+ All Categories
Home > Documents > Characterization of Extrasolar...

Characterization of Extrasolar...

Date post: 19-Aug-2019
Category:
Upload: vuongthuan
View: 213 times
Download: 0 times
Share this document with a friend
35
1 Characterization of Extrasolar Planets Mark Marley NASA Ames Research Center Characterizing Planets Why do it? How to measure M and R? Evolution and spectral fitting Atmospheric modeling and spectra Conclusions
Transcript
Page 1: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

1

Characterization ofExtrasolar Planets

Mark MarleyNASA Ames Research Center

Characterizing Planets

•Why do it?

•How to measure M and R?

•Evolution and spectral fitting

•Atmospheric modeling and spectra

•Conclusions

Page 2: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

2

Why Characterize GiantPlanets?

Giant Planets are notInteresting

•Radial velocity & SIM will determine masses and orbits

•Giants are not interesting for astrobiology

•Giant planet science provides no heritage for terrestrialplanet characterization and is a “niche” field

•Why build specialized instruments?

Page 3: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

3

Giant Planets are Interesting

•Radial velocity & SIM will determine masses andorbits: Planets are more than masses on springs and wellcharacterized planets are fiducials for more distant objects

•Giants are not interesting for astrobiology: theyprovide a record of stellar system formation &perhaps volatile transport

•Giant planet science provides no heritage forterrestrial planet characterization: provide end to endexperience of planet characterization, heritage forbigger efforts

Characterization•Mass - Images can resolve

sin i; RV less useful forsome groundbaseddetections (longer P, youngstars)

•Radius - Scattered lightalone does not tightlyconstrain radius sincealbedo uncertain - R2a

Need independent M & R measures

Page 4: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

4

Fortney et al. (2005)

Kuchner (2005)

Fortney et al. (2007)

Planet radii yieldbulk composition

Gl 436b

Page 5: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

5

How to Constrain M & R?

Radius: IR + Visible

Mid-IR Visible

R

Page 6: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

6

M = 1 MJ; age = 1 - 3 Gyr

⇒ δL/L = 60%also will dependon composition

MJ

Constraining R

Mid-IR Visible

R

easily 30% or more

Page 7: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

7

Kuchner (2005)

Mass from Evolution

Page 8: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

8

Burrows et al. 1997

Tef

f (K)

log Age (Gyr)

3500

500

A case study: Gl 570D (T8) - Saumon et al. (2003)

Primary (Gl 570A):

d = 5.91±0.05pc(Perryman et al. 1997)

[Fe/H] = 0.00±0.12(Feltzing & Gustafsson 1998)

Age = 2−5 Gyr(Saumon et al. 2000)

Spectroscopy:Optical (Burgasser)Near IR (Leggett)M’ (Geballe)Mid IRS (Spitzer/IRS Dim Suns team)

~70% of SED has been sampled

Page 9: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

9

1 Gyr

2

5

10

0.005

0.01

0.02

0.03

0.04

0.05

0.060.07Mo

Luminosity constrains Teff & g

1) bolometric correctionfrom model spectra

2) Evolution

3) Teff(g) follows from

Teff=800 K log g=5.09 Lbol/Lo=2.99X10-6

The resulting spectrum (not normalized!)

λ (µm)

NH3

Wavelength (µm)

Page 10: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

10

Evolution Works,But....

•Assumes companion composition = primary

•Substantial wavelength coverage to measure Lbol

•Gyr age primary

•Radii of mature brown dwarfs understood

•More challenging at young ages & lower masses

•Spectra most definitive

Metallicity1/2 to 2 solar

Gravity15 - 75MJ

Teff

600 to 800 K

Wavelength (µm)

750 K, log g = 5.0, m/H = 0

R = 400Legg

ett

et a

l. (2

007)

1.0 2.4

Page 11: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

11

Wavelength (µm)1.0 2.4

Legg

ett

et a

l. (2

007)

HD 3651B

Results from good spectral coverage

Radius (arcsec)

H b

and

Con

tras

t

10-4

10-6

10-8

10-10

0.01 0.10 1.00

Courtesy B. Macintosh & J. Graham

Real Data More Like This

Page 12: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

12

2M1207 Companion

• Companion to ~M8 brown dwarf inTW Hydrae (age ~ 8 Myr)

• red J-K implies late L, Teff

~ 1250 K

• Models give M = 5 ± 2 MJup

Chauvin et al. (2004)

Page 13: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

13

Burrows et al. 1997

Tef

f (K)

log Age (Gyr)

3500

500

Believable at young ages?

Stassun et al. (2006)

M1 54 ± 5 MJ

M2 34 ± 3 MJ

R1 6.5 RJ

R2 5.0 RJ

2M0535eclipsing binary in Orion

age “few 106 years”

Burrows et al. (2001)

Page 14: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

14

Young Brown Dwarfs

•Evolutionary models passed some tests

•But...early evolution is highly sensitive toinitial conditions

•Need more observational tests

Planets remember their formationmechanism, which is likely different from low

mass companions.

Page 15: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

15

Page 16: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

16

Core Accreted Planets:

•Smaller

•Cooler

•Fainter

R

Teff

L

time (years) Marley et al. (2007)

Page 17: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

17

Marley et al. (2006)

Page 18: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

18

Marley et al. (2006)

Core Accreted Giants•Model luminosity depends on treatment of

accretion shock

•Many uncertainties (geometry, energy partioning,disk) remain

•Baseline model suggests young Jupiters aremuch fainter than expected

•Discrepancy increases with mass

• See Marley et al. (2007)

Page 19: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

19

Low Mass Companions canbe Distinguished from

Planets•Formation clues are detectable

•Composition (different from primary)

•Radius

•Luminosity

Radius (arcsec)

H b

and

Con

tras

t

10-4

10-6

10-8

10-10

0.01 0.10 1.00

Courtesy B. Macintosh & J. Graham

True Jupiters

Low Mass Companions

Page 20: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

20

Characterization•Mass - spectra

•Radius - spectra

•Albedo

•Effective temperature - spectra

•Equilibrium temperature

• Internal luminosity

Characterization•Mass

•Radius

•Albedo

•Effective temperature

•Equilibrium temperature

• Internal luminosity

•Atmospheric Composition

Page 21: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

21

Owen et al. (1999)

signature of planethood?

Page 22: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

22

But...

Requiring compostioninformation turns most ofthe “Known Exoplanets”into “Known Exoplanet

Candidates”

Known Exoplanets:HD149026b

Gl 436b

Models

Page 23: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

23

Appleby & Hogan (1984)

McKay et al. (1989)

Marley & McKay (1999)

• Composition

• Chemistry

• Opacities

• Condensates

• + Dynamics

• Thermal Structure & Spectrum

Metallicity, C/O, ...

Sedimentation

High T CH4

Cloud Physics

Circulation, f

Page 24: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

24

EGP Characterization RequiresSpectra

Band depthsare crucial

Fortney & Marley

1440 K

870 K

375 K 115 K

135 K

Page 25: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

25

Jupiter Cloudless Hot Jupiter

Lodders (2005)

Page 26: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

26

Marley et al. (1999)

CH4

H2O Na, K

Page 27: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

27

Lessons from Brown Dwarfs

Page 28: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

28

Page 29: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

29

Sudarsky et al. (2003); Burrows (2005)

Photochemistry

• 25x higher UV flux

•H, C, O, N, S, P chemistry

•Many pathways to hazes

• But...Liang et al. (2004) find nohazes in hot Jupiters

Jupiter at 1 AU

Page 30: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

30

Haze Production

• CH4 + UV

•C2H2 C2H6

•C6H6 C3H8

•Soot parafin

•New Paradigm? Old School

Substantially alter spectra andcolors of canonical haze-freemodels

Dynamics & ChemicalEqulibrium

Page 31: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

31

Noll et al. (1997)

Non-equilibrium CO• Convection or eddy mixing can

transport CO• Strong bond allows dynamical τ

<< chemical equilibrium τ• Excess CO observed in Jupiter

(Prinn & Barshay 1977)• Predicted (Fegley & Lodders

1996) and observed (Noll et al.1997) in Gl229B• Can CO attenuate EGP 5-µm

excess? Relevant for JWSTplanet search

CO and Vertical Mixing•Models fit observed J,H, K, L’ reasonablywell

• T dwarfs are generallyfainter at M thanexpected

• Brightness at M bandadvertised to easeEGP direct detection:“...we believe that thisband is a universaldiagnostic for browndwarfs and jovianplanets.” Marley et al.1996

Burrows et al. 1997

Page 32: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

32

H2O

CH4CO

1000 K; 1 bar

Methane arrives late at L, CO hangs in longer

Saumon et al. 2003

Page 33: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

33

Saumon et al. 2003

Leggett et al. (2007)

M4.5M3.6

Page 34: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

34

M band Less Favorable forPlanet Searches

•Up to 40% dimmer than previously expected

•Full phase space of mixing, chemistry not yetexplored

•Clouds also major impact

•L’ may be more favorable (lower background,less affected by mixing)

At Low Spectral Resolution

•Clouds trump

•Hazes are a concern

•Metallicity

•C/O ratio

•Non-equilibrium chemistry influences searchband (L’ vs. M)

Page 35: Characterization of Extrasolar Planetsw.astro.berkeley.edu/~kalas/lyot2007/Presentations/Marley_Mark.pdf · Giant planet science provides no heritage for terrestrial planet characterization

35

Conclusions•Modeling issues are well understood

•Mass and Radius are just starting points

•For most objects, composition should bemajor goal of characterization

•Condensates can cloud our vision

•True characterization is challenging, butrewarding


Recommended