+ All Categories
Home > Documents > chapter6c2

chapter6c2

Date post: 02-Jun-2018
Category:
Upload: shfnth
View: 217 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 8/10/2019 chapter6c2

    1/31

    EMLAB

    1

    Chapter 6. Capacitance andinductance

  • 8/10/2019 chapter6c2

    2/31

    EMLAB

    2

    Contents

    1. Capacitors

    2. Inductors

    3. Capacitor and inductor combinations

    4. RC operational amplifier circuits

    5. Application examples

  • 8/10/2019 chapter6c2

    3/31

    EMLAB

    3

    Power supply board

    PC motherboard

    inductor capacitor

    inductor

    capacitor

    Cell phone

    Usage of inductors and capacitors

  • 8/10/2019 chapter6c2

    4/31

    EMLAB

    4

    1. Capacitors

    Capacitance is defined to be the ratio of charge to voltage difference.

    Used to store charges

    Used to store electrostatic energy

    0V

    0Q

    q

    SV SV

    SVSVVE

    If the voltage difference between the

    terminals of the capacitor is equal to

    the supply voltage, net flow of

    charges becomes zero.

    V

    QC

  • 8/10/2019 chapter6c2

    5/31

    EMLAB

    5

    Electrons(-) are absorbed.(+) charges are generated

    Electrons(-) are generated.(+) charges are absorbed.

    Generation of charges : battery

    e2ZnZn 2

    234 HNH222NH

    e

    Electrons are generated via

    electro-chemical reaction.

  • 8/10/2019 chapter6c2

    6/31

    EMLAB

    6

    Used to store charges

    Used to store electrostatic energy

    Slow down voltage variation

    Usage of capacitors

  • 8/10/2019 chapter6c2

    7/31EMLAB

    7

    Type of capacitors

    t

    0

    )(1

    )( dttiC

    t

    http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=6ZZX4Racl1o-sM&tbnid=ZOMpPYoONnjwqM:&ved=0CAUQjRw&url=http://variable-capacitors.blogspot.com/&ei=X9HvUtbPCOmSiQem_IGQBQ&psig=AFQjCNF7BjRZ_I3oSPZ6jAia_i8E2D2F_g&ust=1391534331654366
  • 8/10/2019 chapter6c2

    8/31

  • 8/10/2019 chapter6c2

    9/31EMLAB

    9

    i

    t

    t0

    0

    t

    diC

    )(1

    irelation of capacitors

  • 8/10/2019 chapter6c2

    10/31EMLAB

    10

    )(ti

    Example 6.2

    The voltage across a 5-F capacitor has the waveform shown in Fig. 6.4a. Determine

    the current waveform.

    dt

    dCi

    mst

    mstt

    mstt

    t

    80

    8696102

    24

    60106

    24

    )( 3

    3

    mst

    mstmA

    mstmA

    ti

    80

    8660

    6020

    )(

  • 8/10/2019 chapter6c2

    11/31EMLAB

    11

    Capacitor voltage cannot change instantaneouslydue to finite current supply.

    Properties of capacitors

    SV

    i

    t

    dt

    dCi

    SR

    CC

    In steady state, capacitor behaves as if open circuited.

    SV

    iSR

    0

    dt

    dCi DC

    )()( 00 tt

    0t

  • 8/10/2019 chapter6c2

    12/31EMLAB

    12

    Example 6.3

    Determine the energy stored in the electric field of the capacitor in Example 6.2 at

    t=6 ms.

    ][1440)]([2

    1)(

    2JtCtW

  • 8/10/2019 chapter6c2

    13/31EMLAB

    13

    The current in an initially uncharged 4F capacitor is shown in Fig. 6.5a. Let us

    derive the waveforms for the voltage, power, and energy and compute the energy

    stored in the electric field of the capacitor at t=2 ms.

    Example 6.4

    mst

    mst

    mstt

    ti

    40

    428

    20102

    16

    )(

    3

    mst

    msttdx

    msttxdx

    tt

    t

    40

    42824)8(4

    1

    2010001084

    1

    )(0

    0

    23

    mst

    mstt

    mstt

    ttitp

    40

    426416

    208

    )()()(

    3

    mst msttt

    mstt

    dxxptW

    t

    40421012810648

    202

    )()(

    1292

    4

    0

  • 8/10/2019 chapter6c2

    14/31EMLAB

    14

    2. Inductors

    dt

    diLtL )(

  • 8/10/2019 chapter6c2

    15/31EMLAB

    15

    Two important laws on magnetic field

    Current generates magnetic field(Biot-Savart Law)

    inducedV

    Time-varying magnetic field generates

    induced electric field that opposes the

    variation. (Faradayslaw)

    Current

    Current

    B-field

    B-field

    V

  • 8/10/2019 chapter6c2

    16/31EMLAB

    16

    Biot-Savart Law Faradays Law

    rrRRr

    B

    ,4

    2C R

    Id

    LidS

    aB

    dt

    dV

    ind

  • 8/10/2019 chapter6c2

    17/31EMLAB

    17

    Self induced voltage

    dt

    diL

    dt

    dV

    ind

    The induced voltage is generated such that it opposes the applied magnetic flux.

    The inductor cannot distinguish where the applied magnetic flux comes from.

    If the magnetic flux is due to the coil itself, it is called that the induced voltage

    is generated by self-inductance.

    =

  • 8/10/2019 chapter6c2

    18/31EMLAB

    18

    Frequently used formulas on inductors

    dt

    diL

    t

    t

    t

    t

    tt

    dL

    ti

    dL

    dL

    dL

    i

    0

    0

    0

    )(1

    )(

    )(1

    )(1

    )(1

    0

    2

    2

    1)(

    )()()()( Li

    dt

    dti

    dt

    tdiLtittp

    22)]([

    2

    1

    2

    1)()()( tiLdLi

    d

    dditW

    tt

    i

    NL

    Energy :

    Power :

    Voltage :

    Inductance :

    Current :

  • 8/10/2019 chapter6c2

    19/31EMLAB

    19

    Properties of inductors

    SV

    i

    t

    i

    dt

    diL

    SR

    LL

    In steady state, inductor behaves as if short circuited.

    SV

    iSR

    0dt

    diL DC

    Inductor current cannot change instantaneouslydue to finite current supply.

    0t

    )()( 00 titi

    20

    6

  • 8/10/2019 chapter6c2

    20/31EMLAB

    20

    Find the total energy stored in the circuit of Fig. 6.8a.

    Example 6.5

    0815254273

    09

    36

    9

    111

    11

    CCC

    CC

    VVV

    VV

    ][8.109

    62.16],[2.16

    21VVVV CC

    ][8.19

    ],[2.16

    91

    2

    1

    1A

    VIA

    VI

    C

    L

    C

    L

    ][44.1)2.1)(102(2

    1 231 mJWL

    ][48.6)8.1)(104(2

    1 232

    mJWL

    ][62.2)2.16)(1020(2

    1 261

    mJWC

    ][92.2)8.10)(1050(2

    1 262 mJWC

  • 8/10/2019 chapter6c2

    21/31

    22

    E l 6 7

  • 8/10/2019 chapter6c2

    22/31EMLAB

    22

    Example 6.7

    The current in a 2-mH inductor is

    ][)377sin(2)( Atti

    Determine the voltage across the inductor and the energy stored in the inductor.

    ][)377cos(508.1)]377sin(2[

    )102()( 3

    Vtdt

    td

    dt

    diLtL

    ][)377(sin004.0)]377sin(2)[102(2

    1)]([

    2

    1)( 2232 JtttiLtWL

    23

    E l 6 8

  • 8/10/2019 chapter6c2

    23/31

    EMLAB

    23

    Example 6.8

    The voltage across a 200-mH inductor is given by the expression

    00

    0][)31()(

    3

    t

    tmVett

    t

    Let us derive the waveforms for the current, energy, and power.

    00

    0][5)31(200

    10 30

    33

    t

    tmAtedxexi

    tt

    x

    00

    0][)31(5)()()(

    6

    t

    tWetttittp

    t

    000][5.2)]([

    21)(

    62

    2

    ttJettiLtW

    t

    24

    C it d i d t ifi ti

  • 8/10/2019 chapter6c2

    24/31

    EMLAB

    24

    Capacitor and inductor specifications

    Standard tolerance

    values are ; 5%, ;

    10%, and ; 20%.

    Tolerances are

    typically 5% or

    10% of the

    specified value.

    25

    E l 6 10

  • 8/10/2019 chapter6c2

    25/31

    EMLAB

    25

    Example 6.10

    The capacitor in Fig. 6.11a is a 100-nF capacitor with a tolerance of 20%. If the

    voltage waveform is as shown in Fig. 6.11b, let us graph the current waveform for the

    minimum and maximum capacitor values.

    dt

    dCi

    26

    6 3 C it d I d t C bi ti

  • 8/10/2019 chapter6c2

    26/31

    EMLAB

    26

    6.3 Capacitor and Inductor Combinations

    =

    N

    N

    i iS CCCCC

    11111

    211

    N

    N

    i

    iP CCCCCC

    321

    1

    =

    27

  • 8/10/2019 chapter6c2

    27/31

    EMLAB

    27

    =

    =

    N

    N

    i iP LLLLLL

    111111

    3211

    N

    N

    i

    iS LLLLLL

    321

    1

    28

    6 4 RC O ti l A lifi Ci it

  • 8/10/2019 chapter6c2

    28/31

    EMLAB

    28

    6.4RC Operational Amplifier Circuits

    Op-amp differentiator

    Ci

    iRdt

    dC o

    2

    11 )(

    0,0 i

    dt

    tdCRo

    )(112

    29

    O i t t

  • 8/10/2019 chapter6c2

    29/31

    EMLAB

    29

    Op-amp integrator

    i

    dt

    dC

    R o )(2

    1

    1

    0,0 idt

    tdC

    R

    o )(2

    1

    1

    0)0(

    )(1

    )0()(1

    )(1

    0 1

    210

    1

    21

    1

    21

    o

    t

    o

    tt

    o dxxCR

    dxxCR

    dxxCR

    30

    Example 6 17

  • 8/10/2019 chapter6c2

    30/31

    EMLAB

    Example 6.17

    The waveform in Fig. 6.26a is applied at the input of the differentiator circuit shown

    in Fig. 6.25a. If R2=1 kand C1=2 F, determine the waveform at the output of the

    op-amp.

    mstV

    mstV

    dt

    td

    dt

    tdCRo

    105][4

    50][4)(10)2(

    )( 13112

    31

    Example 6 18

  • 8/10/2019 chapter6c2

    31/31

    Example 6.18

    If the integrator shown in Fig. 6.25b has the parameters R1=5 k and C2=0.2F,

    determine the waveform at the op-amp output if the input waveform is given as in Fig.

    6.27a and the capacitor is initially discharged.

    ][1.020

    ][1.002010)20(10)(

    1 33

    0 1

    21 stt

    stttdxx

    CR

    t

    o