+ All Categories
Home > Documents > Chapter III SINUSOIDAL OSCILLATORS

Chapter III SINUSOIDAL OSCILLATORS

Date post: 16-Apr-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
29
CONTENTS: 1. Introduction 2. The Barkhausen criterion for oscillation 3. The phase shift oscillator 4. The Colpitts oscillator 5. Quadrature oscillators 6. Wien bridge oscillators 7. Cross-coupled oscillators Chapter III SINUSOIDAL OSCILLATORS Chapter III - EEL 7300 1
Transcript
Page 1: Chapter III SINUSOIDAL OSCILLATORS

CONTENTS:

1. Introduction

2. The Barkhausen criterion for oscillation

3. The phase shift oscillator

4. The Colpitts oscillator

5. Quadrature oscillators

6. Wien bridge oscillators

7. Cross-coupled oscillators

Chapter III

SINUSOIDAL OSCILLATORS

Chapter III - EEL 7300 1

Page 2: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction

Types of oscillators:

• Sinusoidal oscillators produce (nearly) sinusoidal outputs

• Relaxation oscillators operate by alternately charging and

discharging an energy storage element (capacitor)

Oscillator: signal-generating circuit which produces its

own periodic signal.

Applications:

▪ Clock generation for timing

▪ Frequency synthesis

▪ Voltage/current/temperature/radiation-controlled oscillators

▪ Ring oscillators for IC technology characterization

▪ Carrier generation for FM/AM transmission Chapter III - EEL 7300 2

Page 3: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction"A picture of the water clock

created by Su Sung.” 1094

Water clock of the

Ancient Egyptian

“Clepsydra”

The Science of Timekeeping, Application Note 1289, Hewlett Packard

Chapter III - EEL 7300 3

Page 4: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction

https://www.youtube.com/watch?v=7otHVM-ZCEM&t=50s

Water clock (clepsydra) – São Paulo– Shopping Iguatemi

also in Porto Alegre– Shopping Iguatemi

https://iguatemi.com.br/saopaulo/contato

Dear students

Please, send a message to

asking the administrator of the Shopping Iguatemi website to

post a video of the water clock.

https://www.youtube.com/watch?v=rjiHY7pqPHk

Chapter III - EEL 7300 4

Page 5: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction

E. Vittoz, Low-Power Crystal and MEMS Oscillators – The Experience of

Watch Developments, Springer, 2010.

Time duration for modern science:

(femto) fs (10-15 s) to

13.799±0.021)×109 years (~440 x 1015 s)

Accuracy of atomic clock ~ 10-14 =10 parts/quadrillion

Achievable accuracy of purely

electronic circuits ~ 10-3

Error of ~1.5 minute/day

Wristwatches need an

accuracy of ~ 10-6 (1 ppm)

Error of ~30 seconds/year

Wristwatch consumption ~ 0.1 - 1 W

wikipedia

Lithium Coin Cell - CR2016: 3 V 90 mAh

Question: How many years would last the CR2016 for 1 W-power

wristwatch? 31 years!!!!!! (Optimistic assumption that the total energy

of the cell can be used)

Chapter III - EEL 7300 5

Page 6: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction

A. Sheikholeslami, “A capacitor Analogy – Part 3,” IEEE Solid-State Circuits Mag., pp. 7-8, 51, Winter 2017.

Challenge: Assume R=0, V1(t=0)=1 V (left capacitor), V2(t=0)=0 V (right

capacitor). Draw the waveforms of I(t), V1(t), V2(t), and VL(t) and of the energy

in each component for C= 1 F and L = 1 H.

Liquid Oscillator & Electrical Oscillator

1

Chapter III - EEL 7300 6

Page 7: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction

E. Vittoz, Low-Power Crystal and MEMS Oscillators – The Experience

of Watch Developments, Springer, 2010.

Quartz resonator

Chapter III - EEL 7300 7

Page 8: Chapter III SINUSOIDAL OSCILLATORS

3.1 Introduction

E. Vittoz, Low-Power Crystal and MEMS Oscillators – The Experience of

Watch Developments, Springer, 2010.wikipedia

Crystal oscillators

The Pierce oscillator

1. Very accurate frequency

2. Low loss

3. But the crystal cannot be integrated

Implementation of a CMOS oscillator

Chapter III - EEL 7300 8

VB

0

Page 9: Chapter III SINUSOIDAL OSCILLATORS

3.2 The Barkhausen criterion for oscillation

A feedback

amplifier

xs Amplifier A

Frequency-

selective

network

xo

xf

( )( )

1 ( ) ( )

( ) ( ) ( ) : loop gain

of

s

x A sA s

x A s s

L s A s s

= =−

=

o i

i s f

f o

x Ax

x x x

x x

=

= +

=

xi

( )( ) ( ) ( ) ( ) jφ ωA jω β jω A jω β jω e=

Chapter III - EEL 7300 9

( ) & ( ) A s s are, in most cases, stable functions (poles in the complex left half-plane).

, however, can give rise to poles in the complex right half-plane! 1 ( ) ( )A s s−

Page 10: Chapter III SINUSOIDAL OSCILLATORS

3.2 The Barkhausen criterion for oscillation

xs Amplifier A

Frequency-

selective

network

xo

xf

xi( )( ) ( )

f jφ ω

s

xA jω β jω e

x=

Chapter III - EEL 7300 10

Loop gain

The Barkhausen criterion for oscillation is:

( )

( )

2 ;

1

osc

osc

φ ω ω πN N

Aβ jω a

= =

=

xs(t) 1 a<1

txf(t)

a=1

a>1

t

t

Response to a sine wave: In-phase signals

add constructively. Let us use superposition.

The response to cos(t) is acos(t);

The response to acos(t) is a2cos(t);

The response to a2cos(t)is a3cos(t)…

The superposition of all these signals is:

( )2 3 coscos 1 ... 1;

1

1

f

f

ωtx ωt a a a a

a

x a

= + + + + = −

if

diverges if

Page 11: Chapter III SINUSOIDAL OSCILLATORS

3.2 The Barkhausen criterion for oscillation

( )( )

1 ( ) ( )

of

s

x A sA s

x A s s= =

− xs Amplifier A

Frequency-

selective

network

xo

xf

xi

Let us consider the frequency 2 for which (2)=2N, N

( )

( )

2

2

1

1

πN

πN

Aβ jω

Aβ jω

stable Af (j2) finite

oscillator Af (j2) =

(unstable)

Loop gain

The Barkhausen criterion for oscillation

( )2 1;πNAβ jω N

Chapter III - EEL 7300 11

The magnitude of the oscillations does not grow indefinitely, but is limited by some

amplitude-limiting mechanism (opamp saturation, nonlinear voltage gain, etc)

Page 12: Chapter III SINUSOIDAL OSCILLATORS

3.2 The Barkhausen criterion for oscillation

( )( )

1 ( ) ( )= =

of

s

x A sA s

x A s s

http://wikieducator.org/Sinusoidal_Oscillator

What about the start

up of the oscillator?

▪Thermal noise

▪Switching noise

▪Stored energy (L, C)

Chapter III - EEL 7300 12

Page 13: Chapter III SINUSOIDAL OSCILLATORS

3.3 The phase shift oscillator

What is this for?

Vi Vo

( )( )

( ) ( )

( )

2

2;

1

180 arctan

o

i

o

V jH j

V j RC

j RC

=+

= −

http://www.allaboutcircuits.com/worksheets/opamp10.html

Chapter III - EEL 7300 13

( )j ( )H j

180

120

90

[o]

2

1

3RC = RC

-20 dB/decade

Page 14: Chapter III SINUSOIDAL OSCILLATORS

3.3 The phase shift oscillator

( )( )

( ) ( )

( )

2

2;

1

180 arctan

o

i

o

V jH j

V j RC

j RC

= =+

= −

http://www.allaboutcircuits.com/worksheets/opamp10.html

Chapter III - EEL 7300 14

( )3 j ( )

3

H j

540

360

270

[o]

8

1

3RC = RC

-60 dB/decadeSingle

stage

( )( )

( ) ( )

3

3

2

2;

1

3 3 180 arctano

H jRC

j RC

= +

= −

3 stages

( )3

H j

3=RC

Loop gain

at

3

1exp( 2 / 3) 1= =j

Errors in R, C, opamp can result in gain <1

at the frequency for which =2. Solution:

increase slightly the voltage gain

Page 15: Chapter III SINUSOIDAL OSCILLATORS

3.3 The phase shift oscillator

Gain>1

Phase=2/3

Gain1

Phase=2/3

Gain 1

Phase=2/3

Vi Vo

3=RC

Loop gain

at

1 The amplitude of

oscillation tends to

increase without limit,

but the opamp output

voltage is limited Loop gain>1 Loop gain=1

Chapter III - EEL 7300 15

Page 16: Chapter III SINUSOIDAL OSCILLATORS

3.3 The phase shift oscillatorProblem: Determine the

oscillation frequency in terms of R

and C. What is the minimum value

of RF/RG for oscillation? What are

the relative magnitudes of the

signal at the opamps outputs?

Chapter III - EEL 7300 16

( )j ( )H j

0

?

90

[o]

1

?

?oscRC = RC

-20 dB/decade

Page 17: Chapter III SINUSOIDAL OSCILLATORS

3.3 The phase shift oscillator

Chapter III - EEL 7300 17

Page 18: Chapter III SINUSOIDAL OSCILLATORS

3.3 The phase shift oscillator

Chapter III - EEL 7300 18

LIMITER

Problem: Determine the oscillation frequency

in terms of R and C. What is the minimum

value of RF/R for oscillation?

Phase-shift oscillator with a limiter

for amplitude stabilization

Page 19: Chapter III SINUSOIDAL OSCILLATORS

Analysis of a limiter example. Determine the voltage transfer characteristic of

the limiter shown below. Use the ideal model of the diode

Chapter III - EEL 7300 19

+V

─V

Rf=39 k,

R1=10 k,

R2=R5=15 k,

R3=R4=10 k,

V= 12V

( )3 2

2 3 2 3

A O

R RV V v

R R R R= + +

+ +

If vI=0, vO=0, D1 and D2 OFF. Thus,

( )10 15

12 0 4.8 V15 10 15 10

AV = + + =+ +

On the edge of conduction of D1 we have VD1=VA=0, and VD1=0.

( )10 15

12 0 8 V15 10 15 10

A O OV v v= + + = = −+ +

For vO< -8 V (vI> (10/39)8 V) ,

R3 is in parallel with Rf . The

voltage gain becomes

─ (Rf // R3 ) / R1.

iD

vDVON=0

iD

+ -vD

+8 V

─8 V

Page 20: Chapter III SINUSOIDAL OSCILLATORS

(1)

(2)

iD

vDvON

+ -

iD

vD

D1 D2 vo vA vB

OFF OFF -RF/R1 vI

ON OFF (1) -vON

OFF ON (2) vON

3

2 3

2 FI ON

2 3 1

R+V -

R +R

R Rv -v

R +R R

4

4 5

2 FI ON

2 3 1

R-V -

R +R

R Rv <v

R +R R

Problem: Determine the voltage transfer characteristic of the limiter shown

in Fig (a). Use the Von model of the diode

Chapter III - EEL 7300 20

Page 21: Chapter III SINUSOIDAL OSCILLATORS

3.4 The Colpitts oscillator

Colpitts oscillator – simplified analysis (lossless inductor)

Gm+1/R+1/(RB +r)

R=1k

+−

L

C1

C2

I=0

Io=GmVx

Vx

Vo

Vy

1. Open the loop at node VX;

2. Calculate the transfer function Vy/Vx (s);

3. Make s=j;

4. Verify the requirements for oscillation, i.e.

|Vy/Vx(josc)|>1 (Barkhausen criteria)

The AC analysis of the open-loop gain yields

2 1 21 2

1 2

1 2

1;

; / /

osc m

m m B B B

B

C CL G R C C

C C

rG g R R R

R r

= +

= =+

http://www.davidbridgen.com/Colpitts.htm

Chapter III - EEL 7300 21

Page 22: Chapter III SINUSOIDAL OSCILLATORS

3.5 Quadrature oscillators

Quadrature oscillator

Chapter III - EEL 7300 22

Inverting

integrator

Noninverting integrator

Problem:a) What’s the condition for

oscillation of the circuit shown? b) What is the oscillation frequency?c) Assuming equal Rs and Cs,

determine the oscillation frequency in terms of R and C.

d) What’s the condition for the quadrature signals to have equal amplitudes?

Page 23: Chapter III SINUSOIDAL OSCILLATORS

3.6 Wien bridge oscillators

20.3 103(1 1%)

10G

+= = +

Problem: Assuming that VON= 0.6 V, show that the

amplitude of vo is approximately 5.8 V

Chapter III - EEL 7300 23

Problem: Determine the oscillation

frequency in terms of R and C.

Page 24: Chapter III SINUSOIDAL OSCILLATORS

Appendix 3.1 –

The Wien-Bridge oscillator: analysis of the loop gain

1

2

3

R

R1 R2

C

R C

vf

Ao→ vo

1

2

3

vs

Ao→

R1

R2

R C

CR

vf

Z1(s)

Z2(s)

ideal

Chapter III - EEL 7300 24

Page 25: Chapter III SINUSOIDAL OSCILLATORS

vs +

+

vf

vo

feedback

network

(s)

G

1RCs

R)s(Z;

sC

1RCs)s(Z

)s(Z)s(Z

)s(Z)s(

)s(G1

G

v

vA

21

21

2

s

of

+=

+=

+=

−==

2 2 2 2 2 2

2 2 2

2 2 2

sRC GsRCβ(s)= 1-Gβ(s)=1-

s R C +3sRC+1 s R C +3sRC+1

s R C +(3-G)sRC+11-Gβ(s)=

s R C +3sRC+1 → G=3 the circuit oscillates

at RC1o =

If G=3 (R2=2R1) the circuit oscillates at .

To ensure that oscillations will start, R2=2R1+ (roots of

1-G(s) should lie in the RHP).

Note that (s)=1/3 for s=j/RC.

In a practical design, include op amp non-idealities

RC1o =

2

1

RG=1+

R

Chapter III - EEL 7300 25

Page 26: Chapter III SINUSOIDAL OSCILLATORS

Appendix 3.2 – Cross-coupled oscillator

MOSFET model

Chapter III - EEL 7300 26

Page 27: Chapter III SINUSOIDAL OSCILLATORS

Enhanced swing ring

oscillator (ESRO)

VDD=3.7 mVVDD=4.7 mV

Chapter III - EEL 7300 27

App. 3.3 – Enhanced-swing cross-coupled oscillator

Page 28: Chapter III SINUSOIDAL OSCILLATORS

A tough problem: Given the scheme of the Colpitts

oscillator, check whether the formulas below are correct1

2 2 1 2

1 2 1 2

1 2 1 2

1 11;

; ; / /

osc osc

m m m B B B

B

C CL L

C C C C

rG R C C G g R R R

R r

+ = =

+

= =+

R

Chapter III - EEL 7300 28

+−

L

C1

C2

I=0

Io=GmVx

Vx

Vo

Vy

Gm+1/R+1/(RB +r)

R=1k

Page 29: Chapter III SINUSOIDAL OSCILLATORS

David W. Allan, Neil Ashby, Clifford C. Hodge, The Science of Timekeeping Application Note 1289; Hewlett Packard, Online Available at http://www.allanstime.com/Publications/DWA/Science_Timekeeping/TheScienceOfTimekeeping.pdf

A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, Wiley, 2003.

A. S. Sedra and K. C. Smith, Microelectronic Circuits, any edition.

R. C. Jaeger and T. Blalock, Microelectronic Circuit Design, McGraw-Hill, New York, any edition.

R. Mancini (editor-in-chief), Op Amps for Everyone, Texas Instruments.

http://www.ieee-uffc.org/frequency-control/learning-vig-tut.asp

Chapter III - EEL 7300 29


Recommended