+ All Categories
Home > Documents > CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Date post: 11-Jan-2016
Category:
Upload: rudolf-atkinson
View: 214 times
Download: 0 times
Share this document with a friend
75
CHEM 160 General Chemistry II CHEM 160 General Chemistry II Lecture Presentation Lecture Presentation Electrochemistry Electrochemistry December 1, 2004 Chapter 20
Transcript
Page 1: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

CHEM 160 General Chemistry IICHEM 160 General Chemistry IILecture PresentationLecture Presentation

ElectrochemistryElectrochemistry

December 1, 2004

Chapter 20

Page 2: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

ElectrochemistryElectrochemistry

Electrochemistry deals with interconversion between chemical and

electrical energy

Page 3: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

ElectrochemistryElectrochemistry

Electrochemistry deals with the interconversion between chemical and

electrical energy involves redox reactions

Page 4: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

ElectrochemistryElectrochemistry

Electrochemistry deals with interconversion between chemical and

electrical energy involves redox reactions

• electron transfer reactions

•Oh No! They’re back!

Page 5: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox reactions (quick review) Redox reactions (quick review)

Oxidation

Reduction

Reducing agent

Oxidizing agent

Page 6: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox reactions (quick review)Redox reactions (quick review)

Oxidation loss of electrons

Reduction

Reducing agent

Oxidizing agent

Page 7: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox reactions (quick review)Redox reactions (quick review)

Oxidation loss of electrons

Reduction gain of electrons

Reducing agent

Oxidizing agent

Page 8: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox reactions (quick review)Redox reactions (quick review)

Oxidation loss of electrons

Reduction gain of electrons

Reducing agent donates the electrons and is oxidized

Oxidizing agent

Page 9: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox reactions (quick review)Redox reactions (quick review)

Oxidation loss of electrons

Reduction gain of electrons

Reducing agent donates the electrons and is oxidized

Oxidizing agent accepts electrons and is reduced

Page 10: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox ReactionsRedox Reactions

Direct redox reaction

Page 11: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox ReactionsRedox Reactions

Direct redox reaction Oxidizing and reducing agents are mixed together

Page 12: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

CuSO4(aq) (Cu2+)

Zn rod

Direct Redox ReactionDirect Redox Reaction

Page 13: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

CuSO4(aq) (Cu2+)

Zn rod

Deposit of Cu metal

forms

Direct Redox ReactionDirect Redox Reaction

Page 14: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Redox ReactionsRedox Reactions

Direct redox reaction Oxidizing and reducing agents are mixed together

Indirect redox reaction Oxidizing and reducing agents are separated but

connected electrically• Example

– Zn and Cu2+ can be reacted indirectly

Basis for electrochemistry– Electrochemical cell

Page 15: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Electrochemical CellsElectrochemical Cells

Page 16: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Electrochemical CellsElectrochemical Cells

Voltaic Cell cell in which a spontaneous redox reaction generates

electricity chemical energy electrical energy

Page 17: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Electrochemical CellsElectrochemical Cells

Page 18: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Voltaic Cell

Electrochemical CellsElectrochemical Cells

Page 19: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Electrochemical CellsElectrochemical Cells

Electrolytic Cell electrochemical cell in which an electric current

drives a nonspontaneous redox reaction electrical energy chemical energy

Page 20: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

Page 21: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

Cell Potential (electromotive force), Ecell (V) electrical potential difference between the two

electrodes or half-cells• Depends on specific half-reactions, concentrations, and

temperature

• Under standard state conditions ([solutes] = 1 M, Psolutes = 1 atm), emf = standard cell potential, Ecell

• 1 V = 1 J/C

driving force of the redox reaction

Page 22: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

high electrical high electrical potentialpotential

low electrical low electrical potentialpotential

Cell PotentialCell Potential

Page 23: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

Ecell = Ecathode - Eanode = Eredn - Eox

E°cell = E°cathode - E°anode = E°redn - E°ox

(Ecathode and Eanode are reduction potentials by definition.)

Page 24: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

E°cell = E°cathode - E°anode = E°redn - E°ox Ecell can be measured

• Absolute Ecathode and Eanode values cannot

Reference electrode has arbitrarily assigned E used to measure relative Ecathode and Eanode for half-

cell reactionsStandard hydrogen electrode (S.H.E.)

conventional reference electrode

Page 25: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Hydrogen ElectrodeStandard Hydrogen Electrode

E = 0 V (by definition; arbitrarily selected)

2H+ + 2e- H2

Page 26: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.
Page 27: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 1Example 1

A voltaic cell is made by connecting a standard Cu/Cu2+ electrode to a S.H.E. The cell potential is 0.34 V. The Cu electrode is the cathode. What is the standard reduction potential of the Cu/Cu2+ electrode?

Page 28: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.
Page 29: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 2Example 2

A voltaic cell is made by connecting a standard Zn/Zn2+ electrode to a S.H.E. The cell potential is 0.76 V. The Zn electrode is the anode of the cell. What is the standard reduction potential of the Zn/Zn2+ electrode?

Page 30: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Electrode PotentialsStandard Electrode Potentials

Standard Reduction Potentials, E° E°cell measured relative to S.H.E. (0 V)

• electrode of interest = cathode

If E° < 0 V:• Oxidizing agent is harder to reduce than H+

If E° > 0 V:• Oxidizing agent is easier to reduce than H+

Page 31: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Reduction PotentialsStandard Reduction PotentialsReduction Half-Reaction E(V)

F2(g) + 2e- 2F-(aq) 2.87

Au3+(aq) + 3e- Au(s) 1.50

Cl2(g) + 2 e- 2Cl-(aq) 1.36

Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33

O2(g) + 4H+ + 4e- 2H2O(l) 1.23

Ag+(aq) + e- Ag(s) 0.80

Fe3+(aq) + e- Fe2+(aq) 0.77

Cu2+(aq) + 2e- Cu(s) 0.34

Sn4+(aq) + 2e- Sn2+(aq) 0.15

2H+(aq) + 2e- H2(g) 0.00

Sn2+(aq) + 2e- Sn(s) -0.14

Ni2+(aq) + 2e- Ni(s) -0.23

Fe2+(aq) + 2e- Fe(s) -0.44

Zn2+(aq) + 2e- Zn(s) -0.76

Al3+(aq) + 3e- Al(s) -1.66

Mg2+(aq) + 2e- Mg(s) -2.37

Li+(aq) + e- Li(s) -3.04

Page 32: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Uses of Standard Reduction Uses of Standard Reduction PotentialsPotentials

Compare strengths of reducing/oxidizing agents. the more - E°, stronger the red. agent the more + E°, stronger the ox. agent

Page 33: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Reduction PotentialsStandard Reduction PotentialsReduction Half-Reaction E(V)

F2(g) + 2e- 2F-(aq) 2.87

Au3+(aq) + 3e- Au(s) 1.50

Cl2(g) + 2 e- 2Cl-(aq) 1.36

Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33

O2(g) + 4H+ + 4e- 2H2O(l) 1.23

Ag+(aq) + e- Ag(s) 0.80

Fe3+(aq) + e- Fe2+(aq) 0.77

Cu2+(aq) + 2e- Cu(s) 0.34

Sn4+(aq) + 2e- Sn2+(aq) 0.15

2H+(aq) + 2e- H2(g) 0.00

Sn2+(aq) + 2e- Sn(s) -0.14

Ni2+(aq) + 2e- Ni(s) -0.23

Fe2+(aq) + 2e- Fe(s) -0.44

Zn2+(aq) + 2e- Zn(s) -0.76

Al3+(aq) + 3e- Al(s) -1.66

Mg2+(aq) + 2e- Mg(s) -2.37

Li+(aq) + e- Li(s) -3.04

Ox.

age

nt s

tren

gth

incr

ease

sR

ed. agent strength increases

Page 34: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Uses of Standard Reduction Uses of Standard Reduction PotentialsPotentials

Determine if oxidizing and reducing agent react spontaneously diagonal rule

ox. agent

red. agent

spontaneous

spontaneous

Page 35: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Uses of Standard Reduction Uses of Standard Reduction PotentialsPotentials

Determine if oxidizing and reducing agent react spontaneously

Cathode (reduction) E°redn (cathode)

more +

Anode (oxidation)

E° re

dn (

V)

E°redn (anode)

more -

Spontaneous rxn if Spontaneous rxn if EE°°cathodecathode > E > E°°anodeanode

Page 36: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Reduction PotentialsStandard Reduction PotentialsReduction Half-Reaction E(V)

F2(g) + 2e- 2F-(aq) 2.87

Au3+(aq) + 3e- Au(s) 1.50

Cl2(g) + 2 e- 2Cl-(aq) 1.36

Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33

O2(g) + 4H+ + 4e- 2H2O(l) 1.23

Ag+(aq) + e- Ag(s) 0.80

Fe3+(aq) + e- Fe2+(aq) 0.77

Cu2+(aq) + 2e- Cu(s) 0.34

Sn4+(aq) + 2e- Sn2+(aq) 0.15

2H+(aq) + 2e- H2(g) 0.00

Sn2+(aq) + 2e- Sn(s) -0.14

Ni2+(aq) + 2e- Ni(s) -0.23

Fe2+(aq) + 2e- Fe(s) -0.44

Zn2+(aq) + 2e- Zn(s) -0.76

Al3+(aq) + 3e- Al(s) -1.66

Mg2+(aq) + 2e- Mg(s) -2.37

Li+(aq) + e- Li(s) -3.04

Page 37: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Uses of Standard Reduction Uses of Standard Reduction PotentialsPotentials

Calculate E°cell

E°cell = E°cathode - E°anode

• Greater E°cell, greater the driving force

E°cell > 0 : spontaneous redox reactions

E°cell < 0 : nonspontaeous redox reactions

Page 38: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 3Example 3

A voltaic cell consists of a Ag electrode in 1.0 M AgNO3 and a Cu electrode in 1 M Cu(NO3)2. Calculate E°cell for the spontaneous cell reaction at 25°C.

Page 39: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Reduction PotentialsStandard Reduction PotentialsReduction Half-Reaction E(V)

F2(g) + 2e- 2F-(aq) 2.87

Au3+(aq) + 3e- Au(s) 1.50

Cl2(g) + 2 e- 2Cl-(aq) 1.36

Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33

O2(g) + 4H+ + 4e- 2H2O(l) 1.23

Ag+(aq) + e- Ag(s) 0.80

Fe3+(aq) + e- Fe2+(aq) 0.77

Cu2+(aq) + 2e- Cu(s) 0.34

Sn4+(aq) + 2e- Sn2+(aq) 0.15

2H+(aq) + 2e- H2(g) 0.00

Sn2+(aq) + 2e- Sn(s) -0.14

Ni2+(aq) + 2e- Ni(s) -0.23

Fe2+(aq) + 2e- Fe(s) -0.44

Zn2+(aq) + 2e- Zn(s) -0.76

Al3+(aq) + 3e- Al(s) -1.66

Mg2+(aq) + 2e- Mg(s) -2.37

Li+(aq) + e- Li(s) -3.04

Page 40: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 4Example 4

A voltaic cell consists of a Ni electrode in 1.0 M Ni(NO3)2 and an Fe electrode in 1 M Fe(NO3)2. Calculate E°cell for the spontaneous cell reaction at 25°C.

Page 41: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Reduction PotentialsStandard Reduction PotentialsReduction Half-Reaction E(V)

F2(g) + 2e- 2F-(aq) 2.87

Au3+(aq) + 3e- Au(s) 1.50

Cl2(g) + 2 e- 2Cl-(aq) 1.36

Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33

O2(g) + 4H+ + 4e- 2H2O(l) 1.23

Ag+(aq) + e- Ag(s) 0.80

Fe3+(aq) + e- Fe2+(aq) 0.77

Cu2+(aq) + 2e- Cu(s) 0.34

Sn4+(aq) + 2e- Sn2+(aq) 0.15

2H+(aq) + 2e- H2(g) 0.00

Sn2+(aq) + 2e- Sn(s) -0.14

Ni2+(aq) + 2e- Ni(s) -0.23

Fe2+(aq) + 2e- Fe(s) -0.44

Zn2+(aq) + 2e- Zn(s) -0.76

Al3+(aq) + 3e- Al(s) -1.66

Mg2+(aq) + 2e- Mg(s) -2.37

Li+(aq) + e- Li(s) -3.04

Page 42: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

Is there a relationship between Ecell and G for a redox reaction?

Page 43: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

Relationship between Ecell and G:

G = -nFEcell

• F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn.

Page 44: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cell PotentialCell Potential

Relationship between Ecell and G:

G = -nFEcell

• F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn.

• 1 J = CVG < 0, Ecell > 0 = spontaneous

Page 45: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Equilibrium Constants from EEquilibrium Constants from Ecellcell

Relationship between Ecell and G:

G = -nFEcell

• F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn

• 1 J = CVG < 0, Ecell > 0 = spontaneous

Under standard state conditions: G° = -nFE°cell

Page 46: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Equilibrium Constants from EEquilibrium Constants from Ecellcell

Relationship between Ecell and G:

G = -nFEcell

• F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn

• 1 J = CVG < 0, Ecell > 0 = spontaneous

Under standard state conditions: G° = -nFE°cell

Page 47: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Equilibrium Constants from EEquilibrium Constants from Ecellcell

Relationship between Ecell and G: G = -nFEcell

• F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn

• 1 J = CV G < 0, Ecell > 0 = spontaneous

Under standard state conditions: G° = -nFE°cell

and G° = -RTlnK

so -nFE°cell = -RTlnK

Page 48: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

H° S°

Calorimetric Data

G°Electrochemical

DataComposition

Data

E°cell

Equilibrium constants

K

Page 49: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 5Example 5

Calculate E°cell, G°, and K for the voltaic cell that uses the reaction between Ag and Cl2 under standard state conditions at 25°C.

Page 50: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

The Nernst EquationThe Nernst EquationG depends on concentrations

G = G° + RTlnQ

andG = -nFEcell and G° = -nFE°cell

thus-nFEcell = -nFE°cell + RTlnQ

or Ecell = E°cell - (RT/nF)lnQ (Nernst eqn.)

Page 51: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

The Nernst EquationThe Nernst Equation

Ecell = E°cell - (RT/nF)lnQ (Nernst eqn.) At 298 K (25°C), RT/F = 0.0257 V

soEcell = E°cell - (0.0257/n)lnQ

orEcell = E°cell - (0.0592/n)logQ

Page 52: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 7Example 7

Calculate the voltage produced by the galvanic cell which uses the reaction below if [Ag+] = 0.001 M and [Cu2+] = 1.3 M.

2Ag+(aq) + Cu(s) 2Ag(s) + Cu2+(aq)

Page 53: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Reduction PotentialsStandard Reduction PotentialsReduction Half-Reaction E(V)

F2(g) + 2e- 2F-(aq) 2.87

Au3+(aq) + 3e- Au(s) 1.50

Cl2(g) + 2 e- 2Cl-(aq) 1.36

Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33

O2(g) + 4H+ + 4e- 2H2O(l) 1.23

Ag+(aq) + e- Ag(s) 0.80

Fe3+(aq) + e- Fe2+(aq) 0.77

Cu2+(aq) + 2e- Cu(s) 0.34

Sn4+(aq) + 2e- Sn2+(aq) 0.15

2H+(aq) + 2e- H2(g) 0.00

Sn2+(aq) + 2e- Sn(s) -0.14

Ni2+(aq) + 2e- Ni(s) -0.23

Fe2+(aq) + 2e- Fe(s) -0.44

Zn2+(aq) + 2e- Zn(s) -0.76

Al3+(aq) + 3e- Al(s) -1.66

Mg2+(aq) + 2e- Mg(s) -2.37

Li+(aq) + e- Li(s) -3.04

Ox.

age

nt s

tren

gth

incr

ease

sR

ed. agent strength increases

Page 54: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Commercial Voltaic CellsCommercial Voltaic CellsBattery

commercial voltaic cell used as portable source of electrical energy

types primary cell

• Nonrechargeable

• Example: Alkaline battery

secondary cell• Rechargeable

• Example: Lead storage battery

Page 55: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

How Does a Battery WorkHow Does a Battery Work

cathode (+)

anode (-)

Electrolyte Paste

Seal/cap

Assume a generalized battery

Page 56: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

BatteryBattery

cathode (+): Reduction occurs

here

anode (-): oxidation

occurs here

e- flow

Electrolyte paste: ion migration occurs

here

Placing the battery into a flashlight, etc., and turning the power on completes the circuit and allows

electron flow to occur

Page 57: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

How Does a Battery WorkHow Does a Battery WorkBattery reaction when producing electricity

(spontaneous): Cathode: O1 + e- R1

Anode: R2 O2 + e-

Overall: O1 + R2 R1 + O2

Recharging a secondary cell Redox reaction must be reversed, i.e., current is

reversed (nonspontaneous)

Recharge: O2 + R1 R2 + O1

Performed using electrical energy from an external power source

Page 58: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

BatteriesBatteries

Read the textbook to fill in the details on specific batteries. Alkaline battery Lead storage battery Nicad battery Fuel cell

Page 59: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.
Page 60: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

CorrosionCorrosionCorrosion

deterioration of metals by a spontaneous redox reaction

• Attacked by species in environment– Metal becomes a “voltaic” cell

• Metal is often lost to a solution as an ion

Rusting of Iron

Page 61: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Corrosion of IronCorrosion of Iron

Page 62: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Corrosion of IronCorrosion of Iron

Half-reactions

anode: Fe(s) Fe2+(aq) + 2e-

cathode: O2(g) + 4H+(aq) + 4e- 2H2O(l)

overall: 2Fe(s) + O2(g) + 4H+(aq) 2Fe2+(aq) +

2H2O(l)

Ecell > 0 (Ecell = 0.8 to 1.2 V), so process is spontaneous!

Page 63: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Corrosion of IronCorrosion of Iron

Rust formation:

4Fe2+(aq) + O2(g) + 4H+(aq) 4Fe3+(aq) + 2H2O(l)

2Fe3+(aq) + 4H2O(l) Fe2O3H2O(s) + 6H+(aq)

Page 64: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Prevention of CorrosionPrevention of Corrosion

Cover the Fe surface with a protective coating Paint Passivation

• surface atoms made inactive via oxidation

2Fe(s) + 2Na2CrO4(aq) + 2H2O(l) --> Fe2O3(s) + Cr2O3(s) + 4NaOH(aq)

Other metal• Tin

• Zn– Galvanized iron

Page 65: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Prevention of CorrosionPrevention of Corrosion

Cathodic Protection metal to be protected is brought into contact with a

more easily oxidized metal “sacrificial” metal becomes the anode

• “Corrodes” preferentially over the iron

• Iron serves only as the cathode

Page 66: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Standard Electrode PotentialsStandard Electrode Potentials

Half-reaction E°F2(g) + 2e- -> 2F-(aq) +2.87 V

Ag+(aq) + e- -> Ag(s) +0.80 V

Cu2+(aq) + 2e- -> Cu(s) +0.34 V

2H+(aq) + 2e- -> H2(g) 0 V

Ni2+(aq) + 2e- -> Ni(s) -0.25 V

Fe2+(aq) + 2e- -> Fe(s) -0.44 V

Zn2+(aq) + 2e- -> Zn(s) -0.76 V

Al3+(aq) + 3e- -> Al(s) -1.66 V

Mg2+(aq) + 2e- ->Mg(s) -2.38 V

Metals more easily oxidized than Fe have

more negative E°’s

Page 67: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cathodic ProtectionCathodic Protection

galvanized steel (Fe)

Page 68: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Cathodic ProtectionCathodic Protection

(cathode)

(electrolyte)

(anode)

Page 69: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

ElectrolysisElectrolysis

Electrolysis process in which electrical energy drives a

nonspontaneous redox reaction• electrical energy is converted into chemical energy

Electrolytic cell electrochemical cell in which an electric current

drives a nonspontaneous redox reaction

Page 70: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

ElectrolysisElectrolysis

Same principles apply to both electrolytic and voltaic cells oxidation occurs at the anode reduction occurs at the cathode electrons flow from anode to cathode in the external

circuit• In an electrolytic cell, an external power source pumps

the electrons through the external circuit

Page 71: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Electrolysis of Molten NaClElectrolysis of Molten NaCl

Page 72: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Quantitative Aspects of Electrochemical CellsQuantitative Aspects of Electrochemical Cells

For any half-reaction, the amount of a substance oxidized or reduced at an electrode is proportional to the number of electrons passed through the cell Faraday’s law of electrolysis Examples

• Na+ + 1e- Na

• Al3+ + 3e- Al

Number of electrons passing through cell is measured by determining the quantity of charge (coulombs) that has passed

• 1 C = 1 A x 1 s

• 1 F = 1 mole e- = 96500 C

Page 73: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Steps for Quantitative Electrolysis Steps for Quantitative Electrolysis CalculationsCalculations

current (A) and time (s), A x s

charge in coulombs

(C)

Number of moles of e-

moles of substance oxidized or reduced

mass of substance oxidized or reduced

Page 74: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 8Example 8

What mass of copper metal can be produced by a 3.00 A current flowing through a copper(II) sulfate (CuSO4) solution for 5.00 hours?

Page 75: CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.

Example 9Example 9

An aqueous solution of an iron salt is electrolyzed by passing a current of 2.50 A for 3.50 hours. As a result, 6.1 g of iron metal are formed at the cathode. Calculate the charge on the iron ions in the solution.


Recommended