+ All Categories
Home > Documents > Chem 622: Organometallic Chemistry - University of...

Chem 622: Organometallic Chemistry - University of...

Date post: 20-Mar-2018
Category:
Upload: trankhuong
View: 221 times
Download: 1 times
Share this document with a friend
3
Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger 341C Instructor: Matt Cain Textbook(s): Crabtree, 6 th Edition, The Organometallic Chemistry of the Transition Metals AND Elschenbroich, 3 rd Edition, Organometallics Organometallic Chemistry bridges the imaginary gap between organic and inorganic chemistry. Despite being a rather new field (Ferrocene 1951), its utility and practicality are undeniable. The production of L-DOPA, S-Metolachlor, and (–)- Menthol are just some of the commodities produced on a colossal scale due to the employment of organometallics catalysts. This class will focus on the entire Periodic Table of Elements and will introduce the fundamental trends in both the Main Group and Transition Metals. Students should gain an understanding of these fundamentals and be able to apply them to published research, with the ultimate goal of applying it to their own! In addition, some topics/complexes will be evaluated from a historical prospective, in which they first appeared as structural anomalies and have evolved (through synthesis, etc.) to become highly useful ligands, intermediates, or catalysts. A common theme throughout the class will be to connect the material from the classroom to relevant and published research, with the hope that students will recognize that although many fields of chemistry (organic, inorganic, physical, supramolecular, etc.) are taught separately, they are interdisciplinary and often times, directly linked by organometallic chemistry. Fe Fe PPh 2 PPh 2 Fe PR 2 PR' 2 dppf Josiphos N O Cl H 3 CO S-Metolachlor Ferrocene R Li Li Li R R R Li Li Li Li Li R Structure and Bonding P R 1 R 2 R 3 R 1 S R 2 O Chiral Molecules NMR Spectroscopy Reactivity ZnEt 2 in air History, Development, Evolution, and Application Main Group Organometallics and Catalysis N N H H Main Group Applications 31 P NMR 19 F NMR 6 Li NMR 7 Li NMR Olefin Metathesis R M R M R R + R M R Asymmetric Hydrogenation OEt O O OEt OH O M C O Ligands and Bonding CO: σ-donor / π-acceptor DCD Model M O C M C C Isolobal Analogy d 7 –ML 5 CH 3 (CO) 5 Mn CH 3 (CO) 5 Mn Mn(CO) 5 H 3 C CH 3 M RX M X R M R' R R'-M' M'-X RR' Cross Couplings M P P H/D FG Symmetry and Chirality Kinetic Isotope Effects Electron Counting Pt P P Ph Cl Cp Ta Cp CH 2 CH 3
Transcript
Page 1: Chem 622: Organometallic Chemistry - University of …manoa.hawaii.edu/chem/wp-content/uploads/CHEM-622_Cain...Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger

S37

31P{1H} NMR (CD2Cl2, Room Temperature)

31P{1H} NMR (CD2Cl2, -70 °C)

Ru

PP

P

Si

Me

t-Bu

Me

Me

t-BuMet-Bu

6

Cl

DMSO Cl

Ru

PP

P

Si

Me

t-Bu

Me

Me

t-BuMet-Bu

6

Cl

DMSO Cl

Chem622:OrganometallicChemistry

Class:MWF,1030–1120AM,Bilger341CInstructor:MattCain

Textbook(s):Crabtree,6thEdition,TheOrganometallicChemistryoftheTransitionMetalsAND

Elschenbroich,3rdEdition,OrganometallicsOrganometallicChemistrybridgestheimaginarygapbetweenorganicandinorganicchemistry. Despite being a rather new field (Ferrocene 1951), its utility andpracticality are undeniable. The production of L-DOPA, S-Metolachlor, and (–)-Mentholare justsomeof thecommoditiesproducedonacolossalscaleduetotheemployment of organometallics catalysts. This class will focus on the entirePeriodicTableofElements andwill introduce the fundamental trends inboth theMainGroupandTransitionMetals.Studentsshouldgainanunderstandingofthesefundamentals and be able to apply them to published research,with the ultimategoal of applying it to their own! In addition, some topics/complexes will beevaluated fromahistoricalprospective, inwhich they first appearedas structuralanomalies and have evolved (through synthesis, etc.) to become highly usefulligands, intermediates,orcatalysts. Acommonthemethroughouttheclasswillbetoconnectthematerialfromtheclassroomtorelevantandpublishedresearch,withthe hope that students will recognize that although many fields of chemistry(organic, inorganic, physical, supramolecular, etc.) are taught separately, they areinterdisciplinaryandoftentimes,directlylinkedbyorganometallicchemistry.

Fe FePPh2

PPh2Fe

PR2

PR'2

dppf Josiphos

N

OCl

H3CO

S-MetolachlorFerrocene

R

LiLi

Li

RR

R

Li

LiLiLi

Li R

Structure and Bonding

PR1 R2

R3R1

SR2

O

Chiral MoleculesNMR Spectroscopy

Reactivity

ZnEt2 in air

History, Development, Evolution, and Application Main Group

Organometallics and Catalysis

N

N

H

H

Main Group Applications

31P NMR 19F NMR6Li NMR7Li NMR

Olefin MetathesisR

M

R

M

R R

+R

MR

Asymmetric Hydrogenation

OEt

O O

OEt

OH O

M C O

Ligands and Bonding

CO: σ-donor / π-acceptor DCD ModelM OC M C

C

Isolobal Analogyd7–ML5 CH3

(CO)5Mn CH3(CO)5Mn Mn(CO)5

H3C CH3

M RX

MX

RM

R'

R

R'-M'M'-X

RR'Cross Couplings

MP P

H/D

FG

Symmetry and ChiralityKineticIsotopeEffects

Electron Counting

PtP

P Ph

Cl

CpTa

Cp CH2

CH3

dialkylphosphoric,dialkylphosphinic,6andnitric7acids).Thelow

barriertoprotontransferbetweentwominimaofadouble-well

potentialfunctionisresponsiblefortheappearanceofabroad

absorptionforO

-H‚‚‚Ostretching,forexample,inthe3000-1500

cm-1rangeforstrongphosphoricaciddimers.7Inthepresentcase

ofCl-H‚‚‚Clbonding,withastrongeracidandheavieratoms,the

absorptionliesatlowerfrequency,inthe2200

-1100cm

-1range.

Thedimericform

ofH(CHB 1

1Cl 11)canbeobtaineddirectlyby

rapidsublimationusinghighsublimationtemperatures(200-260

°C)andimmediatecondensationontocoldcellwindows(Figure

4a). Withmoregradualsublimationoverlongertimeperiods(g1h)

atlowertemperatures(180-200°C),anewIRspectrumofavisibly

crystallinesolidphaseisobserved(Figure4b,c).Theappearance

ofsharp

νCHbandsfromthecarboraneanionat3039and3024

cm-1(Figure4inset)indicatesthepresenceoftwodifferent

crystallinephases.Therelativeintensityofthesetwobandsvaries

accordingtothesublimationconditionswiththe3039cm

-1band

typicallybeingmoreabundant,althoughoccasionallyabsent(Figure

4c).TheCl-H‚‚‚Clvibrationsdonotdiffersignificantlybetween

thetwophases,indicatingtheyhaveverysim

ilarstructures.The

carboraneclusterbands(rightinsetofFigure2)onlydistinguish

betweenmonomeranddimer/polymerstructures.

Afragmentofthecrystallinephase(having

νCHat3039cm

-1 )

wasusedforsingle-crystalX-raydetermination.AsshowninFigure

5,thestructurecontainslinearpolymericchainswithprotonbridges

betweenClatomsatthe7-11positionsofthecarboraneanions.

Theseareindicatedby

shortinter-anion

Cl‚‚‚Clcontactsand

lengtheningoftheassociatedB-

Clbonds.TheCl‚‚‚Cldistances

involvedinthetwocrystallographicallyindependentCl‚‚‚H

‚‚‚Cl

bridgesare3.171(3)and3.209(3)Å,whereasallotherCl‚‚‚Cl

nonbonding

contactsare>3.36

Å.TheB-

Clbond

lengthsof

unprotonatedClatomslieintherangeof1.745(10)-1.796(10)Å,

whereasthoseassociatedwithprotonbridgesare1.831(10)-1.845-

(10)Å.Thebindingofthecarboraneanionstotheacidicproton

viaClatomsfromthe7-11pentagonalbeltratherthantheslightly

morebasic

12position(seemonomerA,Figure2)isprobablya

consequenceofpackingefficiencyandstatisticaladvantage.The

samebiasinthecrystallinestatetowardthe7ratherthanthe12

positionwasseenintheX-raystructureofi-Pr(CHB 1

1Me 5Br

6).5

TheHatomswerelocatedintheX-rayrefinementof[H(CHB 1

1-Cl11)] nwiththefollowingdimensions:foroneCl-H-Clbridge,

Cl-H

)1.28(9)and1.92(10)Å,∠Cl-H-Cl

)166(7)°;andfor

theother,Cl-H

)1.74(11)and1.47(11)Å,∠Cl-H-Cl

)179-

(8)°.Whilenotconclusive,thesedataareconsistentwithsomewhat

unsymmetricalH-bondingandeasydisplacementofHalongthe

trajectorybetweentheClatoms.

IftheCl-H-Clgroupsinthepolymericacidweresymmetric

with

localD∞hsymmetry,onlythedoublydegeneratebend(ν2)

andtheantisymmetricCl-H-Clstretch(ν3)wouldbeIRactive.

BandscorrespondingtothesevibrationsareobservedintheIR

spectrumofthebichlorideion,HCl2-,whichisagoodstructural

modelforthepolymeric(anddimeric)carboraneacid.Inthesolid

state,thebichlorideioncanbeasymmetricorsymmetricdepending

uponthecation,8,9andwhenasymmetric,the

ν 1symmetricCl‚‚‚

ClstretchbecomesweaklyIRactive(∼200cm

-1 ).Thepolymeric

acidhasquitesim

ilarbands(Figure4).Thus,theverybroadand

distortedbandwithmaximum

at∼1100cm

-1isassignedto

ν 3,

thehigh

intensity,broadband

at∼615cm

-1whoseshapeis

distortedby

Evansholes10isassignedto

ν 2,andaweaklow-

frequencybandat225cm

-1canbeattributedto

ν 1.TheIRactivity

ofν 1isconsistentwith

theX-raystructurewhichindicatestwo

typesofClHCl

groups

with

differentdegreesofasymmetry.

Together,theIRandX-raydataindicatestrong,low-barrier,nearly

symmetricH-bonding.

Insummary,thegasandsolid

phasestructuresofH(CHB11-

Cl11)havebeendetermined.RelateddataforH(CHB 1

1H5Br 6)(see

TableinSupportingInformation)indicatethatthesestructuresare

generalforcarboraneacids.Thedifferentstructureshaveimplica-

tionsforacidity.WiththehighestνHClfrequencyandthesmallest

Cl-H‚‚‚Clanglereflectingbondstrain,themonomericacidshould

show

thehighestacidity.Uponthermodynamicallyfavoreddimer-

ization,anglestrainintheCl-H‚‚‚Clgroupispresumablyrelieved,

thestrengthoftheH‚‚‚Clbond

increases,andtheacidshould

expressdiminishedacidity.Inthepolymericcrystallinephases,the

Cl-H-Cl

bondingismorenearlysymmetricalandsomewhat

strongerthanthedimer,soaciditywillbefurtherdiminished.These

differencesmaybeimportantconsiderationswhenusinggasand

solidphasecarboraneacidstoprotonatetheweakestbases.

Acknowledgment.WethankDr.FookTham

fordetermining

theX-raystructure.Thisworkwassupportedby

NSF

(CHE-

0349878)andNIH(GM23851).

SupportingInformationAvailable:

Experimentaldetails,IR

spectra,DFTcalculations,andX-raystructuredetails.Thismaterialis

availablefreeofchargeviatheInternetathttp://pubs.acs.org.

References

(1)Reed,C.A.;Kim,K.-C.;Bolskar,R.D.;Mueller,L.J.Science2000,

122,4660-4667.

(2)Reed,C.A.C

hem.C

ommun.2005,1669-1677.

(3)Juhasz,M

.;Hoffmann,S.P.;Stoyanov,E.S.;Kim,K.-C.;Reed,C.A.

Angew.C

hem.,Int.Ed.2004,43,5352-5355.

(4)Koppel.I.A.;Burk,P.;Koppel,I.;Leito,I.;Sonoda,T.;Mishima,M.J.

Am.C

hem.Soc.2000,122,5114-5124.

(5)Kato,T.;Stoyanov,E.S.;Geier,J.;Grutzmacher,H.;Reed,C.A.J.Am.

Chem.Soc.2004,126,12451-12457.

(6)Stoyanov,E.S.;Popov,V.M

.;Mikhailov,V.A.Zh.Prikl.Spectrosk.

1984,40,77-84.

(7)Guillory,W

.A.;Bernstein,M.L.J.Chem.Phys.1975,62,1058-1060.

(8)Evans,J.C.;Lo,G.Y.-S.J.Phys.Chem.1966,70,11-19.

(9)Ault,B.S.Acc.Chem.Res.1982,15,103-109.

(10)EvansJ.C.

Spectrochim.Acta1960,16,994-1000.

JA058581L

Figure4.IRspectraofdifferentsublimedfilmsofH(CHB 1

1Cl 11):(a)the

dimericform

(black,dashed)andtwopolymericforms(b)with

νCHat

3039cm

-1(red,studiedbyX-ray)and(c)at3024cm

-1(blue).

Figure5.Perspectiveview

oftheproton-bridgedX-raycrystalstructure

ofH(CHB 1

1Cl 11)lookingdowntheC-

Hbondsofthecarboraneanions

(green

)Cl,orange)B,gray

)C,white

)H).

COMMUNIC

ATIO

NS

J.AM

.CHEM.SOC.

9VO

L.128,NO

.10,2006

3161

Page 2: Chem 622: Organometallic Chemistry - University of …manoa.hawaii.edu/chem/wp-content/uploads/CHEM-622_Cain...Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger

TopicsIntroduction/HistoricalPerspective

- Landmark compounds and reactions, Evolution ofInorganic/OrganometallicChemistry,NobelPrizeWinners

MainGroup

- StructureandBondingofGroups1,2,13–16- SynthesisofMainGroupCompounds- DOSYNMRspectroscopy- ReactivityandhandlingofMainGroupCompounds- Trends in bond strength/length, polarity of M-C bond,

comparisontotransitionmetalcomplexes- NMRactivenuclei(6Li,7Li,31P,19F,etc.)andNMRassignments

ofcomplexes- InertPairEffect,increasingenergyseparationofs/porbitals- P-andS-Stereogenicmolecules,synthesisandresolution,and

importance- Tolman,BiteAngle,etc.à Describingligands- AsymmetricDeprotonationwiths-BuLi/(–)-Sparteine- Carboranes:Synthesis,Reactivity,Applications- FrustratedLewisPairs,NBcomplexes,othernewresearch- Unusual,unexpectedMainGroupcomplexes

OrganometallicstoCatalysis

- Introduction: 16/18-electron rule,σ-,π-, andδ-bonding andtheorbitals,DCDmodel,etc.

- Tour of the ligands: σ-donors, σ-donors/π-acceptor, π-donors,commonligands(CO,PR3,halides,etc.),backbondingand its effect (IR spectroscopy, quantification of electrondensity)

- Isolobal Analogy and its Application: understanding andpredictingbonding,RoaldHoffman(1981NobelPrize)

- Reactions at the Metal: Ligand Dissociation/Association,OxidativeAddition/ReductiveElimination,and the impactofstericsandelectronics

- Reactions involving the Ligands: Insertion/β-hydrideelimination, nucleophilic/electrophilic attack, and how topromote or inhibit these processes. Examination of Bredt’sRule,agosticinteractions,etc.

- Kinetic Isotope Effects: Deuterium Labeling, CrossoverExperiments,etc.

- HomogeneousCatalysis1:Hydrogenation- Chirality: Types (Point, planar, axial, helical, etc.), effect of

symmetry,examplesofchiralmolecules

Page 3: Chem 622: Organometallic Chemistry - University of …manoa.hawaii.edu/chem/wp-content/uploads/CHEM-622_Cain...Chem 622: Organometallic Chemistry Class: MWF, 1030 – 1120 AM, Bilger

- Asymmetric Catalysis: Hydrogenation and its mechanisticunderlyings,prochiraltochiral,howtogetenantioinduction,NobelPrize2001

- Homogeneous Catalysis 2: Pd-Cross Coupling,TransmetalationAgent (B, Sn,Cu, Si, etc.),2010NobelPrize,RecentDevelopments(BuchwaldLigands,etc.)

- Homogeneous Catalysis 3: Metathesis, Its development,mechanism, and applications, 2005 Nobel Prize, DickSchrock/BobGrubbs,Mo/Wvs.Ru

- Future:HypotheticalDirections,whattoexpect,etc.Grading

- 5BriefExams(80%,20%each,droplowest)- Final(OralPresentation)à20%total


Recommended