+ All Categories
Home > Documents > Chapter_2_Introduction to Conduction

Chapter_2_Introduction to Conduction

Date post: 06-Jul-2018
Category:
Upload: irfan-maulana
View: 213 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 8/17/2019 Chapter_2_Introduction to Conduction

    1/31

    Chapter 2 Perpindahan Panas/Heat Transfer   1

    Chapter 2

    Conduction

  • 8/17/2019 Chapter_2_Introduction to Conduction

    2/31

    Chapter 2 Perpindahan Panas/Heat Transfer   2

    Conduction Heat Transfer 

    • Conduction refers to the transport of energy in a medium (solid, liquid or

    gas) due to a temperature gradient.• The physical mechanism is random atomic or molecular actiity

    • !oerned "y #ourier$s la%

    • &n this chapter %e %ill learn The definition of important transport properties and %hat goerns

    thermal conductiity in solids, liquids and gases

    The general formulation of #ourier$s la%, applica"le to any geometry

    and multiple dimensions

    Ho% to o"tain temperature distri"utions "y using the heat diffusionequation.

    Ho% to apply "oundary and initial conditions

  • 8/17/2019 Chapter_2_Introduction to Conduction

    3/31

    Chapter 2 Perpindahan Panas/Heat Transfer   3

    Thermal Properties of Matter 

    • 'ecall from Chapter , equation for heat conduction

     L

    k  L

    T T 

    k q x∆

    =−

    =21"

    The proportionality constant is a transport property , *no%n as

    thermal conductivity  k  (units +/m.)

    • -sually assumed to "e isotropic  (independent of the direction oftransfer) k  x =k y =k z =k 

    Is thermal conductivity different between gases, liquids and solids?

  • 8/17/2019 Chapter_2_Introduction to Conduction

    4/31

    Chapter 2 Perpindahan Panas/Heat Transfer   4

    Thermal Conductivity: Solids

    • olid comprised of free electrons and atoms "ound in lattice

    • Thermal energy transported through

      0igration of free electrons, *e

      1attice i"rational %aes, *l

    l e   k k k    +=)(y,resistivitelectrical

    1

    ≈ek %here

    ? What is the relative magnitude in pure metals, alloys and non-metallic

    solids?

    See Figure 2.5, Appendix Tables A.1, A.2 and A.3 text 

  • 8/17/2019 Chapter_2_Introduction to Conduction

    5/31

    Chapter 2 Perpindahan Panas/Heat Transfer   5

  • 8/17/2019 Chapter_2_Introduction to Conduction

    6/31

    Chapter 2 Perpindahan Panas/Heat Transfer   6

  • 8/17/2019 Chapter_2_Introduction to Conduction

    7/31

    Chapter 2 Perpindahan Panas/Heat Transfer   7

  • 8/17/2019 Chapter_2_Introduction to Conduction

    8/31

    Chapter 2 Perpindahan Panas/Heat Transfer   8

    Thermal Conductivity: Fluids

    • &ntermolecular spacing is much larger 

    • 0olecular motion is random• Thermal energy transport less effectie than in solids thermal

    conductiity is lo%er 

    inetic theory of gases

    λ∝   cnk 

    %here n the num"er of particles per unit olume, the mean

    molecular speed and λ the mean free path (aerage distance traelled"efore a collision)

    ? What are the effects of temperature, molecular weight and pressure?

    c

  • 8/17/2019 Chapter_2_Introduction to Conduction

    9/31

    Chapter 2 Perpindahan Panas/Heat Transfer   9

  • 8/17/2019 Chapter_2_Introduction to Conduction

    10/31

    Chapter 2 Perpindahan Panas/Heat Transfer   10

    Thermal Conductivity: Fluids

    • Physical mechanisms controlling thermal conductiity not %ell

    understood in the liquid state

    • !enerally * decreases %ith increasing temperature (e3ceptions

    glycerine and %ater)

    • * decreases %ith increasing molecular %eight.

    • 4alues ta"ulated as function of temperature. ee Ta"les 5.6 and 5.7,

    te3t.

  • 8/17/2019 Chapter_2_Introduction to Conduction

    11/31

    Chapter 2 Perpindahan Panas/Heat Transfer   11

    Thermal Conductivity: Insulators

      Can disperse solid material throughout an air space fi"er, po%der andfla*e type insulations

      Cellular insulation #oamed systems

    eeral modes of heat transfer inoled (conduction, conection, radiation)

    8ffectie thermal conductiity depends on the thermal conductivity and

    radiative properties of solid material, volumetric fraction of the air space,

    structure/morphology  (open s. closed pores, pore olume, pore si9e

    etc.) bulk density  (solid mass/total olume) depends strongly on the

    manner in %hich the solid material is interconnected. ee Ta"le 5.:.

    ? How can we design a solid material with low thermal

    conductivity?

  • 8/17/2019 Chapter_2_Introduction to Conduction

    12/31

    Chapter 2 Perpindahan Panas/Heat Transfer   12

  • 8/17/2019 Chapter_2_Introduction to Conduction

    13/31

  • 8/17/2019 Chapter_2_Introduction to Conduction

    14/31

    Chapter 2 Perpindahan Panas/Heat Transfer   14

    The Conduction Rate !uation

    'ecall from Chapter

    dx

    dT kAq x   −=

    • Heat rate in the

    3=direction

    • Heat flu3 in the

    3=direction   dx

    dT k 

     A

    qq x   −==

    "

    3

    We assumed that T varies only

    in the x-direction, T=T(x)

    Direction of heat flux is normal

    to cross sectional area A, where

    A is isothermal surface (plane

    normal to x-direction)

    T(high)

    T2 (lo%)

    q3”

    3 32

    A

  • 8/17/2019 Chapter_2_Introduction to Conduction

    15/31

    Chapter 2 Perpindahan Panas/Heat Transfer   15

    The Conduction Rate !uation

    &n reality %e must account for heat transfer in three dimensions

    • Temperature is a scalar field T(3,y,9)• Heat flu3 is a ector quantity. &n Cartesian coordinates

    for isotropic medium z T k q

     yT k q

     xT k q  z  y x ∂

    ∂−=∂∂−=

    ∂∂−= """  ,,

    T k 

     z 

     y

     x

    T k    ∇=  

     

     

     

     

    ∂+

    ∂+

    ∂−=∴ k  i!

    +here three dimensional del operator in cartesian coordinates

     z  y x   ∂∂

    +∂∂

    +∂∂

    =∇ k  i

    """" z  y x   qqq k  i!   ++=

  • 8/17/2019 Chapter_2_Introduction to Conduction

    16/31

  • 8/17/2019 Chapter_2_Introduction to Conduction

    17/31

    Chapter 2 Perpindahan Panas/Heat Transfer   17

    The Heat Diffusion !uation

    • >"?ectie to determine the temperature field, ie. temperature

    distri"ution %ithin the medium.• @ased on *no%ledge of temperature distri"ution %e can

    compute the conduction heat flu3. 

    'eminder from fluid mechanics ;ifferential control olume.

    We will apply the enery

    c!nservati!n e#ati!n t!

    the $i%%erential c!ntr!lv!l#&e'

    8lement of olumed3 dy d9

    (*,y,+)

  • 8/17/2019 Chapter_2_Introduction to Conduction

    18/31

    Chapter 2 Perpindahan Panas/Heat Transfer   18

    i&ensi $i%%erential c!ntr!l v!l#&e dx, dy $an dz -

  • 8/17/2019 Chapter_2_Introduction to Conduction

    19/31

    Chapter 2 Perpindahan Panas/Heat Transfer   19

    Heat Diffusion !uation

    .nery '!nservati!n .#ati!n st 

     st 

    ut  g in  ! 

    dt 

    d!  !  !  !   

    ==−+

    dz  z dy ydx xut 

     z  y xin

    qqq ! 

    qqq ! 

    +++   ++=

    ++=

    %here from #ourier$s la%

     z 

    T dxdyk 

     z 

    T kAq

     y

    T dxdz k  y

    T kAq

     x

    T dydz k 

     x

    T kAq

     z  z 

     y y

     x x

    ∂∂

    −=∂∂

    −=

    ∂∂−=

    ∂∂−=

    ∂∂

    −=∂∂

    −=

    )(

     )(

    )(

    (2-1)

    +

    y

    *

    *

    y

    +

  • 8/17/2019 Chapter_2_Introduction to Conduction

    20/31

    Chapter 2 Perpindahan Panas/Heat Transfer   20

    Heat Diffusion !uation

    • Thermal ener%y %eneration due to an ener%y source

     0anifestation of ener%y conversion process ("et%eenthermal energy and chemical&electrical&nuclear  energy)

    Positie (source) if thermal energy is generated

    Aegatie (sin*) if thermal energy is consumed

    )(

    $

    dz dydxq

    q !  g 

    =

    =

    • ner%y stora%e term

      'epresents the rate of change of thermal energy

    stored in the matter in the a'sence of phase chan%e.

    )(   dz dydxt 

    T c !   p st   

    ∂∂

    ρ=

    t T c p   ∂∂ρ / is the time rate of change of the sensi'le (thermal)energy of the medium per unit olume (+/m:)

    qis the rate at %hich ener%y is %enerated perunit olume of the medium (+/m:)

  • 8/17/2019 Chapter_2_Introduction to Conduction

    21/31

    Chapter 2 Perpindahan Panas/Heat Transfer   21

    Heat Diffusion !uation

    u"stituting into 8q. (2.)

    T cq

     z 

    T k 

     y y

    T k 

     y x

    T k 

     x  p ∂

    ∂ρ=+ 

      

      

    ∂∂

    ∂∂

    +   

      

     ∂∂

    ∂∂

    +   

      

    ∂∂

    ∂∂

    "eat#!uation

    Aet conduction of heat into the C4rate of

    energy

    generation

    per unit

    olume

    time rate of

    change of

    thermal

    energy per

    unit olume

     5t any point in the medium the rate of energy transfer "y conduction into

    a unit olume plus the olumetric rate of thermal energy generation must

    equal the rate of change of thermal energy stored %ithin the olume

    (2-2)

  • 8/17/2019 Chapter_2_Introduction to Conduction

    22/31

    Chapter 2 Perpindahan Panas/Heat Transfer   22

    Heat Diffusion !uation( )ther forms

    • &f *Bconstant

    q

     z 

     y

     x

    ∂∂

    α=+

    ∂∂+

    ∂∂+

    ∂∂ 1

    2

    2

    2

    2

    2

    2 is the thermal diffusiity

     pc

    ρ=α

    • #or steady state conditions

    0=+   

      

    ∂∂

    ∂∂

    +   

      

     ∂∂

    ∂∂

    +   

      

    ∂∂

    ∂∂

    q z 

    T k 

     y y

    T k 

     y x

    T k 

     x

    • #or steady state conditions, one=dimensional transfer in 3=direction

    and no energy generation

    0!r0

    "

    ==   

      

    dx

    dq

    dx

    dT k 

    dx

    d   x    Heat flu3 is constant inthe direction of transfer 

    (2-3)

    (2-4)

  • 8/17/2019 Chapter_2_Introduction to Conduction

    23/31

    Cylindrical Coordinate

    Chapter 2 Perpindahan Panas/Heat Transfer   23

  • 8/17/2019 Chapter_2_Introduction to Conduction

    24/31

    Chapter 2 Perpindahan Panas/Heat Transfer   24

    Spherical Coordinates

    T cq

    T k 

    T k 

    r r 

    T kr 

    r r   p ∂

    ∂ρ=+ 

      

      

    θ∂∂

    θθ∂∂

    θ+  

     

      

     φ∂

    ∂φ∂∂

    θ+ 

      

      

    ∂∂

    ∂∂

    sinsin

    1

    sin

    11222

    2

    2

  • 8/17/2019 Chapter_2_Introduction to Conduction

    25/31

    Chapter 2 Perpindahan Panas/Heat Transfer   25

    *ample

    The steady=state temperature distri"ution in a one=dimensional %all of

    thermal conductiity 6 +/m. and thic*ness 6 mm is o"sered to

    "e T(DC)BaE"32, %here aB2DC, "B=2DC/m2, and 3 is in meters.

    a) +hat is the heat generation rate in the %allF

    ") ;etermine the heat flu3es at the t%o %all faces. &n %hat manner are

    these heat flu3es related to the heat generation rateF

  • 8/17/2019 Chapter_2_Introduction to Conduction

    26/31

    Chapter 2 Perpindahan Panas/Heat Transfer   26

    +oundary and Initial Conditions

    • Heat equation is a differential equation

      econd order in spatial coordinates Aeed 2 "oundary conditions

      #irst order in time Aeed initial condition

    @oundary Conditions

    Example a surface is in contact with a melting solid or a boiling liquid ) @.C. of first *ind (;irichlet condition)

    *

    (*,t)

    s

  • 8/17/2019 Chapter_2_Introduction to Conduction

    27/31

    Chapter 2 Perpindahan Panas/Heat Transfer   27

    +oundary and Initial Conditions

    Example What happens when an electric heater is attached to a

    surface? What if the surface is perfectly insulated?

    2) @.C. of second *ind (Aeumann condition) Constant heat flu3 at thesurface

    *(*,t)

    *

    (*,t)

    q3”

  • 8/17/2019 Chapter_2_Introduction to Conduction

    28/31

    Chapter 2 Perpindahan Panas/Heat Transfer   28

    +oundary and Initial Conditions

    :)@.C. of third *ind +hen convective heat transfer occurs at the surface

    (*,t)

    (0,t)

    *

    "T  ,∞

  • 8/17/2019 Chapter_2_Introduction to Conduction

    29/31

    Chapter 2 Perpindahan Panas/Heat Transfer   29

    *ample 2,-

     5 long copper "ar of rectangular cross section, %hose %idth % is much greater

    than its thic*ness 1, is maintained in contact %ith a heat sin* (for e3ample anice "ath) at a uniform initial temperature To. uddenly an electric current is

    passed through the "ar, and an airstream of temperature is passed oer

    the top surface, %hile the "ottom surface is maintained at To. >"tain the

    differential equation, the "oundary and initial conditions that can "e used to

    determine the temperature as a function of position and time inside the "ar.

    ∞T 

  • 8/17/2019 Chapter_2_Introduction to Conduction

    30/31

    Chapter 2 Perpindahan Panas/Heat Transfer   30

    *ample

    Passage of an electric current through a long conducting rod of radius

    r i and thermal conductiity *r  results in uniform olumetric heating at arate of . The conducting rod is %rapped in an electrically

    nonconducting cladding material of outer radius r o and thermal

    conductiity *c, and conection cooling is proided "y an ad?oining

    fluid.

    #or steady=state conditions, %rite appropriate forms of the heatequations for the rod and cladding. 83press appropriate "oundary

    conditions for the solution of these equations.

    q

  • 8/17/2019 Chapter_2_Introduction to Conduction

    31/31

    Matur than. you / your attention,

    Chapter 2 Perpindahan Panas/Heat Transfer 31


Recommended