i i

E b E E w e

w E e

Page 52: Chapter  8

Appendix 8A Properties of the Least Squares Estimator

Slide 8-52Principles of Econometrics, 3rd Edition

(8A.2)

2

2

2 2

2 2

22

var var

var cov ,

( )

( )

i i

i i i j i ji j

i i

i i

i

b w e

w e w w e e

w

x x

x x

Page 53: Chapter  8

Appendix 8A Properties of the Least Squares Estimator

Slide 8-53Principles of Econometrics, 3rd Edition

(8A.3)

2

2 2var( )i

bx x

Page 54: Chapter  8

Appendix 8B Variance Function Tests for Heteroskedasticity

Slide 8-54Principles of Econometrics, 3rd Edition

(8B.2)

(8B.1)21 2 2i i S iS ie z z v

( ) / ( 1)/ ( )

SST SSE SFSSE N S

2

2 2 2

1 1ˆ ˆ ˆ and

N N

i ii i

SST e e SSE v

Page 55: Chapter  8

Appendix 8B Variance Function Tests for Heteroskedasticity

Slide 8-55Principles of Econometrics, 3rd Edition

(8B.4)

(8B.3)2 2( 1)( 1)

/ ( ) SSST SSES F

SSE N S

2var( ) var( )i iSSEe v

N S

(8B.5)2

2var( )i

SST SSE

e

Page 56: Chapter  8

Appendix 8B Variance Function Tests for Heteroskedasticity

Slide 8-56Principles of Econometrics, 3rd Edition

(8B.6)

(8B.7)

24ˆ2 e

SST SSE

22 2 4

2 4

1var 2 var( ) 2 var( ) 2ii i e

e e

e e e

2 2 2 2

1

1 ˆ ˆvar( ) ( )N

i ii

SSTe e eN N

Page 57: Chapter  8

Appendix 8B Variance Function Tests for Heteroskedasticity

Slide 8-57Principles of Econometrics, 3rd Edition

(8B.8)

2

2

/

1

SST SSESST N

SSENSST

N R


Recommended