+ All Categories
Home > Documents > Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and...

Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and...

Date post: 12-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
46
385 Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS APPLIED TO PHARMACEUTICAL SOLID FORMS Danièle Giron Contents 8.1. INTRODUCTION ...................................................................................................................................... 387 8.2. BASIC PRINCIPLES OF THERMAL METHODS AND THEIR IMPORTANCE IN PHARMACEUTICAL ANALYSIS ......................................................................................................... 388 8.2.1. Thermal analysis methods ................................................................................................... 388 8.2.2. Microcalorimetry...................................................................................................................... 388 8.2.3. Overview of applications....................................................................................................... 388 8.3. FACTORS TO BE CONSIDERED IN THE INSTRUMENTATION............................................ 391 8.3.1. Heat flux differential scanning calorimetry (DSC) and power compensation DSC ................................................................................................................... 391 8.3.2. Thermogravimetry .................................................................................................................. 397 8.4. WHAT ARE THE AREAS OF APPLICATION FOR THE STUDY OF SOLID FORMS? ...... 400 8.4.1. Thermodynamic data.............................................................................................................. 400
Transcript
Page 1: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

385

Chapter

THERMALANALYSISANDCALORIMETRICMETHODSAPPLIEDTOPHARMACEUTICALSOLIDFORMS

DanièleGiron

Contents 

8.1.  INTRODUCTION......................................................................................................................................387 

8.2.  BASICPRINCIPLESOFTHERMALMETHODSANDTHEIRIMPORTANCEINPHARMACEUTICALANALYSIS.........................................................................................................388 8.2.1.  Thermalanalysismethods...................................................................................................388 8.2.2.  Microcalorimetry......................................................................................................................388 8.2.3.  Overviewofapplications.......................................................................................................388 

8.3.  FACTORSTOBECONSIDEREDINTHEINSTRUMENTATION............................................391 8.3.1.  Heatfluxdifferentialscanningcalorimetry(DSC)andpower

compensationDSC...................................................................................................................391 8.3.2.  Thermogravimetry..................................................................................................................397 

8.4.  WHATARETHEAREASOFAPPLICATIONFORTHESTUDYOFSOLIDFORMS?......400 8.4.1.  Thermodynamicdata..............................................................................................................400 

Page 2: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

386

8.4.1.1.  Twopolymorphicsolidphases.........................................................................400 8.4.1.2.  Thephasediagramsofsalts,solvatesandhydrates...............................404 8.4.1.3.  Amorphousstate.....................................................................................................407 

8.4.2.  Puritydetermination..............................................................................................................408 8.4.3.  Kineticaspects...........................................................................................................................410 8.4.4.  Sorptionisothermsandhydrates.....................................................................................413 8.4.5.  Combinedtechniques.............................................................................................................416 

8.4.5.1.  CombinationofDSCandXRD............................................................................416 8.4.5.2.  Thermogravimetry‐massspectrometry(TG‐MS)and

thermogravimetry‐infraredspectroscopy(TG‐IR).................................416 8.4.6.  Isothermalmicrocalorimetryandsolutioncalorimetry.........................................421 

8.4.6.1.Microcalorimetry....................................................................................................422 8.4.6.2.  Solutioncalorimetry..............................................................................................424 

8.5.  SOMEEXAMPLESOFAPPLICATIONS...........................................................................................424 8.5.1.  Theselectionoftherightform...........................................................................................424 8.5.2.  SensitivityofDSC.....................................................................................................................425 8.5.3.  Disappearingsolvates............................................................................................................426 8.5.4.  Selectionofthebestformconsideringthepharmaceuticalenvironment.....426 

8.6.  CONCLUSION...........................................................................................................................................428 

REFERENCES......................................................................................................................................................428 

Page 3: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

387

8.1. INTRODUCTION

Thermal analysis techniques, in which a physical property is monitored asfunction of temperature or time while the analyte is heated or cooled undercontrolled conditions, are fundamental techniques for the characterisation ofdrug substances and products. They are fundamental as processing or agingconditions may be simulated, and because the methods give access tothermodynamicdata.Duetothedifferentinformationconveyed,thermalanalysismethodsarecomplementarytootheranalyticaltechniques,suchasspectroscopy,chromatography, melting point determination, loss on drying, assays foridentification, purity and quantitation. Thermal analysis techniques are basicmethods in the field of solid state analysis, in physical and chemicalcharacterisationof pure substances, aswell as formixtures.They find thebestapplication inpre‐formulation,processingandcontrolof thedrugproduct.Theintroduction of sophisticated, automated, robust and sensitive instrumentsconsiderably increased the advantages of these methods. New horizons havebeenopenedwiththeavailabilityofcombinedtechniquesandmicrocalorimetry,anemergingtechniquewhichisnowusedroutinely.

Sincechangesintemperatureandmoisturemightinducethechangesinthesolidstate,processingandstoragemayhaveaconsiderableeffectonactivity,toxicityandstabilityof compounds.Thepharmaceutical industry is facedwith thenewchallenges of quicker development and higher performance, in terms oftechnology, reliability and up‐scale in the international current GoodManufacturing Practise (cGMP) environment. Current requirements set by theInternationalConferenceofHarmonisation(ICH)forthecharacterisationandthequantitation of polymorphism in new entities [1], re‐enforce the position ofthermalanalysisandmicrocalorimetrictechniques,whichcandeliverthecorrectinformation concerning the thermodynamic relationships between phases, forthe proper selection of salt and crystal forms. The amorphous state is betterunderstood and determinable. Differential scanning calorimetry (DSC) purityanalysis isa fast,absolute,orthogonalpurity technique fororganiccompounds.Microcalorimetry, DSC and thermogravimetry (TG) are advantageous in theprocessofdesignofdrugproducts.

Page 4: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

388

8.2. BASICPRINCIPLESOFTHERMALMETHODSANDTHEIRIMPORTANCEINPHARMACEUTICALANALYSIS

8.2.1. Thermalanalysismethods

Whenamaterialisheatedorcooled,thereisachangeinitsstructureorcompo‐sition.Thesetransformationsareconnectedwithaheatexchange.Thefirstappli‐cationofthermalanalysiswaspresentedbyLeChatelierin1887[2].Indiffere‐ntialthermalanalysis(DTA),thetemperatureinducedinthesampleismeasured.DSC,whichdetermines theheat flow intoandoutof the sample, aswellas thetemperatureofthethermalphenomenonduringacontrolledchangeoftempera‐ture,isthebasicthermaltechniqueusedforsolidforms.Thermalanalysistechni‐quesalsocoverallothertechniquesinwhichaphysicalpropertyismonitoredasa function of temperature or time,while the sample is heated or cooled undercontrolledconditions.Forthesolidstate,thephasediagramrulesforsinglecom‐pounds,aswellasformixturesofseveralcomponents,havetobeconsidered.Themostcommonmethodsusedinsolidstatecharacterisationare:DSCandTG,andtheyareoftencombinedwithmassspectrometry,X‐raydiffraction(XRD),IR,Raman spectroscopy and microscopy. Books and reviews dealing with theprinciples,instrumentationandapplicationsaregiveninreferences[3‐10].Specificapplications of thermal analysis and calorimetric methods for pharmaceuticalpolymorphismaregiveninreferences[11‐19].

8.2.2. Microcalorimetry

A calorimeter measures the heat flow into or out of a sample, whereas adifferentialcalorimetermeasurestheheatofasamplerelativetoareference.Adifferentialscanningcalorimetercombinesthesetwomethods,andadditionally,heatsthesamplewithalineartemperatureramp.

Microcalorimetry in isothermalmode is a growing technique, complementary toDSC for the characterisation ofpharmaceuticals [20]. Larger sample volume andhighersensitivitymeanthatphenomenaofverylowenergy,immeasurablebyDSC,may be studied. The output of the instrument is measured by the rate of heatchange(dq/dt),asafunctionoftime,withasensitivitybetterthan0.1W.Micro‐calorimetrycanbeappliedtoisolatedsystemsinspecificatmospheres,orforbatchmode,wherereactantsaremixed in thecalorimeter.Themostusefulapplicationcurrently, thanks to high throughput microcalorimeters [21], is the routinequantitationofundesirableamorphouscontentdownto0.1‐0.3%[22‐25].

Solutioncalorimetrycanbeusedinadiabaticorisoperibolmodesinmicrocalori‐meters at constant temperature. This method is used for polymorphic inter‐pretationandforquantitation[12].

8.2.3. Overviewofapplications

The processing of the drug substances and drug products involves solvent(s),temperatureandpressurechanges,aswellasmechanicalstressand,asaresult,

Page 5: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

389

differentsolidphasesmaycoexistinthedrugproduct.Organicsubstancesshowsupersaturationbehaviourandunstablesolidphaseswhichshouldnotexistatadefined temperature,pressureandhumidity,butmaybehave likestable forms.Thesesolidmetastablephases,obtainedoutsideoftheirdomainsofstability,willconvert to their thermodynamically stable forms at given temperatures, pres‐suresandrelativehumidities, in response tochanges inenvironmental conditi‐ons,processing,orovertime.Theseconversions,drivenbythermodynamics,aregoverned by kinetics and are influenced by impurities, particle size, crystaldefectsandpresenceofseeds.

The market withdrawal of Ritonavir in 1998, one year after its launch, wascausedbyithavingarateofdissolutionthatwasfartooslow,duetoaninsolublestable polymorph not found during development [26]. The current focus ofresearch in the solid‐state area is tounderstand theoriginofpolymorphismatthemolecularlevel,andtopredictandpreparethemoststableformatthestartofdevelopment.Theselectionofametastable formshouldresult fromtargetedchoice,ratherthanfromchance.Theadvantageofthermalandmicrocalorimetrictechniquesisthattheirsensitivityallowsasamplesizeofconsiderablylessthan1mg.Table8.1summariestheanalysismethodsdetailed,includingcoupledandcombinedtechniques.

Table8.1.Mainthermalanalysistechniquesandcalorimetry

Technique Measurements Thermalevents

DifferentialScanningCalorimetry(DSC)

DerivativeDSC(DDSC)Micro‐DSCHyper‐DSC

Heatflowintoandoutofthesampleasa

functionoftemperature/time

Everythermaleventassociatedwithenergychangeduringheatingorcooling

melting,boiling,sublimationandcrystallisationglasstransition

polymorphicphasetransitiondesolvation,dehydrationandisomerisation

complexphasetransitionthermaldegradation

mixtures;phasediagramspuritydeterminationoxidation,catalysischemicalreactionkineticanalysis

couplingwithTG,microscopyorX‐ray

ModulatedDSC(MDSC) Totalheatflow,irreversibleand

reversibleheatflow

everytransitiondistinctionbetweenoverlappingthermalevents

studyofrelaxationofglasstransition

Thermogravimetry(TG)Derivative

thermogravimetry(DTG)

Changeinsamplemassasafunctionof

temperatureand/ortime

Everychangeofmassdesolvation,dehydration

sorption‐desorptionisothermsdegradation

compositionalanalysischemicalreactionkineticanalysis

dryingoptimisationcouplingwithDSC,GC,MS,IR,Raman

Page 6: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

390

Technique Measurements Thermalevents

ThermomechanicalAnalysis(TMA),

Thermodilatometry

Dimensionalchangesduringcompression,penetration,tension,flexureortorsionversustemperature

Mechanicalproperties,dimensionsexpansion,dilatationglasstransition

gelification,swelling

Dynamicmechanicalanalysis(DMA)

Dimensionsversusfrequencyandtemperature

Youngmoduluspolymeranalysis

ThermallyStimulatedCurrent(TSC)

DielectricThermalAnalysis(DETA)

Depolarisationcurrentcurveversustemperature

Dielectricconstant

relaxationalphaandbetaofglassesquantificationofamorphous

ThermalConductivity(TC)

Thermalconductivity thermalconductivity,thermaldiffusivityonlineanalysisofprocesses

Thermomicroscopy Microscopicalobservationunder

differentmodesoflightilluminationduringheatingorcooling

melting,crystallisation,evaporation..eutecticformationsolubilitystudies

crystallinityusingpolarisedlightmorphologicalstudies

TG‐MS,TG‐Raman,TG‐IR CoupledspectroscopicanalysiswithTG

analysisofvolatilesinvestigationofdryingprocessesinvestigationofsolvates,hydratesinterpretationofthermalevents

Evolvedgasanalysis(EGA)

TGcoupledwithGCandpossiblyMS,IR

Identificationandquantificationofvolatilecomponents

Combinedspectroscopicmethods

Programmedheatingcellwithspectroscopicanalysis(IR,Raman,NMR,Terahertz))

spectroscopicdataofphasesobtainedinsituduringcombinedwithThermomicroscopyinterpretationofthermalevents

TemperatureresolvedXPRDor

coupledDSC/XRD

X‐raypowderdiffractionversustemperature

interpretationofthermaleventsidentificationofphasesinsitu

XPRDofunstableformscombinedwithmodelling

Microcalorimetry

HeatfluxoutofthesampleinIsothermal

mode

heatofsolutionheatoftransformation,heatofreaction

quantificationofamorphousstabilityprediction

kinetic

Nano‐DSC Heatfluxoutofthesample

Speciallydesignedforlifescience,foldingofproteins,siRNAusedforqualitycontrolinbiologicalscience

CalorimetryAcceleratedcalorimetryReactioncalorimetry

Heatmeasurement safetysimulationofprocessessimulationreactors

Titrationcalorimetry Heatmeasurementduringadditionof

reactant

bindingconstantstudyofmolecularbindingofproteins,nativecells

drug‐cellsinteractions

Micro‐thermalanalysis Heatfluxandatomicforcemicroscopy

Topography,withconductivityandthermaldiffusivityinterfacesstudies

Page 7: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

391

8.3. FACTORSTOBECONSIDEREDINTHEINSTRUMENTATION

Moderninstrumentsusedforthermalanalysisusuallyconsistoffourparts:

‐ thesampleandsampleholder,‐ sensors to detect and measure a property of the sample, as well as thetemperature,

‐ asystemwithintheinstrumentthatallowstheexperimentalparameterstobecontrolled,

‐ acomputertocontroldatacollectionandprocessing.

8.3.1. Heatfluxdifferentialscanningcalorimetry(DSC)andpowercompensationDSC

DSCmeasures thetemperatureand theheat flowassociatedwithtransitions inmaterials,asafunctionoftimeandtemperature,inacontrolledatmosphereandrelativetoareference.Thesemeasurementsprovidequantitativeandqualitativeinformation about physical and chemical changes that involve endothermic orexothermicprocesses,orchangesinheatcapacity.

TheprincipleofDSCisasfollows:twoovensareheatedinalinearmanner.Oneovencontainsthesampleinapan;theothercontainsanemptypanasabalance,termedareferencepan.Ifnothingoccurstothesamplethenthesamplepanandreferencepanareat the same temperatureduringheating. If a change, suchasmelting occurs in the sample, then energy is used by the sample and thetemperature remains constant in the sample pan during melting. Therefore, adifferenceoftemperatureoccursbetweenthesamplepanandreferencepan.

Two methods of measurement are used by manufacturers. The first method istermed "heat flux DSC", in which the instrument measures the temperaturedifference(DTA).Throughcalibration,thistemperaturedifferenceistransformedintoheatflow(dq/dt).Theinstrumentcontainsafurnace,whichisablockforbothsample and reference cells. The sampleholder contains the samplepan, and thereferencepanisconnectedbyalowresistanceheatflowpath;thermocouplesareusedfordeterminingthetemperaturedifferencebetweensampleandreference.

Inthesecondmethod,whichistermed"powercompensationDSC",twoindividualheaters are used in order to monitor the individual heating rates of the twoindividual ovens. A system controls the temperature difference between sampleandreference.Ifanydifferenceisdetected,thespecificheaterwillbecorrectedsothatthetemperatureiskeptthesameinbothpans.Thatis,whenanendothermicor exothermic process occurs, the instrument delivers the compensation energywhichmustbegiveninordertomaintainequaltemperaturesinbothpans.

In the firstmethod (heat flux DSC), temperature is primarilymeasured, in thesecond case (power compensationDSC), energy isprimarilymeasured.Despitetheir different modes of operation, both instruments deliver the same infor‐mation:heatflowasafunctionoftemperature(ortime).

Page 8: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

392

For first order transitions, such asmelting, crystallisation, sublimation, boilingetc.,integrationofthecurvegivestheenergyinvolvedinthetransition.Melting,boiling, sublimation and desolvation are endothermic, whichmeans they needenergy.Crystallisationisexothermic,whichmeansthatitsuppliesenergy.Solid‐solidphasetransitionanddecompositionmaybeendothermicorexothermic.Forsecondordertransitions,thesignalgivesthechangeinthespecificheat;forex‐ample,intheglasstransitionsofamorphousmaterials.Manufacturersrepresenttheheatflowdifferently:endothermshavethepositivevaluesinpowercompen‐sation DSC, and negative values for heat flux DSC. Figure 8.1 shows typicaltransitions for a single compound: with a power compensation DSC with anendotherm rising, or for heat flux DSC with an endotherm falling. Bothrepresentationsareacceptedifthesignsforendothermorexothermaregivenonthecurves.Generallythetemperatureisplottedonthexabscissa(usualgivenin°C)andtheheatflow(dQ/dt,dq/dtordH/dt)isplottedontheyordinateinJs‐1.Most recent curvesaregiven inmWatts (mW),which is equivalent, and in thischapterbothexpressionsareused.Melting,crystallisationandphasetransitionsarefirstordertransitions.Theintersectionbetweenthebaselineandtheslopeofthe peak is the extrapolated temperature onset of the transition (Te). Thecorrespondingenergy is theareaunderthepeak.Thepeaktemperature(Tm) isvery dependent on instrument andmeasurement parameters. The glass point,whichisasecondordertransition,isdeterminedasaninflexionpoint.

Figure8.1.ExamplesofapowercompensationandheatfluxDSCcurves

forasinglecompound

Temperature, oC

Glass Crystallization Melting Decompositiontransition

Hea

tflo

w,

dQ/d

t

Power compensation DSC

Heat flux DSC

Endo

Exo

Exo

Endo

Page 9: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

393

Modern instruments permit the heating, cooling and isotherm curves betweensub‐ambienttemperatures,withuseofacoolingdevice,andhighertemperaturesintherangeof1200‐1500°C.Curvesmadeusingdifferentinstrumentscannotbe compared to one another; correctionsmust be calculated according to eachinstrument.Greatcaremustbegivento thetemperature,withthetemperatureplotted on the abscissa being the programmed temperature, not the realtemperature of the sample. The actual temperature depends on the thermalresistanceandheatingrateoftheinstrument,whichiscalledthe"thermallag"ofthe system. The correlation between apparent melting point and heating ratedependsonthemanufacturer.Generally,pureindium(>99.9999%)isusedwitheach series of measurements. Modern instruments, with data handling, enablethetruetemperatureofeachpointoftheDSCcurvetobecalculated.

Figure 8.2 exemplifies the effect of the heating rate on the DSC curves. Anexample of the DSC curves of indium using different heating rates on a DSC‐2Perkin‐ElmerinstrumentisgiveninFigure8.2a.Sinceenergyistheintegrationofthe signal as a function of the time, the DSC curves are not identical at everyheating rate. The “thermal lag” is instrument specific. Since the meltingtemperatureofindiumis156.6°C,theextrapolatedonsethastobecorrectedforeach heating rate. Figure 8.2b shows the plot of the extrapolated onset of thecurvesforindiumversusheatingrateat1.25,2.0,5.0,10.0and20°Cmin‐1.Thiseffecthastobetakenintoconsiderationwhencomparingcurvesobtainedusingdifferentheatingrates,andespeciallyifmeasuredwithdifferentinstruments.

Figure8.2.Effectofheatingrateonthemeltingpointofindium.

(a)DSCcurvesat1.25,2.0,5.0,10.0and20.0°Cmin‐1;(b)correspondinglinearrelationshipbetweenmeltingpointandheatingrate

Figure8.3showstheinfluenceofheatingrateontheresolutionofpolymorphsoftemazepam.Thebest resolution isobtainedwitha lowheating rate. Figure8.4exemplifies the influence of the sample mass on the resolution for the samecompound.Theheatingrate(sensitivityoftheinstrument),andthesamplemasshavetobechosencarefullytodetectthermaleffectswhichareveryclosetooneanother.

156,1

156,2

156,3

156,4

156,5

156,6

156,7

0 5 10 15 20 25156 157 158 159 Temperature, oC Heating rate, oC min-1

He

atf

low

E

nd

o

Te

mp

era

ture

on

se

t, o

C

a                                                                                        b

Page 10: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

394

Figure8.3.DSCcurvesshowingtheeffectofheatingrateontheresolution

ofpolymorphsoftemazepam

Figure8.4.DSCcurvesshowingtheeffectofsamplemassontheresolution

ofpolymorphsoftemazepam.Heatingrate1.25°Cmin‐1

Figure8.5dealswiththemeasurementof theglasstransitionwithandwithoutthermal effect. The thermal effect appearing as a maximum on DSC curvedependsonthethermalhistoryofthesample,andiscommonlyusedinthestudyofamorphousmaterialsandpolymers.Athighheatingratesthesignalishigherbecause,fortheglasstransitionthechangeincpisdq/dtordH/dt,andiseasiertomeasure.

He

at

flo

w

En

do

Temperature, oC

20 oC min‐1

0.85 mg

10 oC min‐1

2.11 mg

5 oC min‐1

1.50 mg 1.25 oC min‐1

2.00 mg

He

at

flo

w

En

do

Temperature, oC

0.537 mg

10.096 mg

0.21 mJ s

‐1

2.1 mJ s‐1

Page 11: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

395

Figure8.5.DSCcurvesfortheglasstransition(a)withoutthermaleffectand

(b)withthermaleffect

Great effortshavebeenmade in recent years to validatedifferent instruments,notonlyincomparingprinciplesandresults,butalsoindeterminingheatingandcoolingrates,particlesize,weight,resolution,atmosphereandtypeofpans.Thetypeand thesizeofpans isofgreat importance forcomparingresults; typesofpanmayincludeopenpan,crimpedpan,sealedpanorpinhole.Thesametypeofpansmustbeusedforbothsampleandreference.Ifpansarehermeticallyclosedthenthesolventcannotescape,andthecurvesarenotthesameasforpanswithapinhole.Figure8.6exemplifiestheproblemforamonohydrate.Inasealedpan,theDSCmeltingpeakof themonohydrate isobserved.Whereas, ifapinhole ismade in the cover of the pan, water can escape and the transition into theanhydrousformisobservedasendothermic/exothermicphenomenonbeforethemelting of the anhydrous form occurs. Unlike the curves formonohydrate, theanhydrousformisnotaffectedbythetypeofthepan.

Theuseof flowingpurgegas (nitrogenor argon) is requiredas thewastepro‐ductsfromsublimationordecompositionhavetoberemoved.Duetothelubri‐cantusedinthemanufactureofaluminiumpans,thesepansmustbepreheatedinordertoavoidartefacts.Thehomogeneityofthesample,thesampleprepara‐tion,anycontaminations,thetimebetweenthemanufactureofthesampleanditsmeasurement,thesamplemassandthermallagarethemainsourceoferrors.Inpharmaceutical development, instruments must be calibrated and routinelychecked. It shouldbeemphasised thatmeltingpointsofpolymorphsmaydifferbylessthan1°C,andthatdifferencesinmeltingenergyareoftenlessthan5%.Therefore,allvariablesofanautomateddevicehavetobecontrolled.

Table8.2dealswithexamplesofstandards,includingIUPACandWHOstandards,proposedfortemperaturecalibration.Thestandardsmustbeofcertifiedpurity.For heat calibration, the melting energies of certified substances with meltingpointsbetween60°Cand230°CareproposedinTable8.2.

a                                                              b

Page 12: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

396

Figure8.6.EffectofthetypeofpanonDSCcurvesforamonohydrate(____)andforananhydrousform― – ―).Withthesealedpan,onemaymeasure

themeltingofthehydrate.Withpinhole,waterescapesandarecrystallisationintotheanhydrousformisobserved

Table8.2.CertifiedsubstancesforthecalibrationofDSCinstruments

CertifiedsubstanceMelting

temperature,°CStandardsubstance Meltingenergy,Jg‐1

Iodobenzene ‐31.3 Naphthalene 148.6

H2O 0.0 Benzil 112.0

4‐nitrotoluene 51.5 Benzoicacid 147.2

Biphenyl 69.3 Biphenyl 120.4

Naphthalene 80.2 Diphenylaceticacid 146.9

Benzil 94.7 Indium 28.7

Acetanilide 114.0 Tin 60.2

Benzoicacid 122.1

Diphenylaceticacid 146.5

Indium 156.6

Anisicacid 183.1

2‐chloro‐anthraquinone 210.0

Tin 231.9

Antraquinone 284.5

Lead 327.5

Zinc 418.9

Page 13: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

397

InmodulatedDSC (MDSC), thenormally linearheating ramp is overlaidwith asinusoidal function, or an oscillating function defined by a frequency and anamplitude, to produce a sine wave shaped temperature versus time function.UsingFouriermathematics,theDSCsignalisthensplitintotwocomponents:onereflecting non‐reversible events (kinetic), and the other reversible events. Thismethod is generally not applied in the characterisationof solidpharmaceuticalforms.Fordetailsonthisapplication,see[3‐8].

8.3.2. Thermogravimetry

Inthermogravimetry(TG),thechangeinsamplemassisdeterminedasafunctionoftemperatureand/ortime.Theinstrumentusedisathermobalancethatallowsthecontinuousweighingofasampleasafunctionoftime.Thesampleholderanda reference holder are bonded to each side of amicrobalance, in a vertical orhorizontal design. The sample holder is situated in a furnace, without directcontactwiththesample,thetemperatureofwhichiscontrolledbyatemperatureprogrammer.Thebalanceportion ismaintainedat a constant temperatureandthe instrument is able to record the loss or gain in mass of the sample as afunctionoftemperatureandtime[m=f(T)].Frequently,themasschangeisgivenaspercentageof thesample.Most instrumentsalsorecordthederivativeof themasschange[dm/dt=f(T)].

ThederivativeTG(DTG)allowsabetterdistinctionofoverlappingsteps,andthedeterminationofthetemperatureatwhichtherateofmasschangeismaximalorminimal.TheareaundertheDTGcurveisproportionaltothismasschange,andtheheightoftheDTGpeakatanytemperaturegivestherateofmasschange.DSCandDTGperformedonhydratesshowthesameoutcome.

Balanceisadjustedwithcertifiedmassatambienttemperatureanditisrecomme‐nded to check themass at temperatures of use. Therefore, the author proposesthreestandards:calciumoxalatedihydrate(watercontent12.3%)(usedforTGinEuropean Pharmacopoeia), disodium tartrate dihydrate (water content15.7%)(used as standard for Karl Fischer analysis) and copper sulphate pentahydrate(watercontent36.1%).Figure8.7ashowssuchcalibrationcurvesat20°Cmin‐1heatingrate.Thedehydrationscoveratemperaturerangeof50to270°C.Inthisfigureweplotforcomparisonthecommonexcipientlactosemonohydrate.

Fortemperaturecalibration,thestandardsrecommendedbyICTAareferromag‐neticstandardsexhibitinglossofferromagnetismattheirCuriepointtemperatu‐re within a magnetic field: Nickel (354°C), Permanorm 3 (266°C), Numetal(386°C),Permanorm5(459°C)andTrafoperm(754°C).Athermobalancewithhorizontal plates is proposed by manufacturers as the melting of standards iseasierfortheuser.

Tables8.3a and8.3b showcalibrationsof a thermobalance at different heatingrates. In order to check the stability of the system, a baseline at the highestsensitivityhastobeperformedforallheatingratesinthetemperaturerangeofanalysis;thehighestdeviationwillbeobservedatthehighestheatingrate.

Page 14: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

398

Figure8.7.Thermogravimetryofstandardorganicsubstancesat20°Cmin‐1.(a)TGcurves;(b)DTGcomparedtoTGofcopper(II)sulphatepentahydrate

Figure8.7bshowstheuseofDTGforcoppersulphatepentahydrate,atthesameheating rate as given in Figure 8.7a. The DTG determines precisely the end ofeach step at rapid heating rates, which is an advantagewhen desolvation anddecomposition overlap. Figure 8.8 exemplifies the effect of heating rate on TG

50 100 150 200 250 300

100

90

80

70

60

Ma

ss

, %

Temperature, oC

LactoseH2O

Calcium oxalate2H2O

Sodium tartrate2H2O

Copper sulphate5H2O

a

Page 15: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

399

curves of disodium maleate dihydrate. The results obtained at the 5 °C min‐1heatingratecomplywiththetheoreticalvaluesofwatercontentofthedihydrate(18.45%).

Table8.3a.Examplesofthemasscalibrationofathermobalanceatdifferentheatingrates

SubstanceTheoreticalamount

ofwater,%Amountofwaterfound,%

5°Cmin‐1 10°Cmin‐1 20°Cmin‐1

Disodiumtartratedihydrate

15.65 15.73 15.60 15.73

Calciumoxalatemonohydrate

12.32 12.55 12.51 12.48

Coppersulphatepentahydrate

36.07 36.08 36.03 36.04

Table8.3b.Examplesofthetemperaturecalibrationofathermobalanceatdifferentheatingrates

SubstanceTheoretical

meltingpoint,°CDeterminedmeltingpoint,°C

5°Cmin‐1 10°Cmin‐1 20°Cmin‐1

4‐nitrotoluene 51.50 51.49 51.64 53.78

Indium 156.60 157.62 157.38 157.74

Tin 231.93 233.44 233.42 233.68

Figure8.8.TGcurvesofdisodiummaleatedihydrateattwodifferentheatingrates

50 100 150 200

Ma

ss

los

s,

%

Temperature, oC

40 oC min-1

5 oC min-1

17.3%18.2%

9.4%

8.6%

Page 16: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

400

8.4. WHATARETHEAREASOFAPPLICATIONFORTHESTUDYOFSOLIDFORMS?

8.4.1. Thermodynamicdata

Oncesolidformisobtained,severalquestionsarise:

Istheformamixtureofpolymorphs? Whatisthechemicalpurity? Whatisthedegreeofcrystallinity? Isthesaltformpure? Whatarethethermodynamicwindows:

o fortruepolymorphs?o forsolvatedforms?o fordifferenthydratedforms?o fortheamorphousform?

Thesequestionsneedtobeansweredquickly inordertomeasurecorrectlythephysicochemicalparametersoftheisolatedform.

Polymorphismistheabilityofasubstancetocrystallise intodifferentcrystallinephasesthathavedifferentarrangements,and/orconformationsofthemolecules,inthecrystallattice.Thesecrystallineformsarecalledpolymorphs,orcrystallinemodifications. Polymorphs have the same liquid or gaseous state, but theybehave differently in the solid state. The amorphous state is characterised bysolidificationinadisorderedorrandommanner,structurallysimilartotheliquidstate. The expression pseudo‐polymorphism applies to hydrates and solvates.Hydratesorsolvatesdonothavethesamechemicalstructureastheanhydrousforms,thoughpolymorphismbetweenhydratesorsolvatesdoesoccur.

TherelationshipsbetweendifferentphasesaregovernedbytheGibbsphaserule:

V=C+2‐Ψ (8.1)

whereV=variance,C=numberofcomponents,Ψ=numberofphases.

8.4.1.1. Twopolymorphicsolidphases

Inthecaseoftwopolymorphicsolidphases,Cisequaltoone.Iftwosolidphasesarepresent,andifbothpressureandtemperaturevary, thevariance isunity. Ifpressureisfixed,thenvarianceiszero.Phasediagramsofpressureversustempe‐ratureillustratethedifferentequilibriumcurvesforpolymorphism(Figure8.9).

For each solid form, there is a solid‐liquid equilibrium curve and a solid‐vapourequilibriumcurve.Inthecaseofenantiotropy,thereisanequilibriumcurve(BFinFigure 8.9a), where both polymorphs are in equilibrium and undergo reversibletransitionataspecifictemperatureandatafixedpressure.Inthecaseofmonotropy(Figure8.9b),thereisnothermodynamictransitionbetweentwophases,sinceonlyone solid form is thermodynamically stable. The dashed lines correspond to themetastableequilibriumcurveswhichhavetobetakenintoconsideration.

Page 17: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

401

Figure8.9.PhasediagramsP,Tforasinglecompoundshowing(a)enantiotropicand

(b)monotropicpolymorphism

Theabilityofasystemtoperformwork,andtoundergoaspontaneouschangeatconstantpressure ismeasuredbytheGibbsenergy,∆G.∆Ghasbeendefined intermsofenthalpyandentropychanges,∆Hand∆S,attemperatureTas:

∆G=∆H–T∆S (8.2)

Gibbsenergy(G),enthalpy(H)andentropy(S)arestatefunctionsandtheterm∆canbeomitted.

G=H–TS (8.3)

At 0 Kelvin, G = H. Since the entropy S is always positive, G decreases withincreasing temperature. The energy diagram,G versus temperature at a givenpressure, reflects the transition observed between both solid phases, andbetween solid and liquid phases. If a transition betweenphases occurs then atthistemperaturebothphaseshavethesameGibbsenergy,G.

Ingeneral,thethermodynamicrelationshipbetweentwopolymorphicphasesisrepresentedbyplottingGibbsenergyasafunctionoftemperatureforeachform(Figure 8.10). If the two curves intersect below the melting point of eachpolymorph, a reversible transition occurs at the temperature Tt of theintersection.AttemperaturesbelowTt,polymorphAhasthelowerGibbsenergyandisthereforethethermodynamicallystableform,whileattemperaturesaboveTt ,polymorphB isstable.Thetransitionpointcanbe low,evenbelowambienttemperature, or in other cases, very high (above 200 °C). In the case ofmonotropy, there is no intersection of theGibbs energyof both forms, and thehighermeltingformisalwaysthethermodynamicallystableform.

T                                                      T

P P

a                                                          b

Page 18: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

402

Figure8.10.EnergydiagramsdepictingdependencesofHandGvs.temperaturefor

(a)enantiotropicand(b)monotropiccompound

The relativepositionof theG‐isobars (∆GA→B) of differentmodifications canbedeterminedbysolubilityexperimentsinagivensolvent:

∆GA→B=RTln(SA/SB) (8.4)

whereSAisthesaturationsolubilityofthemodificationAandSBisthesaturationsolubilityofthemodificationB.

Eachcrystalformhasitsownheatcapacity,whichisafunctionoftheenthalpyHandthetemperature.Theheatcapacityofsolidsatconstantvolumeandconstantpressureareaboutthesame.TheHisobarsofthetwomodificationsareparallelandtheirdistanceisthetransitionenthalpyHt.

Burger [27‐28], proposed to plot energy/temperature diagrams of the Gibbsenergy(G)andtheenthalpy(H),asfunctionsoftemperature.Thisproposalisthefundamentaltoolforthesolutionofcomplexpolymorphicsystems.AsshowninFigures 8.10a and 8.10b, a notable difference between enantiotropy andmonotropy is the melting enthalpy of the higher melting form. In the case ofenantiotropy,thehighermeltingformhasthelowermeltingenthalpy.Inthecaseofmonotropy,thehighermeltingformhasthehighermeltingenthalpy.

DSC,whichmeasureseveryheatflowchangeuponheatingorcooling,isthemostappropriate technique, since the method allows us to determine the meltingpoints and the melting enthalpies, as well as the transition points and thecorresponding energy. The influence of kinetics can be followed by usingdifferentheatingratesandtemperinginsitu[12].

TherelationshipbetweenmeltingenthalpiesoftwosolidphasesAandB,andtheheatoftransitionisapproximately:

Ht=HfA‐HfB (8.5)

L L

Energy (G

, H)

Energy (G

, H)

a                                                                                    b

Page 19: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

403

The temperature of transition between two enantiotrops can be calculatedaccordingtoEquation8.6byneglectingthedifferencesinspecificheat.

Tt=TATB(HfAHfB)/(HfATB‐HfBTA) (8.6)

In the case of enantiotropy, the lowmelting form is the thermodynamic stableformbelowthetransitionpoint,andabovethispointthehighmeltingformisthethermodynamicstableform.Thetransitionpointcanbelow;closeto40°Cinthecaseoftolbutamide,closeto100°Cinthecaseofpropyphenazoneorevenhigherthan200°C.Figure8.11illustratesthecaseofthereversibletransitionbetweenpolymorphsoftolbutamide,withreversibleDSCheatingandcoolingcurves.

Figure8.11.DSCcurveforthereversibleenantiotropictransition;Inset:heatingand

coolingcurvesinthetemperaturerangeofthetransition

In thecaseofmonotropy, there isonly thehighmelting formpresent,which isthe thermodynamic stable form within the entire range of temperatures.Sometimes ametastable form can behave as a stable form, and the DSC curveshowsanexothermictransitionbeforethemeltingofthestableform,helpingtodefinethethermodynamicallystableanhydrousform(seeFigure8.12).

Duetokinetics,metastableformscanappearandbecausedifferentcaseshavetobe taken into account, it is mandatory to use different heating rates for DSCexperiments(seeSection8.4.3).Forsolidformselectionitisabsolutelynecessarytoknowthetemperatureofthetransitionofenantiotropicsystems,sinceit isathermodynamicvalue.Doesthetransitiontakeplaceat20°C,30°C,70°Corat120°C?Whatare the consequences fordrugdevelopment?The temperatureofthe process, the temperature of storage and transport are important factors inproduction.

Temperature, oC

He

at

flo

w,

mW

En

do

Page 20: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

404

Figure8.12.DSCcurveofametastableformwhichtransformsinthestableform

withexothermictransition(monotropy)

Duetokineticbehaviour,thetemperatureoftransitionobservedinDSCishigherthan the temperature observed by solubility measurements or slurryexperimentsinthepresenceofsolvents.Table8.4showssomedataobtainedbycalculation,accordingtoEquation8.6,comparedtoexperimentaldata.

Table8.4.Determinationofenantiotropictransitiontemperaturesforexamplesubstancesbycalculationandexperiment

Substance Transitiontemperature,°C Method

Carbamazepine7173

CalculationSolubility

Nimodipine8288

CalculationSlurryexperiment

Substanceindevelopment3925

CalculationSlurryexperiment

8.4.1.2. Thephasediagramsofsalts,solvatesandhydrates

The phase diagrams of salts, solvates and hydrates aremore complex becausebinary mixtures are often of different compositions. The new compound mayundergo congruent melting (Figure 8.13a), or non‐congruent melting (Figure8.13b).Throughheating,themeltingofthesolvatemaybeobserved,followedbytransformation to an anhydrous form, or the solvent may be involved in anendothermic transition into the anhydrous form.A series of suchbinaryphasediagramshastobeconsideredifseveralcompoundsareformed.Thesediagramsarefundamentaltotheunderstandingofcrystallisationanddryingsteps.Analyti‐cal investigations of solvates are not possible without thermogravimetry.ExamplesofDSCandTGcurvescorrespondingat thesebehavioursaregiveninFigures8.14and8.15.

He

at

flo

w

E

nd

o

Temperature, oC

Page 21: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

405

a b

Figure8.13.Binaryphasediagrams(solvates,salts);(a)stablecompoundCand2eutectics;(b)non‐congruentmelting,peritecticbehaviour,thecompounddissociates

Figure8.14.DSCandTGcurvesforcongruentmeltingofthehydratefollowed

bylossofwaterandcrystallisationintotheanhydrousform

The effect of pressure on dehydration steps is exemplified by Figure 8.16 forcoppersulphatepentahydrate.Dependingonthepressure,dehydrationcangivetheanhydrousform,themonohydrateorthetrihydrate.Thisexplainsthecoexi‐stenceofdifferentstepsofhydrationduringdrying,millingortableting.

Ex

oH

ea

tfl

ow

E

nd

o

TG

DSC

Temperature, oC

Ma

ss

,%

3.6% H2O

50 100 150 200

Page 22: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

406

Figure8.15.DSCandTGcurvesforaperitecticbehaviourofasolvate:endothermic

transitionbetweentheethanolsolvateandtheanhydrousform

Figure8.16.Effectofthepressureonthedehydrationstepsofcoppersulphate

pentahydrate:intotrihydrate,monohydrateandanhydrous.Adaptedfromreference[29]

55 75 95 115 135 155 175 195 215 235Temperature, oC

He

at

flo

w

E

nd

o

TG

DSC

0.8%

2.9%

Ethanol

H2OMa

ss

,%

Page 23: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

407

8.4.1.3. Amorphousstate

Ifaphysicalpropertyofacrystallinesubstanceisplottedagainsttemperature,asharpdiscontinuityoccursatthemeltingpoint.Foramorphoussubstancesthereisnomeltingpoint,andachangeofthebaselineoftheDSCcurveoccursattheso‐called glass transition temperatureTg. Below this temperature, the amorphousphasehascertainpropertiesofacrystallinesolid(e.g.plasticdeformation)andistermed “glassy”. At temperatures above Tg, the substance retains some of thepropertiesofaliquid,e.g.molecularmobility,andistermed“rubbery”.AboveTg,theincreaseinmolecularmobilityfacilitatesspontaneouscrystallisation,withanexothermicenthalpychangeaftertheglasstransition(seeFigure8.17).Theglasstransition temperature is decreased bywater, or other solvents and additives,facilitatingcrystallisation.Theamorphousstateisunstable,andthestudyoftheglasstransitionwithexcipientsunderhumidity, isapartofthepre‐formulationprocess[30].Amorphoussolidphasesareobtainedeitherbymeltquenching, ifno degradation occurs during themelting, or by lyophilisation. They are easilydetected by DSC, since the glass transition can be followed by the exothermiccrystallisation into thecrystallinestate,or canbedetectedbyXRD.Figure8.18shows a casewhere a very small amount of amorphous formwas detected byDSCalone.

Figure8.17.DSCcurvesofacrystallineandanamorphoushydrochloridesaltofa

substance.Inset:temperaturerangeoftheglasstransitionoftheamorphouscompound

Page 24: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

408

Figure8.18.Detectionofanamorphouspartdownto1%inadrugsubstance

withpolymorphicbehaviour.

8.4.2. Puritydetermination

Asalreadydescribed, themethodforpuritydeterminationpreviouslyproposed[31] is particularly attractive as it does not require a reference standard. Thismethoddeliversabsolutepurityorassayvalueand resultsareobtained in lessthan 30minutes. The determination of purity bymeans of DSC is based on theassumptionthatimpuritiesdepressthemeltingpointofapurematerialaccordingtoeutecticphasediagrambehaviour.Figure8.19ashowsthephasediagramforthetwo componentmixturewith a eutectic point. At the eutectic point, for example40%A,60%B, thecrystalsAandBmelt togetherat the temperatureTE (Figure8.19b),belowthemeltingtemperatureofthepurecompounds.IfamixtureofAandB(containinge.g.90%A) isheated, themeltingof theeutecticmixture(which is40% A) is observed initially, until all of B is melted. During the melting of theeutectic mixture (40%A, 60%B) a part of A is melted with B, with thecorresponding amount of A (2/3 x 10%, i.e. 6.66 % of A). As the temperatureincreases,pureAmeltsbetweenTEandTm(Tmbeingtheendofthemelting).ForthecorrespondingDSCcurve,ifanendothermicheatflowattheeutectictemperatureisobserved,thenthemeltingofcrystalsofAoccurs.

Page 25: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

409

Figure8.19.PuritydeterminationbyDSC

(a)phasediagramofthemixtureoftwocompoundsformingeutecticmixture,(b)DSCcurveoftheeutecticmixture,

(c)broadeningofDSCcurveduringthemeltingofasubstanceaftereutecticpoint,(d)aplotofobservedanalytetemperaturevs.reciprocalvalueofthefractionmelted.

TheeffectofimpurityontheDSCcurveisameltingdepressionandabroadeningofthemelting curve. The amount of impurities is calculated from themelting pointdepression∆T=To‐Tm.Thevan'tHoff'slawfordilutedsolutionsis:

f2

0

- T Hx =

RT (8.7)

He

at

flo

w

En

do

T T

100% A0% A

A + B

B + Liq. A + Liq.

Tm Tm

TEx2

TE TE

T0

Liq.

Temperature, oCComposition

Heat flow       Endo

a b

Page 26: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

410

wherex is themole fractionof impurities,∆T themeltingpointdepression,∆Hfthemeltingpointofpurematerial,Tmthemeltingof theanalyte,To themeltingpointofthepurecompoundandRthegasconstant.

TheDSCproceduredoesnotdirectlymeasure∆T,butcanbeusedtocalculateitfromthemeltingcurve.AttheeutecticpointallofBisintheliquidphase.Duringthe melting of A, after the eutectic point, the concentration of B varies in theliquidphase.ThiscausesthebroadeningoftheDSCcurve(Figure8.19c).Withnosolidsolutionformation,theconcentrationofimpurityintheliquidphaseatanytemperatureduringthemelting is inverselyproportional to the fractionmeltedatthattemperature,andthemelting‐pointdepressionisdirectlyproportionaltothe mole fraction of impurity. A plot of the observed analyte temperature,Ti,versusthereciprocalofthefractionmelted1/FiattemperatureTi,shouldyielda straight line with the slope equal to the melting‐point depression (To ‐ Tm)(Figure8.19d).The theoreticalmeltingpointof thepurecompound isobtainedbyextrapolationtol/Fi=0:

2o

ii 0

f

1

RTF

T T xH

(8.8)

Thecorrection,K,hastobemadecorrespondingtothepartalreadymeltedintheeutectic, and the detected beginning of themelting curve. Figure 8.19d depictssuch a determination. Software from manufacturers mostly uses iterativelinearisationwhichgivesthebestvalueofK.

Characteristicsofthepuritydeterminationareasfollows:

‐ impuritieswhichhave eutectic behaviour aremeasured (i.e. soluble in theliquidphaseandinsolubleinthesolidphase),

‐ thesumofimpuritiesshouldbe<2%,‐ theresultisexpressedinmole%withoutknowledgeofimpurities,‐ purematerialisnotneeded,‐ smallamounts(0.1‐2mg)ofmaterialareused,‐ ifdecompositionoccursduringmeltingitcangiveerroneousresults.

Thecalculationofpurityallowstheinterpretationofthecomplexcurvesgivenbyendotherms preceding the melting. It has been used successfully in stabilitystudies at the beginning of development. An example is given in Section 8.4.4,Table8.5.

8.4.3. Kineticaspects

EveryDSCstudyshouldincludescansatdifferentheatingratesduetoDSCbeingadynamicmethod,andsolid‐statetransformations,whilebeingthermodynami‐cally driven, are kinetically controlled. The DSC scans will differ if the sampleunderstudyisstableormetastableatambienttemperature.AtypicalsetofDSCscansillustratesthestudyofthepolymorphicrelationshipoftwoformsAandB.

Page 27: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

411

Inthecaseofenantiotropy(Figure8.20a):

Scan1.ThesamplestudiedisthestableformA,whichgivestheendothermicso‐lidphasetransitionABfollowedbythemeltingendothermofformB.

Scan2.ThesamplestudiedisthestableformA,butforkineticreasonsthesolidtransformationABdoesnotoccur.InsteadformAmelts.

Scan3.ThesamplestudiedisthestableformAwhichmelts.FormBcrystallisesfrom the melt with an exothermic peak and form B melts at a highertemperature.

Scan4.ThesamplestudiedisthemetastableformB,whichbecomesstableatatemperature above the transition temperature. An exothermic peakcorresponds to the solid transformationB A, followed by successivetransformationAB,andmeltingofB.

Scan5.The sample studied is the metastable form B. The DSC scan shows itsmeltingendotherm.

Figure8.20.PossibleDSCscansfor2polymorphs.(a)enantiotropy;(b)monotropy

Inthecaseofmonotropy(Figure8.20b):

Scan1.The sample studied is the stable form A, and its melting endotherm isobserved.

Scan2.The sample studied is the metastable form B, which transformsexothermicallyinthesolidstateintothestableformA.FormAmeltsatahighertemperature.

Scan3.The sample studied is themetastable form B, which does not transformintoA,butmeltsendothermically.FromthemeltthestablecrystallineformAappears,withanexothermicpeak,thenAmeltsatahighertemperature.

a b

Heat flow dq/dt

Endo

Heat flow dq/dt

Endo

Temperature

Temperature

Page 28: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

412

Similar interpretationsapply to allmethods that involveheating (e.g. hot stageopticalmicroscopy,hotstageinfraredorRamanmicroscopy,temperatureresolv‐edorvariabletemperatureXRD).ItisdifficulttodistinguishbetweenenantiotropyandmonotropyinthecasesofFigure8.20a,Scan5andFigure8.20b,Scan1,aswellasinFigure8.20a,Scan3andFigure 8.20b, Scan 3. The interpretation of theDSC curves is facilitatedbyBurger’senthalpyoffusionrule[27‐28]:ifthehighermeltingformhasthelowermeltingenthalpy,thenbothformsarerelatedenantiotropically.AsdemonstratedinFigure8.21,forabenzisoquinolinehydrochloride[12],themeltingenthalpyofthehighermeltingformBislowerthanthemeltingenthalpyofA.Therefore,thetwo forms are enantiotropically related, with form A being stable below thetransitionpoint.ModificationBishygroscopicandundergoesasolvent‐mediatedtransitiontoformAinalcoholsatambienttemperature.

Figure8.21.Polymorphicbehaviourofabenzisoquinolinehydrochloride.Eachformhasitsmeltingcurve.EnantiotropydemonstratedbytheBurgers’rule.FormAontheleftsidehasameltingpointof304°Candameltingenergyof50kJmol‐1.FormBhasamelting

pointof311°Candameltingenergyof46kJmol‐1[14]

Figure 8.22 shows DSC curves of propyphenazone. Samples from two manu‐facturerswere investigated in our laboratory since the second sample did notcomplywithmeltingrequirements.Anunexpectedlyhighmeltingpointwasnotdue to higher purity, but to the enantiotropic behaviour. The second samplecontainedtracesofahighmelting form.Aslowerheatingrateshowedforbothsamplestwoendotherms.DSCexperimentsallowedthemanufactureinsituofthe

Page 29: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

413

high melting form, and to characterise it completely including solubility anddissolutionrate[12,13].Forexamplesofkineticeffectsduetopolymorphismandsalts, see references [32,33]. Kinetics also governs the steps of hydration anddehydration in the solid state, giving rise to complex conversion relationships[34‐36],(seeexampleinFigure8.25).

Figure8.22.EffectofheatingrateontheDSCofpropyphenazoneenantiotropicsystem.Batch1and2oftwomanufacturershavedifferentmeltingpoints.Athighheatingrates(20,10,5,or2.5°Cmin‐1)batch1showsonlyonepeak.Batch1isapureform,batch2containsverysmallamountsofhighmeltingformwhichactsasseed.Withslowheating

ratestransformationtothehighmeltingformoccursforbothbatches[12]

8.4.4. Sorptionisothermsandhydrates

Mostdrugsubstancescrystalliseintheformofsolvatesorhydrates.TheDSC/TGcurvesallowustofollowthedesolvationprocess.ItispossibletomeasurewatersorptionisothermsbyTGincontrolledatmospheres.Oftentheinstrumentusedisanautomaticmulti‐vapourgravimetricsorptionanalyser,aso‐called“dynamicvapour system” (DVS), e.g. those made by Surface Measurement Systems Ltd.Figure 8.23 shows such curves for an enantiotropic drug substance whichabsorbs water to form a trihydrate. The desorption occurs with hysteresis,allowingustodefinetherelativehumidityrangeforeachform.Accordingtothecurves, the trihydrate formwould be possible to develop.However, itwas notpossibletomanufactureitasapureformintheprocess.Theenantiotropicform,which was stable at room temperature, could be manufactured and stored intightcontainers[14].

98 100 102 104 106

Manufacturer 1

Manufacturer 2

Temperature, oC

Hea

tfl

ow

En

do

100 101 102 103 104 105

Temperature, oC

a) Heating rate 2.5 C min-1 b) Heating rate 1.2 C min-1

Page 30: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

414

Figure8.23.Exampleofawatersorption‐desorptionisothermfortwoenantiotrops

(AandB)andatrihydrateoftheinvestigatedcompound

Figure8.24showstheuseofsorptionisothermmeasurementforasaltselection.Thehydrochloridefirstselectedwastoohygroscopicforeasydevelopment,andtherefore new saltswere studied. TheDSC puritywas determined for stabilitycomparison (Table 8.5). The hydrogen fumarate and hydrogen tartrate wereattractiveduetotheirgoodhygroscopicbehaviour,howeverthestabilityresultsclearly showed that hydrogen tartrate was chemically stable. This exampledemonstratestheadvantageoususeofthermaltechniquesforquickdecisionsinearlydevelopment.

Table8.5.DSCpurityresultsforthestabilitycomparisonofsaltsgiveninFigure8.24.

DSCtimeDSCpurity,%

Hydrogenfumarate

Hydrogenmaleate

Hydrogentartrate

Initial 99.8 99.8 99.9

1week 99.4 nopeak 99.9

Luminousexposure:1200kluxh 99.1 97.6 99.5

Relative humidity, %

Mass change, % of dry m

ass

Page 31: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

415

Figure8.24. Saltselection.Thehygroscopichydrochlorideisreplacedbythehydrogen

tartrate[18].(a)Dynamicvapoursystem(DVS)curvesofhydrochloride,(b)DVScurvesforhydrogenmaleate,hydrogenfumarateandhydrogentartratesalts

Itisrecommendedthatseveralcyclesofsorptionanddesorptionareperformedwhenahydrate isproduced.Figure8.25shows thekineticeffectof seeds foradrug substance. The anhydrous form is converted to the monohydrate at arelativehumidityofRH>90%.Afterthedesorption,tracesofmonohydratearepresentandthesubstanceabsorbswaterveryfast.Thebehaviourwasalsofoundinstabilitystudiesofbatchesofthedrug[32].

Recentlyintroducedautomaticsystemsbringafasterunderstandingofcomplexhydration and dehydration behaviour, aswell as their kineticswithmonitoredrelativehumidity (RH%). Instruments for researchhave0.1µgsensitivity,andlessthan10mgofsamplecanbeused.Byusingsolventvapours,solvatedformscan be manufactured and studied. These studies are a prerequisite for themicrocalorimetricanalysisofamorphouscontent.

05

1015202530354045505560

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

% Relative Humidity

% W

t. C

han

ge

Critical relarive humidity

a

Ma

ss

up

tak

e,

%

50

40

30

6

20

10

0

5

4

3

2

1

00 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100Relative humidity (RH), %

Hydrochloride

HydrogenmaleateHydrogentartrateHydrogenfumarate

Ma

ss

up

tak

e,

%

Relative humidity (RH), %

b

a

Page 32: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

416

Figure8.25.Watersorption‐desorptionisothermsandkinetics.InthefirstcyclethesubstancetakesupwateronlyatRH>90%.Afterthedesorptioncyclethethird

absorptioncycleshowsthetransformationintothemonohydratealreadyat30%RH

8.4.5. Combinedtechniques

8.4.5.1. CombinationofDSCandXRD

XRDinstrumentsareequippedwithheatingcellsandareroutinelyusedinmostresearchlaboratories.X‐raypatternsofpureformsobtained insitucanbeusedformodelling,andinfavourablecases,forcrystalstructuredetermination.Figure8.26exemplifies thecombinationofDSC/XRD foranenantiotropic systemwithheatingandcoolingcurves.Theadvantageofcoupledinstrumentsdevelopedinaresearch laboratory has been demonstrated [37]. The trehalose monohydratedehydration and hydration were studied in a humid atmosphere as anapplicationofanewcommercialinstrumentation[38].

8.4.5.2. Thermogravimetry‐massspectrometry(TG‐MS)andthermogravimetry‐infraredspectroscopy(TG‐IR)

AnexampleofTG‐MSisgivenforcalciumoxalateinFigure8.27,wherewater,COand CO2 are positively identified. Figure 8.28 is an example of the successfulinterpretation of a crystallisation into solvates followed by desolvation to ametastable form.TheDSCandTG‐MSinthis figurecorrespondtothemethanolsolvate. Similar pictures are obtained with other solvates e.g. acetone andethanol.TheDSC/TG/TG‐MSandtemperatureresolvedXRDexperiments,aswellas slurry experiments,were necessary to understand the crystallisation of thisdrugsubstanceandtochangethesolventofcrystallisation[32].

Figure8.29a shows theDSC/TG for aspartamehemihydrate andcorrespondingIR spectra (Figure 8.29b). The first endotherm at around 130 °C is the loss of

12

16

8

4

0

Ma

ss

ch

an

ge

, %

RHRH, %

Page 33: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

417

water,andthesharpendothermisduetodecompositionandformationofmetha‐nol [14].Solvatescanbesuccessfullycharacterised[39],andquantitative infor‐mationofthespectroscopicsignalispossible[40].

An example is given in Figure 8.30 of the interpretation of the behaviour of amalonate using several combined technologies: DSC, TG, TG‐MS, temperatureresolved XRD and IR. Through drying, themalonic acid can sublimate and the

Figure8.26.UseofcombinedDSC‐XRDforthedetectionofareversibleenantiotropictransitionofapurinederivative;(a)successiveDSCheatingupto120°C(1)cooling(2)andheatingupto140°Cshowingthereversiblephasetransitionandthemelting

(3);(b)reversibletransitionbetween50and125°CfollowedbyXRD

2 / o

Intensity,  Arb. units

Heat flow dq /dt     Endo

Temperature, oC

1

2

3

a

b

Page 34: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

418

base formed [14].Anotherexample, given inFigure8.31,dealswith the lossofwaterfromadrugsubstanceduringdrying.Thedecompositionproductformedwas at first believed to be a new form. DSC/TG/XRD and IR were thensuccessfully used for the identification of the substancewith two enantiotrops[15]. The DSC of the stable form shows an enantiotropic transition. After themeltingofthesecondform,adegradationintothelactamwiththelossofamolarquantityofwaterwasdetectedbyTG‐MSandtemperatureresolvedXRD.TheIR‐heatingcellallowedthestructureofthelactamtobeconfirmed.

Figure8.27.(a)TGcurveofcalciumoxalateand(b)MSsignalsofH2O,COandCO2

12.4%

19.3%

30.0%

100

80

60

5 10 15 20 25 30 35 40

Ma

ss

,%

Time, min.

5 10 15 20 25 30 35 40 Time, min.

Ion

cu

rre

nt,

10

-7A

0.16

0.00

0.08

H2OCO

CO2

40 100 200 300 400 500 600 700 800

a

b

Temperature, oC

Page 35: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

419

Figure8.28.Identificationofamethanolsolvateinacomplexcrystallisationbehaviour

by TG-MS; (a) DSC curve and (b) TG curve and corresponding MS signal [14]

Figure8.29.UseofTG‐IRforthedetectionofmethanolinthedegradationofaspartame;

(a)TGandDSCcurves,(b)correspondingIRspectra

T G

T G -M S,m = 32

Solva te = > B ’ B ’ => A

40 60 80 100 120 140 160 180 200

40

30

20

Temperature (°C)

40 60 80 100 120 140 160 180 2000 2 4 6 8 10 12 14 16 18

TempTim

DSC

TG

TG-MS m=32 1

0 n

AMa

ss

%

4.8%

Solvate=>B’ B’=>A

Ma

ss

,%

0 2 4 6 8 10 12 14 16 18 Time, min.

TG

DSC

Hea

t Flo

w

E

nd

o

Solvate B’ B’ A

40 60 80 100 120 140 160 180 200 Temperature, oC

a

b

TG-MS m=32

10n

A40 60 80 100 120 140 160 180 200 Temperature, oC

a b

Temperature, oC Wavelenght, cm‐1

Heat flow, m

W

Weight, %

Intensity, A

rb. units

Page 36: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

420

a

d e

Figure8.30.Useofcombinedtechniquesfortheinterpretationofthermaleventsofa

malonate.(a)DSCandTGcurves.ThreedifferentDSCpeaksareinterpretedasmelting(1)anddecomposition(2)ofthemalonatefollowedbymeltingofthebase(3);(b)temperatureresolvedXRDshowstheirreversibletransformationintothebase

accordingto(c);(c)XRDpatternsofthefreebaseandmalonate;(d)TG‐MSexperimentindicatestheevolutionofwaterandCO2duringheatingofmalonicacid;

(e)IRspectratakenatdifferenttemperaturesconfirmthepresenceofCO2andthechemicalstructureofthebase[14]

75 125 175 225 275

70

60

50

100

90

80

He

at

flo

w,

mW

En

do

Temperature, oC

Ma

ss

,%

TG

DSC

1

2 3

5 10 15

40 185

2 / o

180175

150 40

b

Base

Malonate at 220 C

5 10 15 20 25 30

Inte

ns

ity,

Arb

. u

nit

s

2 / o

c

2 6 10 14 18 22

40 60 80 100 120 140 160 180 200 220 240 260 280

18.3%

Mas

s,%

Time, min

Inte

nsi

ty,

Arb

. u

nit

sH2O

CO2

Temperature, oC

Tra

nsm

itta

nce

. %

3500 3000 2500 2000 1500 1000 Wavenumber, cm-1

130 oC

165 oC

210 oC

220 oC

250 oC

>250 oC

CO2

Page 37: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

421

a

b

c d

Figure8.31.Combinedtechniqueselucidatingthedecompositionofanenantiotropicdrugintoalactam[15].(a)DSCcurve;(b)TG‐MSconfirmsthedegradationwithlossofwater;(c)thetemperatureresolvedXRDshowsthe3steps:formA,formBandlactam;(d)IRspectrainheatingcellconfirmtheenantiotropictransitionandshowthechemical

transformation.

Hea

tfl

ow

, mW

E

nd

o

40 60 80 100 120 140 160 180 200

65

55

45

35

25

Temperature, oC

DSC

B A

MeltingA

Lactam+ H20

0 2 4 6 8 10 12 14 16 Time, min. 40 60 80 100 120 140 160 180 Temperature, oC

5n

A

Mass,%

TG-MS m=18

TG- H20

95

90

100

5 8 11 14 17 20 23 26 29

Inte

nsi

ty, A

rb.

un

ist

B

A

lactam

120 oC

150 oC

185 oC

2 / o11001200130014001500160017001800

Wavenumber cm-1

050

100

150

200

Tra

nsm

ittan

ce [

%]

100 C

130

170 C

180 C

186 C

1800 1700 1600 1500 1400 1300 1200 1100Wavenumber, cm-1

100 oC

130 oC170 oC

180 oC

186 oC

Tra

nsm

itta

nce

, %

Page 38: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

422

8.4.6. Isothermalmicrocalorimetryandsolutioncalorimetry

8.4.6.1. Microcalorimetry

Thedecreaseintheglasstransitiontemperature,Tg,bywaterandsolvents,istheprinciple behind the microcalorimetric method of amorphous contentdetermination. The substance is subjected to vapours ofwater, or organic sol‐vent, in an isothermal microcalorimeter (Figure 8.32). The heat flow ofcrystallisationwhichisproportionaltotheamorphouscontentismeasured.Thesorption‐desorption isothermpresented inFigure8.33 exemplifies theprocess.The un‐milled sample is not hygroscopic but after micronisation, the powderabsorbswater(cycle2),andanincreaseinmassisobserved.Anabruptdecreaseisobservedincycle3asthedrugcrystallisesandloseswater.Thecorrespondingexothermicenergyofcrystallisationcanthenbemeasured.

Figure8.32.Settingofisothermalcalorimeterforquantitation

ofamorphouscontent[17,21]

a b

Figure8.33.Sorption‐desorptionisotherms(a)beforeand(b)aftermicronisation.

Crystallisationoftheamorphouspartinhumidatmosphere

Figure8.34 showsan exampleof thedeterminationof amorphous content in abatch of micronised substance for inhalation, by using two different solventvapours, and themethodswere validated. The same result is obtained for this

Type: Thermal Activity Monitor,Thermometrics

Sample volume: 3 ml, glass ampoule

Temperature: 20 – 80 oCPrecision: 0.1 % (at 300 W)Baseline stability: 0.2 W (8 h)Humidity control: e.g. 57 % RH

(sat. NaCl‐solution)

Isothermal Microcalorimetry

Page 39: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

423

batch: 12.9% compared to 12.7 % amorphous content. However, as demon‐stratedinFigure8.34,thetimeofcrystallisationisquitedifferent.Withvapoursfromamixtureofethanolandwater,thecrystallisationisrapid,butthestartofcrystallisation cannot be measured for low amounts of amorphous form. Thismethod can be used in the range 7 ‐ 15% of amorphous content. In order toanalyse lower contents, dimethylformamide (DMF) used as vapour, can actslowly, and themethod has been validated in the range 2 – 30% amorphouscontent.Anautomatic instrumentwith48channels(TAinstruments),allowsustoperformroutineanalysiswithalimitofdetectionatthe1%level.

Figure8.34.Exampleofquantitativevalidatedmethodsforthedeterminationof

amorphouscontentbyisothermalmicrocalorimetry;(a)and(b)microcalorimetriccurvesforabatchwithtwodifferentmethods,(c)automaticisothermalmicrocalorimetric

instrument(TAanalysis),(d)comparisonofcurveswithverylowamorphousformcontent

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Hea

t F

low

(m

W)

TIME (hours) 0 1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

He

at f

low

(m

W)

Time (hours)

Start

(b)Method 1: 12.9%Method 2: 12.7%

0

30

60

90

Time,hou5 100

P,µW Pin[1](t)Pin[2](t)Pin[3](t)Pin[4](t)

2%

1.5%

0.7%

Time, hours

Time, hours Time, hours

Heat flow, mW

Heat flow, mW

Start

DMF, longer analysisrange 2‐30 %

ethanol/water, quick resultsrange 7‐15 %

a b

c d

Page 40: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

424

8.4.6.2. Solutioncalorimetry

SolutioncalorimetryhasbeendescribedinUnitedStatesPharmacopeia(USP)forthe determination of the amorphous form, but has also been used forquantitationofpolymorphs[14].Thismethodsupposesthatnoothercrystallineformmayinterfere.Inthecaseofenantiotropy:

Ht=HSA‐HSB (8.9)

whereHSAistheheatofsolutionofformA,andHSBtheheatofsolutionofformB.

Thismethodcanbeusedforpolymorphs,asdemonstratedinFigure8.35foranenantiotropicdrug.ThesameresultsfortheheatoftransitionarefoundbyDSCandsolutioncalorimetry[12,16,18].Solutioncalorimetryisveryhelpfulwhenthesubstancedecomposes onmelting. This approach allowsus to choosebetweenformsandselectthemoststable[14,18].

Figure8.35. Solutioncalorimetry.Determinationoftheheatoftransitionbetween

2enantiotrops[16.]BeforeandafterthebreakoftheampoulecontainingthesubstanceinwatertheinstrumentiscalibratedbyJouleeffect.HeatoftransitionfoundbyDSC:10.4kJmol‐1;Heatoftransitionfoundbysolutionmicrocalorimetry:9.7kJmol‐1

8.5. SOMEEXAMPLESOFAPPLICATIONS

8.5.1. Theselectionoftherightform

The following example, given in Figure8.36, is a situation often found in earlydevelopment.Wereceivedasample,obtainedbyprecipitation,forwhichtheDSCscan exhibits dual melting. By using different heating rates it was possible to

Calibration 1

Calibration 2

Calibration 1

Calibration 2Break

Break

Form A: 8.2 kJ mol-1

Form B: 17.9 kJ mol-1

Time, minutes

Temperature, oC

Page 41: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

425

calculate the melting enthalpies and it was concluded that the sample is anenantiotropicsystem.Thepolymorphismstudyofslurriesindifferentsolventsofa purer sample gave a third form. According to Burger’s rule, and theequilibrationstudy,Cisthestableform,AandBareenantiotrops,andbotharemonotropstoC.Consequently,formCwasselectedforfurtherstudy[32].

In solid state A B but A and B monotrops to C

Figure8.36. Caseofadrugcandidatewithtwoenantiotropicmetastableformsobtainedinresearchlaboratory.Athirdformwasthermodynamicallystable[32].

Summaryoftheirrelationships.

8.5.2. SensitivityofDSC

Figure8.37dealswithadrugsubstanceforwhichtracesofastableform(formB)actedasacatalystforquicktransformationifthesampleswerenotkeptatverylowtemperatures.DSCprovedmoresensitiveandallowedmonitoring[15,18].

Figure8.37.Exampleofquantitativedeterminationofundesirableformbythemelting

DSCcurve.SensitivityofDSC:tracesofastableformactingasseedsbyagingaredeterminable[15,17]

Form A Melting : 112°C

Enthalpy : 98J/g

Heat

Solvent mediated Solvent mediated

Form B Melting : 117°C

Enthalpy : 90J/g

Form C Melting : 125°C

Enthalpy : 120J/g

Giron, Amer. Pharm. Rev. 8 (2005), 32, 72.

Page 42: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

426

8.5.3. Disappearingsolvates

Solvatesareveryoftenformedinthepresenceofvolatilesolvents.Byisolationinthe air they easily transform into anhydrous forms, stable or unstable, inamorphouspowder,orinhydratedforms.Thebestwaytodetectthemwouldbedirectmeasurementinthecrystallisationvessel.Figure8.38showstheresultsofalargenumberofexperimentstounderstandthecomplexsituationfoundwithadrugsubstance.

Figure8.38.Disappearingsolvates.Exampleofexperimentsconducted

toselecttherightform[18]

8.5.4. Selectionofthebestformconsideringthepharmaceuticalenvironment

Water is present in the air and in excipients, and is oftenused inmixtures forcrystallisation purposes. The TG curves of hydrates can be consideredfingerprints. Figure 8.39 is an example of the coexistence ofmonohydrate andtrihydrate in the solvent mixture of a process. The TG curve permitted theevaluation of thepresenceof the trihydrate, since trihydrate andmonohydratehadseparatedstepsforthelossofwater[16,18].Figure8.40isanexampleoftherelationshipsneededtoselectthermodynamicwindowsforhydrates[12].

Crystallisation in ethanol <40 oC form A, >50 oC form BWhich form to be selected?

Burger’s rule? A: one DSC peak B: two DSC peaks with decompositionX‐ray heating cell: B  A before melting and decomposition

Slurry experiments form A, form B and mixture A + B at 10, 25, 40, 50 and 60 oC at different times and solvents. Analysis of solids

unstable solvate

ethanol, <40oC

solvate 1:1B A

isopropanol, acetone, <40oC

Page 43: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

427

a b

Figure8.39.DetectionofimpurehydratesbyTG.

(a)TGcurvesofthemonohydrate,thetrihydrateandofanimpuresamplecontainingboth;(b)solubilitybehaviourofthemonohydrateandofthetrihydrate[18]

Figure8.40.Exampleofrelationshipsinacomplexproblemofhydratesandsolvates.

(a)AsdemonstratedontheDSCcurvesthedehydrationoftwopolymorphsofthehydrateoccurdifferently.

A:DSCofanhydrousformIwithtransformationintoanhydrousIII.B:polymorphichydrateAlooseswaterandgivestheanhydrousformI.C:polymorphichydrateBlooseswaterintotheanhydrousformII;

(b)Aschemeoftherelationshipsbetweensolvates,hydratesandanhydrousform

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

anhydrous

monohydrate

trihydrate

Mas

s, %

Co

nce

ntr

atio

n,m

gm

l-1

Temperature, oC Temperature, oC30 40 50 60 70 80 90

Temperature, oC70 80 90 100 110 120 130 140 150 160

En

do

ther

mic

Solvates

Anhydrous I

Anhydrous III

Solvents

Hydrate A

Hydrate B

Anhydrous II

Moisture

‐H2O

Moisture

a b

Page 44: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

428

8.6. CONCLUSION

Inconclusion,thermalanalysisandcalorimetrictechniquesarenecessaryfortheselection and the characterisation of solid forms. They are versatile and offerquickresults.Asexemplified inFigure8.41,characterisationof therelationshipbetweenallformsistheobjectiveofdevelopment.Forthischallengingpurposearange of methods is necessary, and when this is achieved, process analyticaltechnologywillbethefutureforupscaleandmanufacture.

Figure8.41.Relationshipsbetweenthesolidphasesoftetracainehydrochlorideaccordingto[41].Forthestudy,DSC,TGandtemperatureresolvedXRDaswellas

solubilityandslurriesexperimentswereperformed.6cristallineanhydrousformswereidentified,anamorphousform,atetrahydrate,amonohydrateandahemi‐hydrate.Atroomtemperatureonlyanhydrousforms1and5couldbeobtainedforalongperiodof

time.Form1isthestableformandcorrespondstothecommercialquality

REFERENCES

1. Guideline SpecificationQ6A. Investigating the need to set acceptance criteria forpolymorphismindrugsubstancesanddrugproducts.InternationalConferenceonHarmonization(ICH)(1999).

2. L.LeChatelier.CompteRendu.104(1886)1243.3. G.Höhne,W.Hemminger,H.J.Flammersheim.HandbookofThermalAnalysisand

Calorimetry.Springer,2003.4. P.J.Haines.PrinciplesofThermalAnalysisandCalorimetry.RCSPaperback,2002.5. P.Gabbott.PrinciplesandApplicationsofThermalAnalysis.Wiley‐BlackwellPubl.

(2007).

Page 45: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Thermalanalysisandcalorimetricmethodsappliedtopharmaceuticalsolidforms

429

6. D.Q.M.Craig,M.Reading.ThermalAnalysisofPharmaceuticals.CRCPress,UK2006.7. W‐P. Pan, L. Judovits. Techniques in thermal Analysis, hyphenated techniques,

ThermalAnalysisofsurface,fastrateanalysis.ASTM,2007.8. D. Giron, Thermal Analysis of Drugs and Drug Products. In: Encyclopedia of

PharmaceuticalTechnology.(Eds.J.Swarbrick,J.C.Boylan)MarcelDekker,2006.9. D. Giron. Thermal Analysis and microcalorimetric methods in the industry:

essential techniques for proper development of pharmaceuticals. EuropeanPharmaceuticalReview2006(5)84‐90.

10. D.Giron.LatestDevelopment in theareaof thermalanalysisandcalorimetrythatareimpactingonpharmaceuticalmanufacturing.EuropeanPharmaceuticalReview2008(2)71‐76.

11. B.Rodriguez‐Spong,C.P.Price,A. Jayasankar,A.J.Matzger,N.Rodriguez‐Hornedo.General principles of pharmaceutical solid polymorphism: A supramolecularperspective.AdvancedDrugDeliveryReviews56(3)(2004)241‐274.

12. D. Giron. Thermal analysis and calorimetric methods in the characterization ofpolymorphsandsolvates.ThermochimicaActa248(1995)1‐59.

13. D. Giron. Le polymorphisme. Labo‐Pharma Problèmes et techniques. 307 (1981)151‐160.

14. D. Giron. Investigations of polymorphism and pseudo‐polymorphism in pharma‐ceuticals by combined thermoanalytical techniques. Journal of Thermal AnalysisandCalorimetry64(1)(2001)37‐60.

15. D. Giron. Monitoring of polymorphism from detection to quantification. Engine‐eringinLifeSciences3(3)(2003)103‐112.

16. D.Giron,M.Mutz,S.Garnier.Solid‐stateofpharmaceuticalcompounds:Impactofthe ICHQ6guidelineon industrial development. JournalofThermalAnalysisandCalorimetry77(2)(2004)709‐747.

17. D.Giron,S.Monnier,M.Mutz,T.Buser,F.Stowasser,K.Schulze,M.Bellus.Compa‐risonofquantitativemethods foranalysisofpolyphasicpharmaceuticals. JournalofThermalAnalysisandCalorimetry89(3)(2007)729‐743.

18. D. Giron, S. Monnier, M. Mutz. Challenging characterization and monitoring ofpolymorphs. Latest developments. Lecture presented at AFCAT‐GEFTA‐STKmeeting,Mulhouse,2008.

19. I.M.Vitez.UtilizationofDSCforpharmaceuticalcrystalformquantitation.JournalofThermalAnalysisandCalorimetry78(1)(2004)33‐45.

20. S.Gaisford,M.A.A.O’Neil,PharmaceuticalIsothermalCalorimery,InformaHealth‐care,2007.

21. M. Mutz, A. Motreff, M. Monnier, T. Buser, P. Schwab, D. Giron. Use of highthroughputmicrocalorimeterforfasterdeterminationofamorphouscontent.STKannualmeeting,June2006,Fribourg,Switzerland.

22. G.Buckton,P.Darcy,A.J.Mackellar.Theuseofisothermalmicrocalorimetryinthestudyofsmalldegreesofamorphouscontentofpowders.InternationalJournalofPharmaceutics117(2)(1995)253‐256.

23. D.Giron,P.Remy,S.Thomas,E.Vilette.Quantitationofamorphicitybymicrocalori‐metry.JournalofThermalAnalysisandCalorimetry48(3)(1997)465‐470.

24. B.Shah, V.K. Kakumanu, A.K. Bansal. Analytical techniques for quantification ofamorphous/crystallinephasesinpharmaceuticalsolids.JournalofPharmaceuticalScience95(8)(2006)1641‐1665.

Page 46: Chapter THERMAL ANALYSIS AND CALORIMETRIC METHODS … · 2018-10-18 · identification, purity and quantitation. Thermal analysis techniques are basic methods in the field of solid

Chapter8

430

25. M.Savolainen,K.Jouppila,O.Pajamo,L.Christiansen,C.Strachan,M.Karjalainen,J.Rantanen.Determinationofamorphouscontentinthepharmaceuticalprocessen‐vironment.JournalofPharmacyandPharmacology59(2)(2007)161‐170.

26. S.R.Chemburkar,J.B.K.Deming,H.Spiwek,K.Patel,J.Morris,R.Henry,S.Spanton,W.Dziki,W.Porter,J.Quick,P.Bauer,J.Donaubauer,B.A.Narayanan,M.Soldani,D.Riley,K.McFarland.Dealingwith the impactof ritonavirpolymorphson the latestages of bulk drug process development. Organic Process Research andDevelopment4(5)(2000)413‐417.

27. A.Burger, R. Ramberger. On the polymorphism of pharmaceuticals and othermolecular crystals. Theory of thermodynamic rules. Mikrochimica Acta [Wien] II72(3)(1979)259‐271.

28. Burger,U.J.Griesser.ScientiaPharmaceutica.58(1990)423‐430.29. M. Soustelle. In: Handbook of powder technology, Vol.9.PowderTechnologyand

PharmaceuticalProcesses(Eds.D.Chulia,M.Deleuil,Y.Pourcelot)Elsevier1994.30. B.C.Hancock,G.Zografi.Characteristicsandsignificanceoftheamorphousstatein

pharmaceuticalsystems.JournalofPharmaceuticalScience86(1)(1997)1‐12.31. D. Giron, C. Goldbronn. Place of DSC purity analysis in pharmaceutical develop‐

ment.JournalofThermalAnalysisandCalorimetry44(1)(1995)217‐251.32. D.Giron.Polymorphism:Thermodynamicandkinetic factors tobeconsidered in

chemicaldevelopment.AmericanPharmaceuticalReview8 (2005)32‐37and72‐79.

33. D. Giron. Characterisation of salts of drug substances. JournalofThermalAnalysisandCalorimetry73(2)(2003)441‐450.

34. D. Giron, C. Golbronn, M. Mutz, S. Pfeffer, P. Piechon, P. Schwab. Solid statecharacterization of pharmaceutical hydrates. Journal of Thermal Analysis andCalorimetry68(2)(2002)453‐465.

35. W.Chongcharoen, S.R. Byrn, N. Sutanthavinu. Solid state interconversion ofnorfloxacinhydrates.JournalofPharmaceuticalScience97(1)(2008)473‐487.

36. A.K.Salameh,L.S.Taylor.Physicalstabilityofcrystalhydratesandtheiranhydratesinthepresenceofexcipients.JournalofPharmaceuticalScience95(2)(2006)446‐461.

37. M. Ollivon, G. Keller, C. Bourgaux, D. Kalnin, P. Villeneuve, P. Lesieur. Journal ofThermalAnalysisandCalorimetry85(1)(2006)219‐224.

38. Kichi,H.Toraya. SimultaneousmeasurementsofX‐raydiffraction (XRD) anddif‐ferential scanningcalorimetrydataundercontrolledhumidityconditions: instru‐mentation,andapplicationtostudiesonhydration,dehydrationandre‐hydrationprocessofpharmaceuticalcompounds.AdvancesinX‐rayAnalysis47240‐248.

39. Rodriguez, D.E. Bugay.Characterization of pharmaceutical solvates by combinedgravimetricandinfraredanalysis.JournalofPharmaceuticalScience86(2)(1997)263‐266.

40. F.Eigenmann,M.Maciejewski,A.Baiker.QuantitativecalibrationofspectroscopicsignalsincombinedTG‐FT‐IRsystems.ThermochimicaActa440(1)(2006)81‐92.

41. D.Giron,M.Draghi,C.Goldbronn,S.Pfeffer,P.Piechon.Studyofpolymorphismoftetracaine hydrochloride. Journal of Thermal Analysis and Calorimetry 49(2)(1997)913‐927.


Recommended