+ All Categories
Home > Documents > Chem 373- Lecture 24: Applications of Valence Bond Theory

Chem 373- Lecture 24: Applications of Valence Bond Theory

Date post: 06-Apr-2018
Category:
Upload: nuansak3
View: 219 times
Download: 0 times
Share this document with a friend
22
Lecture 24: Applications of Valence Bond Theory  The material in this lecture covers the following in Atkins. 14 Molecular structure Valence-bond theory 14.2 Homonuclear Diatomic Molecules 14.3 Polyatomic Molecules  Lecture on-line Applications of Valence Bond Theory (PowerPoint) Applications of valence Bond Theory (PDF) Handout for this lecture
Transcript
Page 1: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 1/22

Lecture 24: Applications of Valence Bond

Theory

 The material in this lecture covers the following in Atkins.

14 Molecular structure

Valence-bond theory

14.2 Homonuclear Diatomic Molecules14.3 Polyatomic Molecules

 Lecture on-line

Applications of Valence Bond Theory (PowerPoint)

Applications of valence Bond Theory (PDF)

Handout for this lecture

Page 2: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 2/22

H H

Valence Bond Theory Applications

A 1sH; B 1sH

-bond:invarient to rotation

I. Diatomics

A B

(1,2) = [A(1)B(2)+ A(2)B(1)] ×[ (1) (2)− (1) (2)]

In general we write (re,RN)as the product of electron paifunctions i(r2i−1, r2i) as

(re ,RN) 1(r1, r2 ) 2(r3, r4 )

.. i(r2i 1, r2i) j(r2 j 1, r2j ).. n(r2n 1, r2n)

Pair 1

Pair 2

Pair i Pair j

Pair n

A li i

Page 3: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 3/22

H Cl

Applications

(1,2) = [A(1)B(2)+ A(2)B(1)] ×[ (1) (2)− (1) (2)]

+

sp(B):

1

2[3s + 3pz ]

Valence Bond Theory

Atomic orbitals on H(Hydrogen)

1sH

Atomic orbitals on C(Chlorine)

3sCl 3pzCl

3pxCl 3py

Cl

Hybride orbitals on H

(Hydrogen)

1sA

Hybride orbitals on Cl(Chlorine)

−sp(B) :

1

2[3s − 3pz ]

3px

Cl

3py

Cl

Page 4: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 4/22

Valence Bond Theory

A = 1sH;B = +sp(Cl)for -bond

Electron pairingand formation of bonds

(1,2) = [A(1)B(2)+ A(2)B(1)] ×[ (1) (2)− (1) (2)]

Electron pairingand formation oflone-pairs

A=

sp(Cl)

;B=

sp(Cl)

for lone-pair

H Cl

H Cl

3pxCl

A = 3pxCl

;B = 3pxCl

for lone-pair

H Cl

A = 3pyCl;B = 3py

Cl

for lone-pair

3pyCl

H Cl

Page 5: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 5/22

Atomic orbitals on Cl # 2

3sCl 3pzCl

3pxCl 3py

Cl

Cl Cl

Valence Bond Theory Applications

(1,2) = [A(1)B(2)+ A(2)B(1)] ×[ (1) (2)− (1) (2)]

Atomic orbitals on Cl # 1

3sCl 3pzCl 3pxCl 3pyCl

Hybride orbitals on Cl # 1

3pxCl 3py

Cl

+sp(Cl −

sp(Cl

Hybride orbitals on Cl # 2

3pxCl 3py

Cl+

sp(Cl−

sp(Cl

Page 6: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 6/22

Electron pairingand formation of bonds

Cl Cl

Valence Bond Theory Applications

(1,2) = [A(1)B(2)+ A(2)B(1)] ×[ (1) (2)− (1) (2)]

A = +

sp(Cl1);B = +

sp(Cl2

Cl Cl

−bond

Electron pairingand formation of

lone-pairs

A = −sp(Cl1) ;B = −

sp(Cl1)

for lone-pair

ClCl

3pxCl

A = 3pxCl1

;B= 3pxCl1

for lone-pair

Cl Cl

A = 3pyCl;B = 3py

Cl

for lone-pair

3pyCl

Cl Cl

Same for Cl # 2

Page 7: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 7/22

The orbital overlap

and spin-pairing

between electrons

in two collinear porbitals that result

in the formation

of a ( bond.

Valence Bond Theory Applications

(1,2 ) = [A(1)B(2)+A(2)B(1)] ×[ (1) (2)− (1) (2)]

Valence Bond Theory Applications

Page 8: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 8/22

Valence Bond Theory Applications

(1,2 ) = [A(1)B(2)+A(2)B(1)]×[ (1) (2)− (1) (2)]

I. Diatomics

N N C O

A =+

sp(1);B =

+

sp(2)

for -bond

+

sp(1):

1

2[2s + 2pz ]

+

sp(1):

1

2

[2s − 2pz ]

A = −sp(1) ;B = −

sp(1)

for lone-pairs

A = 2px1;B = 2px

1

A = 2py1;B = 2py

1

bonds

Orbitals change signon reflexation in plancontaining 1- 2 bond

vector

Valence Bond Theory Applications

Page 9: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 9/22

Valence Bond Theory Applications

(1,2 ) = [A(1)B(2)+A(2)B(1)]×[ (1) (2)− (1) (2)]

I. Diatomics

The structure of bonds in a nitrogen molecule,

which consists of one band and two bands.

The electron density has cylindrical symmetry

around the internuclear axis.

Page 10: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 10/22

Valence Bond Theory Applications

CH C H

2. Linear molecules

A representation of the structure of a triple bond

in ethyne; only the bonds are shown explicitly.The overall electron density has cylindrical symmetry

around the axis of the molecule.

Valence Bond Theory Applications

Page 11: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 11/22

Valence Bond Theory Applications3.Trigonal planar

C

H

H

C

H

HC2H4

C

H

H

O

CH2O

tr1

tr2

x

y

tr3

tr11

3 [s px ]

tr21

3[s

1

2px

3

2py ]

tr31

3 [s1

2 px3

2py ]

C2H4

CH2O

Valence Bond Theory Applications

Page 12: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 12/22

Valence Bond Theory Applications

C

H

H

C

H

HC2H4

C2H4

(a) An s orbital and two  p orbitals can be

hybridized to form three equivalent orbitals

that point towards the corners of an equilateraltriangle. (b) The remaining, unhybridized  p

orbital is perpendicular to the plane.

3.Trigonal planar

Valence Bond Theory Applications

Page 13: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 13/22

CH

H

H

H

X

y

z

t1

t2

t3

t4

Valence Bond Theory Applications

4.Tetrahedral

t11

2[s px py pz ]

along (x,y,z)

t21

2[s px py pz ]

along (-x,-y,z)

t31

2[s px py pz ]

along (-x,y,-z)

t41

2[s px py pz]

along (x,-y,-z)

sp

3

hybrides

Valence Bond Theory Applications

Page 14: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 14/22

An sp3 hybrid orbital formed from thesuperposition of s and  p orbitals on the same

atom. There are four such hybrids: each one

points towards the corner of a regular

tetrahedron. The overall electron densityremains spherically symmetrical.

CH

H

H

H

Valence Bond Theory Applications

4.Tetrahedral sp3 hybrides

Valence Bond Theory Applications

Page 15: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 15/22

A more detailed representation of theformation of an  sp

3 hybrid by interference

between wavefunctions centred on the same

atomic nucleus. (To simplify the

representation, we have ignored the radial

node of the 2 s orbital.)

CH

H

H

H

Valence Bond Theory Applications

4.Tetrahedral

sp3 hybrides

= +

V l B d Th Applications

Page 16: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 16/22

OH

H

NH

H

H

(1,2 ) = [A(1)B(2)+A(2)B(1)] ×[ (1) (2)− (1) (2)]

Valence Bond Theory Applications

4.Tetrahedral

sp3 hybrides

X

y

z

t1

t2

t3

t4

CH

H

H

H

X

y

z

t1

t2

t3

t4

X

y

z

t1

t2

t3

t4

Valence Bond Theory Applications

Page 17: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 17/22

A first approximation to the valence-bond

description of bonding in an H2O molecule.Each bond arises from the overlap of an H1s

orbital with one of the O2 p orbitals. This

model suggests that the bond angle should be

90°, which is significantly different from the

experimental value.

(1,2 ) = [A(1)B(2)+A(2)B(1)] ×[ (1) (2)− (1) (2)]

Valence Bond Theory Applications

4.Tetrahedral sp3 hybrides

OH

H

X

y

z

t1

t2

t3

t4

use of sp3 hybrides

Use of

p - orbitals

Valence Bond Theory Applications

Page 18: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 18/22

Valence Bond Theory Applications

5.Bipyramidal d2sp2 hybrides

PF

F

F

F

F

tr1

1

3[s p

x

]

tr21

3[s

1

2px

3

2py ]

tr3

1

3[s

1

2p

x

3

2p

y

]

tr1

tr2

x

y

tr3

d412

[pz dz2 ]

d51

2[pz d

z2 ]

d4

d5

z

SF

F

F

F

Valence Bond Theory Applications

Page 19: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 19/22

Valence Bond Theory Applications

5.Bipyramidal

d2sp2 hybrides

PF

F

F

F

F S

F

F

F

F

(1,2 ) = [A(1)B(2)+A(2)B(1)] ×[ (1) (2)− (1) (2)]

Valence Bond Theory Applications

Page 20: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 20/22

y pp

6. Octahedral

d2sp3 hybrides

(1,2 ) = [A(1)B(2)+A(2)B(1)] ×[ (1) (2)− (1) (2)]

1

2

34

56

x

y

z oc116

[s 2dz2 3pz ]

oc2

1

6[s

1

2d

z2

3

2d

x2 y2 3px ]

oc3

1

6[s

1

2d

z2

3

2d

x2 y2 3py ]

oc4

1

6[s

1

2d

z2

3

2d

x2 y2 3px ]

oc5

1

6[s

1

2d

z2

3

2d

x2 y2 3py ]

oc6

1

6[s 2d

z2 3p

z

]

Valence Bond Theory Applications

Page 21: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 21/22

y pp

6. Octahedral

d2sp3 hybrides

(1,2 ) = [A(1)B(2)+A(2)B(1)] ×[ (1) (2)− (1) (2)]

x

y

z

SF

F

F

F

F

F

What you should learn from this lecture

Page 22: Chem 373- Lecture 24: Applications of Valence Bond Theory

8/3/2019 Chem 373- Lecture 24: Applications of Valence Bond Theory

http://slidepdf.com/reader/full/chem-373-lecture-24-applications-of-valence-bond-theory 22/22

What you should learn from this lecture

1. You are not required to know the mathematicalform of the s and p atomic orbitals as well as

the sp,sp2, sp3, sp2d2, sp3d2 hybrides. However youshould be able to draw their shapes

2. You should be able to convert Lewis structuresbased on bonds and lone- pairs into valencebond pair functions(1,2 ) = [A(1)B(2)+A(2)B(1)] × [ (1) (2)− (1) (2)]

where A and B are atomic orbitals (or hybrides)

on different centersfor bonds ,and orbitals on the same centerfor lone-pairs


Recommended