+ All Categories
Home > Documents > CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by...

CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by...

Date post: 12-Mar-2018
Category:
Upload: vanxuyen
View: 247 times
Download: 14 times
Share this document with a friend
30
Chapter 8 211 CHAPTER 8: EXPONENTS AND POLYNOMIALS Chapter Objectives By the end of this chapter, students should be able to: Simplify exponential expressions with positive and/or negative exponents Multiply or divide expressions in scientific notation Evaluate polynomials for specific values Apply arithmetic operations to polynomials Apply special-product formulas to multiply polynomials Divide a polynomial by a monomial or by applying long division CHAPTER 8: EXPONENTS AND POLYNOMIALS ........................................................................................ 211 SECTION 8.1: EXPONENTS RULES AND PROPERTIES ........................................................................... 212 A. PRODUCT RULE OF EXPONENTS .............................................................................................. 212 B. QUOTIENT RULE OF EXPONENTS ............................................................................................. 212 C. POWER RULE OF EXPONENTS .................................................................................................. 213 D. ZERO AS AN EXPONENT............................................................................................................ 214 E. NEGATIVE EXPONENTS............................................................................................................. 214 F. PROPERTIES OF EXPONENTS .................................................................................................... 215 EXERCISE ........................................................................................................................................... 216 SECTION 8.2 SCIENTIFIC NOTATION..................................................................................................... 217 A. INTRODUCTION TO SCIENTIFIC NOTATION ............................................................................. 217 B. CONVERT NUMBERS TO SCIENTIFIC NOTATION ..................................................................... 218 C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION .................... 218 D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION ................................................. 219 E. SCIENTIFIC NOTATION APPLICATIONS ..................................................................................... 220 EXERCISE ........................................................................................................................................... 222 SECTION 8.3: POLYNOMIALS................................................................................................................ 223 A. INTRODUCTION TO POLYNOMIALS ......................................................................................... 223 B. EVALUATING POLYNOMIAL EXPRESSIONS .............................................................................. 225 C. ADD AND SUBTRACT POLYNOMIALS ....................................................................................... 226 D. MULTIPLY POLYNOMIAL EXPRESSIONS ................................................................................... 228 E. SPECIAL PRODUCTS .................................................................................................................. 230 F. POLYNOMIAL DIVISION............................................................................................................ 231 EXERCISE ........................................................................................................................................... 237 CHAPTER REVIEW ................................................................................................................................. 239
Transcript
Page 1: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

211

CHAPTER 8: EXPONENTS AND POLYNOMIALS Chapter Objectives By the end of this chapter, students should be able to: Simplify exponential expressions with positive and/or negative exponents Multiply or divide expressions in scientific notation Evaluate polynomials for specific values Apply arithmetic operations to polynomials Apply special-product formulas to multiply polynomials Divide a polynomial by a monomial or by applying long division

CHAPTER 8: EXPONENTS AND POLYNOMIALS ........................................................................................ 211

SECTION 8.1: EXPONENTS RULES AND PROPERTIES ........................................................................... 212

A. PRODUCT RULE OF EXPONENTS .............................................................................................. 212

B. QUOTIENT RULE OF EXPONENTS ............................................................................................. 212

C. POWER RULE OF EXPONENTS .................................................................................................. 213

D. ZERO AS AN EXPONENT............................................................................................................ 214

E. NEGATIVE EXPONENTS ............................................................................................................. 214

F. PROPERTIES OF EXPONENTS .................................................................................................... 215

EXERCISE ........................................................................................................................................... 216

SECTION 8.2 SCIENTIFIC NOTATION ..................................................................................................... 217

A. INTRODUCTION TO SCIENTIFIC NOTATION ............................................................................. 217

B. CONVERT NUMBERS TO SCIENTIFIC NOTATION ..................................................................... 218

C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION .................... 218

D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION ................................................. 219

E. SCIENTIFIC NOTATION APPLICATIONS ..................................................................................... 220

EXERCISE ........................................................................................................................................... 222

SECTION 8.3: POLYNOMIALS ................................................................................................................ 223

A. INTRODUCTION TO POLYNOMIALS ......................................................................................... 223

B. EVALUATING POLYNOMIAL EXPRESSIONS .............................................................................. 225

C. ADD AND SUBTRACT POLYNOMIALS ....................................................................................... 226

D. MULTIPLY POLYNOMIAL EXPRESSIONS ................................................................................... 228

E. SPECIAL PRODUCTS .................................................................................................................. 230

F. POLYNOMIAL DIVISION ............................................................................................................ 231

EXERCISE ........................................................................................................................................... 237

CHAPTER REVIEW ................................................................................................................................. 239

Page 2: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

212

SECTION 8.1: EXPONENTS RULES AND PROPERTIES A. PRODUCT RULE OF EXPONENTS

MEDIA LESSON Product rule of exponents (Duration 2:57)

View the video lesson, take notes and complete the problems below

π‘Žπ‘Ž3 βˆ™ π‘Žπ‘Ž2 = (π‘Žπ‘Ž π‘Žπ‘Ž π‘Žπ‘Ž)(π‘Žπ‘Ž π‘Žπ‘Ž) = π‘Žπ‘Ž5 Product rule: π’‚π’‚π’Žπ’Ž β‹… 𝒂𝒂𝒏𝒏 = π’‚π’‚π’Žπ’Ž+𝒏𝒏 ____________________________!

Example 1: (2x3)(4x2)(βˆ’3x) = ___________________________

Example 2: (5a3b7)(2a9b2c4) = ___________________________

Warning! The rule can only apply when you have the same base.

YOU TRY

Simplify: a) 53510

b) π‘₯π‘₯1π‘₯π‘₯3π‘₯π‘₯2 c) (2π‘₯π‘₯3𝑦𝑦5𝑧𝑧)(5π‘₯π‘₯𝑦𝑦2𝑧𝑧3)

B. QUOTIENT RULE OF EXPONENTS

MEDIA LESSON Quotient rule of exponents (Duration 3:12)

View the video lesson, take notes and complete the problems below

π‘Žπ‘Ž5

π‘Žπ‘Ž3=π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž

π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž= π‘Žπ‘Ž2

Quotient Rule: π’‚π’‚π’Žπ’Ž

𝒂𝒂𝒏𝒏= π’‚π’‚π’Žπ’Žβˆ’π’π’

_________________________________

Example 1: π‘Žπ‘Ž7𝑏𝑏2

π‘Žπ‘Ž3𝑏𝑏

= ___________________________

Example 2: 8π‘šπ‘š7𝑛𝑛4

6π‘šπ‘š5𝑛𝑛

= ___________________________

YOU TRY

Simplify

a) 713

75 b)

5π‘Žπ‘Ž3𝑏𝑏5𝑐𝑐2

2π‘Žπ‘Žπ‘π‘3𝑐𝑐 c)

3π‘₯π‘₯5

π‘₯π‘₯3𝑦𝑦

Page 3: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

213

C. POWER RULE OF EXPONENTS

MEDIA LESSON Power rule of exponents (Duration 5:00)

View the video lesson, take notes and complete the problems below

(ab)3=_____________________________ = ________

Power of a product: (𝒂𝒂𝒂𝒂)π’Žπ’Ž = π’‚π’‚π’Žπ’Žπ’‚π’‚π’Žπ’Ž

οΏ½π‘Žπ‘Žπ‘π‘οΏ½3

=____________________ =_____________

Power of a Quotient: οΏ½π’‚π’‚π’‚π’‚οΏ½π’Žπ’Ž

= π’‚π’‚π’Žπ’Ž

π’‚π’‚π’Žπ’Ž , if b is not 0.

(π‘Žπ‘Ž2)3 = _____________________ = ______ Power of a Power: (π’‚π’‚π’Žπ’Ž)𝒏𝒏 = π’‚π’‚π’Žπ’Žβˆ™π’π’

Example 1: (5π‘Žπ‘Ž4𝑏𝑏)3 Example 2: οΏ½5π‘šπ‘š

3

9𝑛𝑛4οΏ½2

Warning! It is important to be careful to only use the power of a product rule with multiplication inside parenthesis. This property is not allowed for addition or subtraction, i.e.,

(π‘Žπ‘Ž + 𝑏𝑏)π‘šπ‘š β‰  π‘Žπ‘Žπ‘šπ‘š + π‘π‘π‘šπ‘š (π‘Žπ‘Ž βˆ’ 𝑏𝑏)π‘šπ‘š β‰  π‘Žπ‘Žπ‘šπ‘š βˆ’ π‘π‘π‘šπ‘š

YOU TRY

Simplify:

a) οΏ½π‘₯π‘₯3

𝑦𝑦2οΏ½5

b) οΏ½23

52οΏ½7

c) (π‘₯π‘₯3𝑦𝑦𝑧𝑧2)4

d) (4π‘₯π‘₯2𝑦𝑦5)3

e) οΏ½ π‘Žπ‘Ž3𝑏𝑏

𝑐𝑐8𝑑𝑑5οΏ½2

f) οΏ½4π‘₯π‘₯𝑦𝑦8𝑧𝑧�2

Page 4: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

214

D. ZERO AS AN EXPONENT

MEDIA LESSON Zero as Exponent (Duration 3:51)

View the video lesson, take notes and complete the problems below

π‘Žπ‘Ž3

π‘Žπ‘Ž3=_____________________________________________

Zero Power Rule: π’‚π’‚πŸŽπŸŽ = 𝟏𝟏

Example 1: (5π‘₯π‘₯3𝑦𝑦𝑧𝑧5)0

Example 2: (3π‘₯π‘₯2𝑦𝑦0)(5π‘₯π‘₯0𝑦𝑦4)

YOU TRY

Simplify the expressions completely a) (3x2)0

b) 2π‘šπ‘š0𝑛𝑛6

3𝑛𝑛5

E. NEGATIVE EXPONENTS

MEDIA LESSON Negative Exponents (Duration 4:44)

View the video lesson, take notes and complete the problems below

π‘Žπ‘Ž3

π‘Žπ‘Ž5 = __________________________________________

=___________________________________________

Negative Exponent Rule: π’‚π’‚βˆ’π’Žπ’Ž = πŸπŸπ’‚π’‚π’Žπ’Ž

When a and b are not 0.

1π‘Žπ‘Žβˆ’π‘šπ‘š

= π‘Žπ‘Žπ‘šπ‘š οΏ½π‘Žπ‘Žπ‘π‘οΏ½βˆ’π‘šπ‘š

= οΏ½π‘π‘π‘Žπ‘ŽοΏ½π‘šπ‘š

=π‘π‘π‘šπ‘š

π‘Žπ‘Žπ‘šπ‘š

Example 1: 7π‘₯π‘₯βˆ’5

3βˆ’1π‘¦π‘¦π‘§π‘§βˆ’4

Example 2: 2

5π‘Žπ‘Žβˆ’4

Warning! It is important to note a negative exponent does not imply the expression is negative, only the reciprocal of the base. Hence, negative exponents imply reciprocals. YOU TRY

a) 3

5βˆ’1π‘₯π‘₯ b)

π‘Žπ‘Ž3𝑏𝑏2𝑐𝑐2π‘‘π‘‘βˆ’1π‘’π‘’βˆ’4

Page 5: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

215

F. PROPERTIES OF EXPONENTS Putting all the rules together, we can simplify more complex expression containing exponents. Here we apply all the rules of exponents to simplify expressions.

Exponent Rules

Product

π’‚π’‚π’Žπ’Ž β‹… 𝒂𝒂𝒏𝒏 = π’‚π’‚π’Žπ’Ž+𝒏𝒏

Quotient

π’‚π’‚π’Žπ’Ž

𝒂𝒂𝒏𝒏= π’‚π’‚π’Žπ’Žβˆ’π’π’

Power of Power

(π’‚π’‚π’Žπ’Ž)𝒏𝒏 = π’‚π’‚π’Žπ’Žβˆ™π’π’

Power of a Product

(𝒂𝒂𝒂𝒂)π’Žπ’Ž = π’‚π’‚π’Žπ’Žπ’‚π’‚π’Žπ’Ž

Power of a Quotient

οΏ½π’‚π’‚π’‚π’‚οΏ½π’Žπ’Ž

=π’‚π’‚π’Žπ’Ž

π’‚π’‚π’Žπ’Ž

Zero Power

π’‚π’‚πŸŽπŸŽ = 𝟏𝟏

Negative Power

π’‚π’‚βˆ’π’Žπ’Ž = πŸπŸπ’‚π’‚π’Žπ’Ž

Reciprocal of Negative Power

πŸπŸπ’‚π’‚βˆ’π’Žπ’Ž

= π’‚π’‚π’Žπ’Ž

Negative Power of a Quotient

οΏ½π’‚π’‚π’‚π’‚οΏ½βˆ’π’Žπ’Ž

= οΏ½π’‚π’‚π’‚π’‚οΏ½π’Žπ’Ž

=π’‚π’‚π’Žπ’Ž

π’‚π’‚π’Žπ’Ž

MEDIA LESSON Properties of Exponents (Duration 5:00)

View the video lesson, take notes and complete the problems below

Example 1: (4x5y2z)2(2π‘₯π‘₯4π‘¦π‘¦βˆ’2𝑧𝑧3)4 Example 2:

οΏ½2x2y3οΏ½4οΏ½x4yβˆ’6οΏ½βˆ’2

(xβˆ’6y4)2

YOU TRY

Simplify and write your final answers in positive exponents.

a) 4π‘₯π‘₯βˆ’5π‘¦π‘¦βˆ’3β‹…3π‘₯π‘₯3π‘¦π‘¦βˆ’2

6π‘₯π‘₯βˆ’5𝑦𝑦3

b)

οΏ½3π‘Žπ‘Žπ‘π‘3οΏ½βˆ’2β‹…π‘Žπ‘Žπ‘π‘βˆ’3

2π‘Žπ‘Žβˆ’4𝑏𝑏0

Page 6: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

216

EXERCISE Simplify. Be sure to follow the simplifying rules and write answers with positive exponents.

1) 4 βˆ™ 44 β‹… 44 2) 4 β‹… 22 3) 3π‘šπ‘š β‹… 4π‘šπ‘šπ‘šπ‘š

4) 2π‘šπ‘š4π‘šπ‘š2 β‹… 4π‘šπ‘šπ‘šπ‘š2 5) (33)4 6) (44)2

7) (2𝑒𝑒3𝑣𝑣2)2 8) (2π‘Žπ‘Ž4)4 9) 45

43

10) π‘₯π‘₯2𝑦𝑦4 β‹… π‘₯π‘₯𝑦𝑦2 11) (π‘₯π‘₯𝑦𝑦)3 12) 37

33

13) 32

3 14)

3π‘›π‘›π‘šπ‘š2

3𝑛𝑛 15)

4π‘₯π‘₯3𝑦𝑦4

3π‘₯π‘₯𝑦𝑦3

16) π‘₯π‘₯2𝑦𝑦4

4π‘₯π‘₯𝑦𝑦 17) 3π‘₯π‘₯ β‹… 4π‘₯π‘₯2 18) (𝑒𝑒2𝑣𝑣2 β‹… 2𝑒𝑒4)3

19) (π‘₯π‘₯3𝑦𝑦4 β‹… 2π‘₯π‘₯2𝑦𝑦3)2 20) 2π‘₯π‘₯(π‘₯π‘₯4𝑦𝑦4)4 21) 2π‘₯π‘₯7𝑦𝑦5

3π‘₯π‘₯3𝑦𝑦⋅4π‘₯π‘₯2𝑦𝑦3

22) οΏ½(2π‘₯π‘₯)3

π‘₯π‘₯3οΏ½2

23) οΏ½ 2𝑦𝑦17

(2π‘₯π‘₯2𝑦𝑦4)4οΏ½3 24) οΏ½2π‘šπ‘šπ‘›π‘›4β‹…2π‘šπ‘š4𝑛𝑛4

π‘šπ‘šπ‘›π‘›4οΏ½3

25) 2π‘₯π‘₯𝑦𝑦5β‹…2π‘₯π‘₯2𝑦𝑦3

2π‘₯π‘₯𝑦𝑦4⋅𝑦𝑦3 26)

2π‘₯π‘₯2𝑦𝑦2𝑧𝑧6β‹…2𝑧𝑧π‘₯π‘₯2𝑦𝑦2

(π‘₯π‘₯2𝑧𝑧3)2 27) 2𝑦𝑦

(π‘₯π‘₯0𝑦𝑦2)4

28) 2π‘π‘π‘Žπ‘Ž7β‹…2𝑏𝑏4

π‘π‘π‘Žπ‘Ž2β‹…3π‘Žπ‘Ž3𝑏𝑏4 29)

2π‘Žπ‘Ž2𝑏𝑏2π‘Žπ‘Ž7

(π‘π‘π‘Žπ‘Ž4)2 30) 𝑦𝑦π‘₯π‘₯2⋅�𝑦𝑦4οΏ½2

2𝑦𝑦4

31) 2π‘Žπ‘Ž2𝑏𝑏2π‘Žπ‘Ž7

(π‘π‘π‘Žπ‘Ž4)2 32) 𝑛𝑛3�𝑛𝑛4οΏ½2

2π‘šπ‘šπ‘›π‘› 33)

οΏ½2𝑦𝑦3π‘₯π‘₯2οΏ½2

2π‘₯π‘₯2𝑦𝑦4π‘₯π‘₯2

34) 2π‘žπ‘ž3𝑝𝑝3π‘Ÿπ‘Ÿ4β‹…2𝑝𝑝3

(π‘žπ‘žπ‘Ÿπ‘Ÿπ‘π‘3)2 35) 2π‘₯π‘₯4π‘¦π‘¦βˆ’2 β‹… (2π‘₯π‘₯𝑦𝑦3)4 36) 2π‘₯π‘₯βˆ’3𝑦𝑦2

3π‘₯π‘₯βˆ’3𝑦𝑦3β‹…3π‘₯π‘₯0

37) π‘’π‘’π‘£π‘£βˆ’1

2𝑒𝑒0𝑣𝑣4β‹…2𝑒𝑒𝑣𝑣 38) οΏ½2π‘Žπ‘Ž

2𝑏𝑏3

π‘Žπ‘Žβˆ’1οΏ½4

39) 2π‘₯π‘₯𝑦𝑦2β‹…4π‘₯π‘₯3π‘¦π‘¦βˆ’4

4π‘₯π‘₯βˆ’4π‘¦π‘¦βˆ’4β‹…4π‘₯π‘₯

40) 2𝑏𝑏4π‘π‘βˆ’2β‹…οΏ½2𝑏𝑏3𝑐𝑐2οΏ½βˆ’4

π‘Žπ‘Žβˆ’2𝑏𝑏4

Page 7: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

217

SECTION 8.2 SCIENTIFIC NOTATION A. INTRODUCTION TO SCIENTIFIC NOTATION One application of exponent properties is scientific notation. Scientific notation is used to represent really large or really small numbers, like the numbers that are too large or small to display on the calculator.

For example, the distance light travels per year in miles is a very large number (5,879,000,000,000) and the mass of a single hydrogen atom in grams is a very small number (0.00000000000000000000000167). Basic operations, such as multiplication and division, with these numbers, would be quite cumbersome. However, the exponent properties allow us for simpler calculations.

MEDIA LESSON Introduction of scientific notation (Watch from 0:00 – 9:00)

View the video lesson, take notes and complete the problems below

100 =___________

101 =____________

102 =_____________

103 = _____________

10100 = _________________________

Avogadro number: 602,200,000,000,000,000,000,000 = ______________________________

MEDIA LESSON Definition of scientific notation (Duration 4:59)

View the video lesson, take notes and complete the problems below

Standard Form (Standard Notation): _______________________________________________________

Scientific Notation: ____________________________________________________________________

b: _________________________________________

b positive: __________________________________

b negative: _________________________________

Example: Convert to Scientific Notation

a) 48,100,000,000 = _________________ b) 0.0000235 = ________________

Page 8: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

218

Definition Scientific notation is a notation for representing extremely large or small numbers in form of

π‘Žπ‘Ž π‘₯π‘₯ 10𝑏𝑏 where 1 < a < 10 and b is number of decimal places from the right or left we moved to obtain a.

A few notes regarding scientific notation:

β€’ b is the way we convert between scientific and standard notation. β€’ b represents the number of times we multiply by 10. (Recall, multiplying by 10 moves the decimal

point of a number one place value.) β€’ We decide which direction to move the decimal (left or right) by remembering that in standard

notation, positive exponents are numbers greater than ten and negative exponents are numbers less than one (but larger than zero).

Case 1. If we move the decimal to the left with a number in standard notation, then b will be positive. Case 2. If we move the decimal to the right with a number in standard notation, then b will be negative.

B. CONVERT NUMBERS TO SCIENTIFIC NOTATION

MEDIA LESSON Convert standard notation to scientific notation (Duration 1:40)

View the video lesson, take notes and complete the problems below

Example: Convert to scientific notation

8150000 =

0.00000245 =

YOU TRY

Convert the following number to scientific notation a) 14,200

b) 0.0042

c) How long is a Light-Year? The light-year is a measure of distance, not time. It is the total distance that a beam of light, moving in a straight line, travels in one year is almost 6 trillion (6,000,000,000,000) miles. Express a light year in scientific notation. (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)

C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION

To convert a number from scientific notation of the form π‘Žπ‘Ž π‘₯π‘₯ 10𝑏𝑏

to standard notation, we can follow these rules of thumb. β€’ If b is positive, this means the original number was greater than 10, we move the decimal to

the right b times. β€’ If b is negative, this means the original number was less than 1 (but greater than zero), we move

the decimal to the left b times.

Page 9: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

219

MEDIA LESSON Convert scientific notation to standard notation (Duration 2:22)

View the video lesson, take notes and complete the problems below

Example: Rewrite in standard notation (decimal notation)

a) 7.85 Γ— 106

b) 1.6 Γ— 10βˆ’4

YOU TRY

Covert the following scientific notation to standard notation

a) 3.21 Γ— 105 b) 7.4 Γ— 10βˆ’3

D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION Converting numbers between standard notation and scientific notation is important in understanding scientific notation and its purpose. Next, we multiply and divide numbers in scientific notation using the exponent properties. If the immediate result is not written in scientific notation, we will complete an additional step in writing the answer in scientific notation.

Steps for multiplying and dividing numbers in scientific notation

Step 1. Rewrite the factors as multiplying or dividing a-values and then multiplying or dividing 10b values.

Step 2. Multiply or divide the a values and apply the product or quotient rule of exponents to add or subtract the exponents, b, on the base 10s, respectively.

Step 3. Be sure the result is in scientific notation. If not, then rewrite in scientific notation.

MEDIA LESSON Multiply and divide scientific notation (Duration 2:47)

View the video lesson, take notes and complete the problems below

β€’ Multiply/ Divide the ______________________________________ β€’ Use ______________________________________________________on the 10s

Example:

a) (3.4 Γ— 105)(2 β‹… 7 Γ— 10βˆ’2) b)

5.32Γ—104

1.9Γ—10βˆ’3

MEDIA LESSON Multiply scientific notations with simplifying final answer step (Duration 3:47)

View the video lesson, take notes and complete the problems below

Example: a) (1.2 Γ— 104)(5.3 Γ— 103) b) (9 Γ— 101)(7 Γ— 109)

Page 10: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

220

MEDIA LESSON Divide scientific notations with simplifying final answer step (Duration 3:44)

View the video lesson, take notes and complete the problems below

a) 7Γ—1012

2Γ—107

b) 2.4Γ—107

4.8Γ—102

YOU TRY

Multiply or divide

a) (2.1 π‘₯π‘₯ 10βˆ’7)(3.7 π‘₯π‘₯ 105)

b) 4.96 π‘₯π‘₯ 104

3.1 π‘₯π‘₯ 10βˆ’3

c) (4.7 π‘₯π‘₯ 10βˆ’3)(6.1 π‘₯π‘₯ 109)

d) (2 Γ— 106)(8.8 Γ— 105)

e) 8.4Γ—105

7Γ—102

f) 2.014 π‘₯π‘₯ 10βˆ’3

3.8 π‘₯π‘₯ 10βˆ’7

E. SCIENTIFIC NOTATION APPLICATIONS

MEDIA LESSON Scientific notation application example 1 (Duration 2:36)

View the video lesson, take notes and complete the problems below Example 1: There were approximately 50,000 finishers of the 2015 New York City Marathon. Each finisher ran a distance of 26.1 miles. If you add together the total number miles ran by all the runners, how many times around the earth would the marathon runners have ran? Assume the circumference of the earth to be approximately 2.5 x 104 miles. Total distance = _______________________________________________________________________ _____________________________________________________________________________________

Page 11: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

221

MEDIA LESSON Scientific notation application example 2 (Duration 3:24)

View the video lesson, take notes and complete the problems below

Example 2: If a computer can conduct 400 trillion operations per second, how long would it take the computer to perform 500 million operations? 400 trillion = __________________________________________________________________________

500 million = __________________________________________________________________________

Number of Operations: __________________________________________________________________

Rate of Operations: _____________________________________________________________________

_____________________________________________________________________________________

YOU TRY

a) It takes approximately 3.7 x 104 hours for the light on Proxima Centauri, the next closet star to our sun, to reach us from there. The speed of light is 6.71 x 108 miles per hours. What is the distance from there to earth? Given distance = rate x time. Express your answer in scientific notation

By ESO/Pale Red Dot - http://www.eso.org/public/images/ann16002a/, CC BY 4.0,

https://commons.wikimedia.org/w/index.php?curid=46463949

a) If the North Pole and the South Pole ice were to melt, the north polar ice would make essentially no contribution since it is float ice. However, the south polar ice would make a considerable contribution since it overlays the Antarctic land mass and is not float ice. If Antarctic ice melted, it would become approximately 1.5 x 109 gallons of water. If it takes roughly, 6 x 106 gallons of water to fill 1 foot of the earth, estimate how many feet the earth’s oceans would rise? Express your answer in the standard form. (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)

Page 12: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

222

EXERCISE Write each number in scientific notation

1) 885 2) 0.081 3) 0.000039

4) 0.000744 5) 1.09 6) 15,000

Write each number in standard notation.

7) 8.7 Γ— 105 8) 9 Γ— 10βˆ’4 9) 2 Γ— 100

10) 2.56 Γ— 102 11) 5 Γ— 104 12) 6 Γ— 10βˆ’5

Simplify. Write each answer in scientific notation.

13) (7 Γ— 101)(2 Γ— 103) 14) (5.26 Γ— 105)(3.16 Γ— 102) 15) (2.6 Γ— 10βˆ’2)(6 Γ— 10βˆ’2)

16) (3.6 Γ— 100)(6.1 Γ— 10βˆ’3) 17) (6.66 Γ— 10βˆ’4)(4.23 Γ— 101) 18) (3.15 Γ— 103)(8.8 Γ— 10βˆ’5)

19) 4.81 Γ— 106

9.62 Γ— 102 20)

5.33Γ—106

2Γ—103 21)

4.08Γ—10βˆ’6

5.1Γ—10βˆ’4

22) 9Γ—104

3Γ—10βˆ’2 23)

3.22Γ—10βˆ’3

7Γ—10βˆ’6 24)

1.3Γ—10βˆ’6

6.5Γ—100

25) 5.8Γ—103

5.8Γ—10βˆ’3 26)

5Γ—106

2.5Γ—102 27)

8.4Γ—105

7Γ—10βˆ’2

Scientific Notation Applications (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)

28) The mass of the sun is 1.98 x 1,033 grams. If a single proton has a mass of 1.6 x 10-24 grams, how many protons are in the sun?

29) Pluto is located at a distance of 5.9 x 1014 centimeters from Earth. At the speed of light (2.99 x 1010

cm/sec), approximately how many hours does it take a light signal (or radio message) to travel to Pluto and return? Write your answer standard form.

30) The planet Osiris was discovered by astronomers in 1999 and is at a distance of 150 light-years (1

light-year = 9.2 x 1012 kilometers). a) How many kilometers is Osiris from earth? Express your answer in scientific notation. b) If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed

of 700 km/sec or 7 x 102 km/sec, how many seconds would it take to reach Osiris? c) There is about 3.15 x 106 seconds in a year. How many years would it take to reach Osiris?

Page 13: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

223

SECTION 8.3: POLYNOMIALS A. INTRODUCTION TO POLYNOMIALS

MEDIA LESSON Algebraic Expression Vocabulary (Duration 5:52)

View the video lesson, take notes and complete the problems below

Definitions

Terms: Parts of an algebraic expression separated by addition or subtraction (+ or βˆ’) symbols. Constant Term: A number with no variable factors. A term whose value never changes. Factors: Numbers or variable that are multiplied together Coefficient: The number that multiplies the variable.

Example 1: Consider the algebraic expression 4π‘₯π‘₯5 + 3π‘₯π‘₯4 βˆ’ 22π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 17

a. List the terms: __________________________________________________________________

b. Identify the constant term. ________________________________________________________

Example 2: Complete the table below

βˆ’4π‘šπ‘š βˆ’π‘₯π‘₯ 12π‘π‘β„Ž

2π‘Ÿπ‘Ÿ5

List of Factors

Identify the Coefficient

Example 3: Consider the algebraic expression 5𝑦𝑦4 βˆ’ 8𝑦𝑦3 + 𝑦𝑦2 βˆ’ 𝑦𝑦4βˆ’ 7

a. How many terms are there? ______________________

b. Identify the constant term. ______________________

c. What is the coefficient of the first term? ______________________

d. What is the coefficient of the second term ______________________

e. What is the coefficient of the third term? ______________________

f. List the factors of the fourth term. ______________________

YOU TRY

Example 3: Consider the algebraic expression 3π‘₯π‘₯5 + 4π‘₯π‘₯4 βˆ’ 2π‘₯π‘₯ + 8

a. How many terms are there? ______________________

b. Identify the constant term. ______________________

c. What is the coefficient of the first term? ______________________

d. What is the coefficient of the second term ______________________

e. What is the coefficient of the third term? ______________________

f. List the factors of the third term. ______________________

Page 14: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

224

MEDIA LESSON Introduction to polynomials (Duration 7:12)

View the video lesson, take notes and complete the problems below

Definitions

Polynomial: An algebraic expression composed of the sum of terms containing a single variable raised to a non-negative integer exponent.

Monomial: A polynomial consisting of one term, example: _________________

Binomial: A polynomial consisting of two terms, example: _________________

Trinomial: A polynomial consisting of three terms, example: _________________

Leading Term: The term that contains the highest power of the variable in a polynomial,

example: _________________

Leading Coefficient: The coefficient of the leading term, example: _________________

Constant Term: A number with no variable factors. A term whose value never changes.

Example: _________________

Degree: The highest exponent in a polynomial , example: _________________

Example 1: Complete the table below

Polynomial Name

Leading Coefficient Constant Term Degree

24π‘Žπ‘Ž6 + π‘Žπ‘Ž2 + 5

2π‘šπ‘š3 + π‘šπ‘š2 βˆ’ 2π‘šπ‘š βˆ’ 8

5π‘₯π‘₯2 + π‘₯π‘₯3 βˆ’ 7

βˆ’2π‘₯π‘₯ + 4

4π‘₯π‘₯3

YOU TRY

Complete the table below

Polynomial Name

Leading Coefficient Constant Term Degree

π‘šπ‘š2 βˆ’ 2π‘šπ‘š + 8

7𝑦𝑦2

6π‘₯π‘₯ βˆ’ 7

Page 15: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

225

MEDIA LESSON Introduction to polynomials 2 (Duration 2:58)

View the video lesson, take notes and complete the problems below Given: 9𝑦𝑦 + 7𝑦𝑦3 βˆ’ 5 βˆ’ 4𝑦𝑦2

1st term: _______________ Degree:_________________ Coefficient:______________ 2nd term: _______________ Degree:_________________ Coefficient:______________ 3rd term: _______________ Degree:_________________ Coefficient:______________ 4th term: _______________ Degree:_________________ Coefficient:______________

Leading coefficient: ________________ Degree of leading term: _____________ Degree of polynomial: _______________ Write the polynomial in descending order: ________________________________________________ (Or write the polynomial in the standard form)

Standard form of a polynomial The standard form of a polynomial is where the polynomial is written with descending exponents. For example: Rewrite the polynomial in standard form and identify the coefficients, variable terms, and degree of the polynomial

βˆ’12π‘₯π‘₯2 + π‘₯π‘₯3 βˆ’ π‘₯π‘₯ + 2

The standard form of the above polynomial is π‘₯π‘₯3 βˆ’ 12π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 2.

The coefficients are 1; βˆ’12; βˆ’1, and 2; the variable terms are π‘₯π‘₯3,βˆ’12π‘₯π‘₯2,βˆ’π‘₯π‘₯. The degree of the polynomial is 3 because that is the highest degree of all terms. YOU TRY

Write the following polynomials in the descending order or in standard form: a) 3π‘₯π‘₯ βˆ’ 9π‘₯π‘₯3 + 2π‘₯π‘₯6 + 7π‘₯π‘₯2 βˆ’ 3 + π‘₯π‘₯4

b) 5π‘šπ‘š2 βˆ’ 5π‘šπ‘š4 + 3 βˆ’ 4π‘šπ‘š3 βˆ’ 2π‘šπ‘š7

B. EVALUATING POLYNOMIAL EXPRESSIONS

MEDIA LESSON Evaluating algebraic expressions (Duration 7:48)

View the video lesson, take notes and complete the problems below

To evaluate an algebraic or variable expression, ________________ the value of the variables into the expression. Then evaluate using the order of operations.

Example 1: If we are given 5π‘₯π‘₯ βˆ’ 12 and π‘₯π‘₯ = 17 we can evaluate.

5π‘₯π‘₯ βˆ’ 12

= 5 ( ___ ) – 12

= ___________________

Example 2: Let π‘₯π‘₯ = βˆ’3,𝑦𝑦 = 7, 𝑧𝑧 = βˆ’2 Evaluate π‘₯π‘₯ βˆ’ 3𝑦𝑦 + 7 Evaluate 2π‘₯π‘₯2 + 5𝑦𝑦 βˆ’ 𝑧𝑧3

Page 16: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

226

Example 3: Let = 3 . Evaluate 9𝑦𝑦

βˆ’8𝑦𝑦 + 2

Example 4: Let π‘₯π‘₯ = 3,𝑦𝑦 = βˆ’5. Evaluate 4π‘₯π‘₯ βˆ’ 3𝑦𝑦2

Example 5: Let = βˆ’2 . Evaluate 3π‘₯π‘₯2 βˆ’ π‘₯π‘₯2 + 2π‘₯π‘₯ + 9

Example 6: Let π‘₯π‘₯ = 2,𝑦𝑦 = βˆ’3. Evaluate π‘₯π‘₯2𝑦𝑦2

π‘₯π‘₯2βˆ’2𝑦𝑦3

YOU TRY

a) Evaluate 2π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 6 when π‘₯π‘₯ = βˆ’4

b) Evaluate βˆ’π‘₯π‘₯2 + 2π‘₯π‘₯ + 6 when π‘₯π‘₯ = 3

C. ADD AND SUBTRACT POLYNOMIALS

Combining like terms review

MEDIA LESSON Combine like terms 1 (Duration 4:36)

View the video lesson, take notes and complete the problems below

Definition Like terms: Two or more terms are like terms if they have the same variable or variables with the same exponents. Which of these terms are like terms? βˆ’2π‘₯π‘₯3, 2π‘₯π‘₯, 2𝑦𝑦, 7π‘₯π‘₯3, 49, 0π‘₯π‘₯2, 𝑦𝑦2

Like terms: __________________________________________________________

Like terms: __________________________________________________________

To combine like terms, we __________________________________________. The variable factors __________________.

Example: Simplify each polynomials, if possible.

a) 4π‘₯π‘₯3 βˆ’ 7π‘₯π‘₯3

b) 2𝑦𝑦2 + 4𝑦𝑦 βˆ’ 𝑦𝑦2 + 2 βˆ’ 9𝑦𝑦 βˆ’ 5 + 2𝑦𝑦

Page 17: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

227

MEDIA LESSON Combine like terms 2 (Duration 2:15)

View the video lesson, take notes and complete the problems below

Combine like terms

a) π‘₯π‘₯2𝑦𝑦 + 3π‘₯π‘₯𝑦𝑦2 + 4π‘₯π‘₯2𝑦𝑦

b) βˆ’7π‘šπ‘šβˆ’ 4 + 2π‘šπ‘š + 9

YOU TRY

Combine like terms

a) 5π‘₯π‘₯2 + 2π‘₯π‘₯ βˆ’ 5π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ + 1

b) 3π‘₯π‘₯𝑦𝑦2 βˆ’ 2π‘₯π‘₯2 + 6 + 3𝑦𝑦 βˆ’ 5π‘₯π‘₯𝑦𝑦2 βˆ’ 3

c) 3π‘₯π‘₯2𝑦𝑦𝑧𝑧 + 9π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯𝑦𝑦2𝑧𝑧 βˆ’ 3𝑦𝑦2 + 5π‘₯π‘₯2

d) 3π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ + 5𝑦𝑦2 βˆ’ π‘Žπ‘Žπ‘₯π‘₯2 + 7 βˆ’ π‘₯π‘₯ βˆ’ 10𝑦𝑦2

Add and subtract polynomials

MEDIA LESSON Add and subtract polynomials (Duration 3:53)

View the video lesson, take notes and complete the problems below

To add polynomials: ____________________________________________________________________

To subtract polynomials: ________________________________________________________________

a) (5π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯ + π‘žπ‘ž) + (2π‘₯π‘₯2 + 5π‘₯π‘₯ βˆ’ 14) b) (3π‘₯π‘₯3 βˆ’ 4π‘₯π‘₯ + 7) βˆ’ (8π‘₯π‘₯3 + 9π‘₯π‘₯ βˆ’ 2)

MEDIA LESSON Add and subtract polynomials (Duration 5:04)

View the video lesson, take notes and complete the problems below

c) (2π‘₯π‘₯5 βˆ’ 6π‘₯π‘₯3 βˆ’ 12π‘₯π‘₯2 βˆ’ 4) βˆ’ (11π‘₯π‘₯5 + 8π‘₯π‘₯ + 2π‘₯π‘₯2 + 6)

d) (βˆ’9𝑦𝑦3 βˆ’ 6𝑦𝑦2 βˆ’ 11π‘₯π‘₯ + 2) βˆ’ (βˆ’9𝑦𝑦4 βˆ’ 8𝑦𝑦3 + 4π‘₯π‘₯2 + 2π‘₯π‘₯)

Page 18: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

228

YOU TRY

Perform the operation below. a) (4π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯ + 8) + (3π‘₯π‘₯3 βˆ’ 9π‘₯π‘₯2 βˆ’ 11)

b) (5π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ + 7) βˆ’ (3π‘₯π‘₯2 + 6π‘₯π‘₯ βˆ’ 4)

c) (2π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 3) + (5π‘₯π‘₯2 βˆ’ 6π‘₯π‘₯ + 1) βˆ’ (π‘₯π‘₯2 βˆ’ 9π‘₯π‘₯ + 8)

D. MULTIPLY POLYNOMIAL EXPRESSIONS 1. Distributive property review

MEDIA LESSON Distribute property review (Duration 6:08)

View the video lesson, take notes and complete the problems below

Distributive Property π‘Žπ‘Ž(𝑏𝑏 + 𝑐𝑐) = π‘Žπ‘Žπ‘π‘ + π‘Žπ‘Žπ‘π‘

π‘Žπ‘Ž = 2 𝑏𝑏 = 3 𝑐𝑐 = 4

Example: Use the distributive property to expand each of the following expressions a) 5(2π‘₯π‘₯ + 4)

b) βˆ’3(π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ + 7)

c) βˆ’(5π‘₯π‘₯4 βˆ’ 8) d)

25οΏ½π‘₯π‘₯4βˆ’ 1

3οΏ½

YOU TRY

Use the distributive property to expand each of the following expressions. a) 4(βˆ’5π‘₯π‘₯2 + 9π‘₯π‘₯ βˆ’ 3) b) βˆ’7(βˆ’2π‘šπ‘š2 + π‘šπ‘šβˆ’ 2)

2. Multiply a polynomial by a monomial

MEDIA LESSON Multiply a polynomial by a monomial (Duration 2:46)

View the video lesson, take notes and complete the problems below

To multiply a monomial by a polynomial: ___________________________________________________

Example 1: 5π‘₯π‘₯2(6π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ + 5) Example 2: βˆ’3π‘₯π‘₯4(6π‘₯π‘₯3 + 2π‘₯π‘₯ βˆ’ 7)

Page 19: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

229

YOU TRY

Multiply

a) 4π‘₯π‘₯3(5π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ + 5)

b) 2π‘Žπ‘Ž3𝑏𝑏(3π‘Žπ‘Žπ‘π‘2 βˆ’ 4π‘Žπ‘Ž)

3. Multiplying with binomials

MEDIA LESSON Multiply binomials (Duration 4:27)

View the video lesson, take notes and complete the problems below

To multiply a binomial by a binomial: ___________________________________________________

_____________________________________________________________________________________

This process is often called ____________, which stands for ____________________________________

Example:

a) (4π‘₯π‘₯ βˆ’ 2)(5π‘₯π‘₯ + 1) b) (3π‘₯π‘₯ βˆ’ 7)(2π‘₯π‘₯ βˆ’ 8)

YOU TRY

Multiply

a) (3π‘₯π‘₯ + 5)(π‘₯π‘₯ + 13)

b) (4π‘₯π‘₯ + 7𝑦𝑦)(3π‘₯π‘₯ βˆ’ 2𝑦𝑦)

4. Multiply with trinomials

MEDIA LESSON Multiply with trinomials (Duration 5:00)

View the video lesson, take notes and complete the problems below

Multiplying trinomials is just like _______________, we just have to _____________________________.

Example: a) (2π‘₯π‘₯ βˆ’ 4)(3π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯ + 1) b) (2π‘₯π‘₯2 βˆ’ 6π‘₯π‘₯ + 1)(4π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ βˆ’ 6)

Page 20: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

230

YOU TRY

Multiply a) (2π‘₯π‘₯ βˆ’ 5)(4π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯ + 3)

b) (5π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 10)(3π‘₯π‘₯2 βˆ’ 10π‘₯π‘₯ βˆ’ 6)

E. SPECIAL PRODUCTS There are a few shortcuts that we can take when multiplying polynomials. If we can recognize when to use them, we should so that we can obtain the results even quicker. In future chapters, we will need to be efficient in these techniques since multiplying polynomials will only be one of the steps in the problem. These two formulas are important to commit to memory. The more familiar we are with them, the next two chapters will be so much easier.

1. Difference of two squares

MEDIA LESSON Difference of two squares (Duration 2:33)

View the video lesson, take notes and complete the problems below

Sum and difference

(π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ 𝑏𝑏) = _______________________________

= _______________________________

Sum and difference shortcut:

(π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ 𝑏𝑏) = ______________________

Example:

a) (π‘₯π‘₯ + 5)(π‘₯π‘₯ βˆ’ 5)

b) (6π‘₯π‘₯ βˆ’ 2)(6π‘₯π‘₯ + 2)

YOU TRY

Simplify: a) (3π‘₯π‘₯ + 7)(3π‘₯π‘₯ βˆ’ 7)

b) (8 βˆ’ π‘₯π‘₯2)(8 + π‘₯π‘₯2)

Page 21: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

231

2. Perfect square trinomials Another shortcut used to multiply binomials is called perfect square trinomials. These are easy to recognize because this product is the square of a binomial. Let’s take a look at an example.

MEDIA LESSON Perfect Square (Duration 3:40)

View the video lesson, take notes and complete the problems below

Perfect square

(π‘Žπ‘Ž + 𝑏𝑏)2 = ____________________________________________________________________________

Perfect square shortcut:

(π‘Žπ‘Ž + 𝑏𝑏)2 = _____________________________

Example: a) (π‘₯π‘₯ βˆ’ 4)2

b) (2π‘₯π‘₯ + 7)2

YOU TRY

Simplify: a) (π‘₯π‘₯ βˆ’ 5)2

b) (2π‘₯π‘₯ + 9)2

c) (3π‘₯π‘₯ βˆ’ 7𝑦𝑦)2

d) (6 βˆ’ 2π‘šπ‘š)2

F. POLYNOMIAL DIVISION Dividing polynomials is a process very similar to long division of whole numbers. Before we look at long division with polynomials, we will first master dividing a polynomial by a monomial.

1. Polynomial division with monomials

MEDIA LESSON Dividing polynomials by monomials - Separated fractions method (Duration 8:14)

View the video lesson, take notes and complete the problems below We divide a polynomial by a monomial by rewriting the expression as separated fractions rather than one

fraction. We use the fact: π‘Žπ‘Ž+𝑏𝑏𝑐𝑐

= π‘Žπ‘Žπ‘π‘

+ 𝑏𝑏𝑐𝑐

Example:

a) βˆ’6w8

30Ο‰3

b) 3π‘₯π‘₯βˆ’62

Page 22: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

232

c) 6π‘₯π‘₯3+2π‘₯π‘₯2βˆ’4

4π‘₯π‘₯

d) 20π‘Žπ‘Ž2+35π‘Žπ‘Žβˆ’4

βˆ’5π‘Žπ‘Ž2

YOU TRY

Simplify

a) 9π‘₯π‘₯5+6π‘₯π‘₯4βˆ’18π‘₯π‘₯3βˆ’24π‘₯π‘₯2

3π‘₯π‘₯2

b) 8π‘₯π‘₯3+4π‘₯π‘₯2βˆ’2π‘₯π‘₯+6

4π‘₯π‘₯2

MEDIA LESSON Long division review (Duration 3:55)

View the video lesson, take notes and complete the problems below

Long division review

5 2632 Long division steps: 1. ___________________________________________________

2. ___________________________________________________

3. ___________________________________________________

4. ___________________________________________________

5. ___________________________________________________

This method may seem elementary, but it isn’t the arithmetic we want to review, it is the method. We use the same method as we did in arithmetic, but now with polynomials.

MEDIA LESSON Dividing polynomials by monomials – Long division method (Duration 5:00)

View the video lesson, take notes and complete the problems below

Example:

a) 5π‘₯π‘₯5+18π‘₯π‘₯βˆ’9π‘₯π‘₯3

3π‘₯π‘₯2

Page 23: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

233

b) 15π‘Žπ‘Ž6βˆ’25π‘Žπ‘Ž5+5π‘Žπ‘Ž4

5π‘Žπ‘Ž4

YOU TRY

Divide using the long division method

a) 8π‘₯π‘₯6+ 20π‘₯π‘₯4+ 4π‘₯π‘₯3

4π‘₯π‘₯3

b) 𝑛𝑛4βˆ’ 𝑛𝑛3+ 𝑛𝑛2

𝑛𝑛

c) 12π‘₯π‘₯4βˆ’ 24π‘₯π‘₯3 + 3π‘₯π‘₯2

6π‘₯π‘₯

Page 24: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

234

2. Polynomial division with polynomials

MEDIA LESSON Divide a polynomial by a polynomial (Duration 5:00)

View the video lesson, take notes and complete the problems below Polynomial division with polynomials On division step, only focus on the _______________________

Example 1: Divide π‘₯π‘₯3βˆ’2π‘₯π‘₯2βˆ’15π‘₯π‘₯+30

π‘₯π‘₯+4

Example 2: Divide 4π‘₯π‘₯3βˆ’6π‘₯π‘₯+12+8

2π‘₯π‘₯+1

YOU TRY

a) π‘₯π‘₯2+8π‘₯π‘₯+12

π‘₯π‘₯+1 =

b) 3π‘₯π‘₯3βˆ’5π‘₯π‘₯2βˆ’32π‘₯π‘₯+7

π‘₯π‘₯βˆ’4 =

Page 25: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

235

c) 6π‘₯π‘₯3βˆ’8π‘₯π‘₯2+10π‘₯π‘₯+103

2π‘₯π‘₯+4 =

MEDIA LESSON Divide a polynomial by a polynomial - rewriting the remainder as an expression (Duration 5:10)

View the video lesson, take notes and complete the problems below

Example: Divide π‘₯π‘₯3+8π‘₯π‘₯2βˆ’17π‘₯π‘₯βˆ’15

π‘₯π‘₯+3

YOU TRY

Divide the polynomials and write the remainder as an expression

a) π‘₯π‘₯2βˆ’5π‘₯π‘₯+7π‘₯π‘₯βˆ’2

=

b) π‘₯π‘₯3βˆ’4π‘₯π‘₯2βˆ’6π‘₯π‘₯+4

π‘₯π‘₯βˆ’1 =

Page 26: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

236

3. Polynomial division with missing terms Sometimes when dividing with polynomials, there may be a missing term in the dividend. We do not ignore the term, we just write in 0 as the coefficient.

MEDIA LESSON Polynomial division with missing terms (Duration 5:00)

View the video lesson, take notes and complete the problems below

Divide polynomials – Missing terms The exponents must ___________________________________.

If one is missing, we will add ___________________________________________.

Example 1: 3π‘₯π‘₯3βˆ’50π‘₯π‘₯+4

π‘₯π‘₯βˆ’4

Example 2: 2π‘₯π‘₯3+4π‘₯π‘₯2+9

π‘₯π‘₯+3

YOU TRY

a) 2π‘₯π‘₯3βˆ’4π‘₯π‘₯+42

π‘₯π‘₯+3=

b) 3π‘₯π‘₯3βˆ’3π‘₯π‘₯2+4

π‘₯π‘₯βˆ’3 =

Page 27: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

237

EXERCISE Evaluate the expression for the given value. Show your work.

1. βˆ’π‘Žπ‘Ž3 βˆ’ π‘Žπ‘Ž2 + 6π‘Žπ‘Ž βˆ’ 21 when π‘Žπ‘Ž = βˆ’4 2. π‘šπ‘š2 βˆ’ 3π‘šπ‘š βˆ’ 11 when π‘šπ‘š = βˆ’6

3. π‘šπ‘š3 βˆ’ 7π‘šπ‘š2 + 15π‘šπ‘š βˆ’ 20 when π‘šπ‘š = 2 4. π‘šπ‘š3 βˆ’ 9π‘šπ‘š2 + 23π‘šπ‘š βˆ’ 21 when π‘šπ‘š = 5

5. βˆ’5π‘šπ‘š4 βˆ’ 11π‘šπ‘š3 βˆ’ 9π‘šπ‘š2 βˆ’ π‘šπ‘š βˆ’ 5 when π‘šπ‘š = 2 6. π‘₯π‘₯4 βˆ’ 5π‘₯π‘₯3 βˆ’ π‘₯π‘₯ + 13 when π‘₯π‘₯ = 1

7. π‘₯π‘₯2 + 9π‘₯π‘₯ + 23 when π‘₯π‘₯ = βˆ’3 8. βˆ’π‘₯π‘₯3 + π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 11 when π‘₯π‘₯ = 6

9. βˆ’π‘₯π‘₯4 βˆ’ 6π‘₯π‘₯3 + π‘₯π‘₯2 βˆ’ 24 when π‘₯π‘₯ = βˆ’1 10. π‘šπ‘š4 + π‘šπ‘š3 + 2π‘šπ‘š2 + 13π‘šπ‘š + 5 when π‘šπ‘š = 3

Simplify. Write the answer in standard form. Show your work.

11. (5𝑝𝑝 βˆ’ 5𝑝𝑝4) βˆ’ (8𝑝𝑝 βˆ’ 8𝑝𝑝4) 12. (3π‘šπ‘š2 βˆ’ π‘šπ‘š3) βˆ’ (2π‘šπ‘š3 βˆ’ 7π‘šπ‘š2)

13. (8π‘šπ‘š + π‘šπ‘š4)βˆ’ (3π‘šπ‘š βˆ’ 4π‘šπ‘š4) 14. (1 + 5𝑝𝑝3) βˆ’ (1 βˆ’ 8𝑝𝑝3)

15. (5π‘šπ‘š4 + 6π‘šπ‘š3) + (8 βˆ’ 3π‘šπ‘š3 βˆ’ 5π‘šπ‘š4) 16. (3 + 𝑏𝑏4) + (7 + 2𝑏𝑏 + 𝑏𝑏4)

17. (8π‘₯π‘₯3 + 1) βˆ’ (5π‘₯π‘₯4 βˆ’ 6π‘₯π‘₯3 + 2) 18. (2π‘Žπ‘Ž + 2π‘Žπ‘Ž4) βˆ’ (3π‘Žπ‘Ž2 βˆ’ 6π‘Žπ‘Ž + 3)

19. (4𝑝𝑝2 βˆ’ 3 βˆ’ 2𝑝𝑝) βˆ’ (3𝑝𝑝2 βˆ’ 6𝑝𝑝 + 3) 20. (4𝑏𝑏3 + 7𝑏𝑏2 βˆ’ 3) + (8 + 5𝑏𝑏2 + 𝑏𝑏3)

21. (3 + 2π‘šπ‘š2 + 4π‘šπ‘š4) + (π‘šπ‘š3 βˆ’ 7π‘šπ‘š2 βˆ’ 4π‘šπ‘š4) 22. (π‘šπ‘š βˆ’ 5π‘šπ‘š4 + 7) + (π‘šπ‘š2 βˆ’ 7π‘šπ‘š4 βˆ’ π‘šπ‘š)

23. (8π‘Ÿπ‘Ÿ4 βˆ’ 5π‘Ÿπ‘Ÿ3 + 5π‘Ÿπ‘Ÿ2) + (2π‘Ÿπ‘Ÿ2 + 2π‘Ÿπ‘Ÿ3 βˆ’ 7π‘Ÿπ‘Ÿ4 + 1)

24. (6π‘₯π‘₯ βˆ’ 5π‘₯π‘₯4 βˆ’ 4π‘₯π‘₯2)βˆ’ (2π‘₯π‘₯ βˆ’ 7π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯4 βˆ’ 8) βˆ’ (8 βˆ’ 6π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯4)

Multiply and simplify. Show your work

25. 6(𝑝𝑝 βˆ’ 7) 26. 5π‘šπ‘š4(4π‘šπ‘š + 4)

27. (8𝑏𝑏 + 3)(7𝑏𝑏 βˆ’ 5) 28. (3𝑣𝑣 βˆ’ 4)(5𝑣𝑣 βˆ’ 2)

29. (5π‘₯π‘₯ + 𝑦𝑦)(6π‘₯π‘₯ βˆ’ 4𝑦𝑦) 30. (7π‘₯π‘₯ + 5𝑦𝑦)(8π‘₯π‘₯ + 3𝑦𝑦)

31. (6π‘šπ‘š βˆ’ 4)(2π‘šπ‘š2 βˆ’ 2π‘šπ‘š + 5) 32. (8π‘šπ‘š2 + 4π‘šπ‘š + 6)(6π‘šπ‘š2 βˆ’ 5π‘šπ‘š + 6)

33. 3(3π‘₯π‘₯ βˆ’ 4)(2π‘₯π‘₯ + 1) 34. 7(π‘₯π‘₯ βˆ’ 5)(π‘₯π‘₯ βˆ’ 2)

35. (6π‘₯π‘₯ + 3)(6π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯ + 4) 36. (5π‘˜π‘˜2 + 3π‘˜π‘˜ + 3)(3π‘˜π‘˜2 + 3π‘˜π‘˜ + 6)

37. (2π‘Žπ‘Ž2 + 6π‘Žπ‘Ž + 3)(7π‘Žπ‘Ž2 βˆ’ 6π‘Žπ‘Ž + 1) 38. 3π‘šπ‘š2(6π‘šπ‘š + 7)

39. (7𝑒𝑒2 + 2𝑒𝑒 βˆ’ 3)(𝑒𝑒2 + 4) 40. 3π‘₯π‘₯2(2π‘₯π‘₯ + 3)(6π‘₯π‘₯ + 9)

Find each product by applying the special products formulas. Show your work

41. (π‘₯π‘₯ + 8)(π‘₯π‘₯ βˆ’ 8) 42. (1 + 3𝑝𝑝)(1 βˆ’ 3𝑝𝑝) 43. (1 βˆ’ 7π‘šπ‘š)(1 + 7π‘šπ‘š)

44. (5π‘šπ‘š βˆ’ 8)(5π‘šπ‘š + 8) 45. (4π‘₯π‘₯ + 8)(4π‘₯π‘₯ βˆ’ 8) 46. (4𝑦𝑦 βˆ’ π‘₯π‘₯)(4𝑦𝑦 + π‘₯π‘₯)

47. (4π‘šπ‘š βˆ’ 2π‘šπ‘š)(4π‘šπ‘š + 2π‘šπ‘š) 48. (6π‘₯π‘₯ βˆ’ 2𝑦𝑦)(6π‘₯π‘₯ + 2𝑦𝑦) 49. (π‘Žπ‘Ž + 5)2

Page 28: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

238

50. (π‘₯π‘₯ βˆ’ 8)2 51. (𝑝𝑝 + 7)2 52. (7 βˆ’ 5π‘šπ‘š)2

53. (5π‘šπ‘š βˆ’ 3)2 54. (5π‘₯π‘₯ + 7𝑦𝑦)2 55. (2π‘₯π‘₯ + 2𝑦𝑦)2

56. (5 + 2π‘Ÿπ‘Ÿ)2 57. (2 + 5π‘₯π‘₯)2 58. (4𝑣𝑣 βˆ’ 7)(4𝑣𝑣 + 7)

59. (π‘šπ‘š βˆ’ 5)(π‘šπ‘š + 5) 60. (4π‘˜π‘˜ + 2)2 61. (π‘Žπ‘Ž βˆ’ 4)(π‘Žπ‘Ž + 4)

62. (π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 3) 63. (8π‘šπ‘š + 5)(8π‘šπ‘š βˆ’ 5) 64. (2π‘Ÿπ‘Ÿ + 3)(2π‘Ÿπ‘Ÿ βˆ’ 3)

65. (𝑏𝑏 βˆ’ 7)(𝑏𝑏 + 7) 66. (7π‘Žπ‘Ž + 7𝑏𝑏)(7π‘Žπ‘Ž βˆ’ 7𝑏𝑏) 67. (3𝑦𝑦 βˆ’ 3π‘₯π‘₯)(3𝑦𝑦 + 3π‘₯π‘₯)

68. (1 + 5π‘šπ‘š)2 69. (𝑣𝑣 + 4)2 70. (1 βˆ’ 6π‘šπ‘š)2

71. (7π‘˜π‘˜ βˆ’ 7)2 72. (4π‘₯π‘₯ βˆ’ 5)2 73. (3π‘Žπ‘Ž + 3𝑏𝑏)2

74. (4π‘šπ‘š βˆ’ π‘šπ‘š)2 75. (8π‘₯π‘₯ + 5𝑦𝑦)2 76. (π‘šπ‘š βˆ’ 7)2

77. (8π‘šπ‘š + 7)(8π‘šπ‘š βˆ’ 7) 78. (𝑏𝑏 + 4)(𝑏𝑏 βˆ’ 4) 79. (7π‘₯π‘₯ + 7)2 Divide: Show your work

80. 20π‘₯π‘₯4+π‘₯π‘₯3+2π‘₯π‘₯2

4π‘₯π‘₯3 81.

5𝑛𝑛4+𝑛𝑛3+40𝑛𝑛2

5𝑛𝑛 82.

12π‘₯π‘₯4+24π‘₯π‘₯3+3π‘₯π‘₯2

6π‘₯π‘₯

83. 5π‘₯π‘₯5+18π‘₯π‘₯3+4π‘₯π‘₯ + 9

9π‘₯π‘₯ 84.

3π‘˜π‘˜4+4π‘˜π‘˜2+28π‘˜π‘˜2

85. 10𝑛𝑛4+5𝑛𝑛3+2𝑛𝑛2

𝑛𝑛2

Divide and write your remainder as an expression. Show your work

86. 𝑣𝑣2βˆ’2π‘£π‘£βˆ’89π‘£π‘£βˆ’10

87. π‘₯π‘₯2βˆ’2π‘₯π‘₯βˆ’71

π‘₯π‘₯+8

88.

𝑛𝑛2+13𝑛𝑛+32𝑛𝑛+5

89. 10π‘₯π‘₯2βˆ’19π‘₯π‘₯+9

10π‘₯π‘₯βˆ’9

90.

π‘Žπ‘Ž2βˆ’4π‘Žπ‘Žβˆ’38π‘Žπ‘Žβˆ’8

91. 45𝑝𝑝2βˆ’56𝑝𝑝+19

9π‘π‘βˆ’4

92. 27𝑏𝑏2+87𝑏𝑏+35

3𝑏𝑏+8

93.

4π‘Ÿπ‘Ÿ2βˆ’π‘Ÿπ‘Ÿβˆ’14π‘Ÿπ‘Ÿ+3

94. 𝑛𝑛2βˆ’4π‘›π‘›βˆ’2

95. π‘₯π‘₯3βˆ’26π‘₯π‘₯βˆ’41

π‘₯π‘₯+4

96.

4π‘₯π‘₯2βˆ’4π‘₯π‘₯+22π‘₯π‘₯βˆ’5

97. π‘Žπ‘Ž3+5π‘Žπ‘Ž2βˆ’4π‘Žπ‘Žβˆ’5

π‘Žπ‘Ž+7

98. 𝑝𝑝3+5𝑝𝑝2+3π‘π‘βˆ’5

𝑝𝑝+1

99. π‘₯π‘₯3βˆ’46π‘₯π‘₯+22

π‘₯π‘₯+7

100.

2π‘₯π‘₯3+12π‘₯π‘₯2βˆ’202π‘₯π‘₯+6

101. 4𝑣𝑣3+4𝑣𝑣+194𝑣𝑣+12

102. π‘Ÿπ‘Ÿ3βˆ’π‘Ÿπ‘Ÿ2βˆ’16π‘Ÿπ‘Ÿ+8

π‘Ÿπ‘Ÿβˆ’4

103.

12𝑛𝑛3+12𝑛𝑛2βˆ’15π‘›π‘›βˆ’42𝑛𝑛+3

Page 29: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

239

CHAPTER REVIEW KEY TERMS AND CONCEPTS

Look for the following terms and concepts as you work through the workbook. In the space below, explain the meaning of each of these concepts and terms in your own words. Provide examples that are not identical to those in the text or in the media lesson.

Product rule of exponents

Quotient rule of exponents

Power rule of a product

Power rule of a quotient

Power rule of a Power

Zero power rule

Negative exponent rule

Reciprocal of negative rule

Negative power of a quotient rule

Scientific notation

Standard notation (Decimal notation)

Polynomial

Monomial

Page 30: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

240

Binomial

Trinomial

Leading Term

Leading Coefficient

Degree of a Polynomial

Constant Term


Recommended