+ All Categories
Home > Documents > Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim...

Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim...

Date post: 26-Mar-2015
Category:
Upload: gabriel-sutherland
View: 229 times
Download: 3 times
Share this document with a friend
Popular Tags:
19
Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson
Transcript
Page 1: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Chiral Tunneling and the Klein Paradox in Graphene

M.I. Katsnelson, K.S. Novoselov, and A.K. GeimNature Physics Volume 2 September 2006

John Watson

Page 2: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Outline

• Background, main result

• Details of paper

• Authors’ proposed future work

• Reported experimental observations

• Summary

Page 3: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Background

• Klein paradox implied by Dirac’s relativistic quantum mechanics

• Consider potential step on right– Relativistic QM gives

V

x

• Don’t get non-relativistic exponential decay

Calogeracos, A.; Dombey, N.. Contemporary Physics, Sep/Oct99, Vol. 40 Issue 5

Page 4: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Main result

• Graphene can be used to study relativistic QM with physically realizable experiments

• Differences between single- and bi-layer graphene reveal underlying mechanism behind Klein tunneling: chirality

Page 5: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Brief review of Dirac physics

LR

LR

k

k

tiH

I

ImcicH

,

0

0

0

0,2

Page 6: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Graphene and Dirac

• Linear dispersion simplifies Hamiltonian

• Electrons in graphene like photons in Dirac QM

• “Pseudospin” refers to crystal sublattice

• Electrons/holes exhibit charge-conjugation symmetry

fivH

Page 7: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Solution to Dirac Equation

22220 / yfx kvVEq

V0 = 200 meV

V0 = 285 meV

Right: Transmission probability through 100 nm wide barrier as a function of incident angle for electrons with E ~ 80 meV.

22

2

sincos1

cos

DqT

x

Page 8: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Bilayer Graphene

• No longer massless fermions

• Still chiral

• Four solutions – Propagating and

evanescent

Page 9: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Klein paradox in bilayer graphene

• Electrons still chiral, so why the different result?

• Electrons behave as if having spin 1

• Scattered into evanescent wave

V0 = 50 meV

V0 = 100 meV

Right: Transmission probability through 100 nm wide barrier as a function of incident angle for electrons with E ~ 17 meV.

EVV

ET 0

2

0

,2sin

Page 10: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Conclusion on mechanism for Klein tunneling

• Different pseudospins key– Single layer

graphene: chiral, behave like spin ½

– Bilayer graphene: chiral, behave like spin 1

– Conventional: no chirality Red: single layer graphene

Blue: bilayer grapheneGreen: Non-chiral, zero-gap semiconductor

Tunneling amplitude as function of barrier thickness

Page 11: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Predicted experimental implications

• Localization suppression– Possibly responsible for

observed minimal conductivity

• Reduced impurity scattering

Diffusive conductor thought experiment with arbitrary impurity distribution

Page 12: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Proposed experiment

• Use field effect to modulate carrier concentration

• Measure voltage drop to observe transmission

Dark purple: gated regionsOrange: voltage probesLight purple: graphene

Page 13: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Graphene Heterojunctions

• Used interference to determine magnitude and phase of T and R– Resistance measurements

not as useful

• Used narrow gates to limit diffusive transport

Young, A.F. and Kim, P. Quantum interference and Klein tunneling in graphene heterojunctions. arXiv: 0808.0855v3. 2008.

Page 14: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Fabry-Perot Etalon• Collimation still expected

• “Oscillating” component of conductance expected

• Add B field

Page 15: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Conductance

Page 16: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Observed and theoretical phase shifts

Page 17: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Summary

• Katsnelson et al. – Klein tunneling possible in graphene due to

required conservation of pseudospin– Single layer graphene has T = 1 at normal

incidence by electron wave coupling to hole wave

– Bilayer graphene has T = 0 at normal incidence by electron coupling to evanescent hole wave

– Suggests resistance measurements to observe

Page 18: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Summary

• Young et al.– Resistance measurements no good – need

phase information– Observe phase shift in conductance to find T

= 1

Page 19: Chiral Tunneling and the Klein Paradox in Graphene M.I. Katsnelson, K.S. Novoselov, and A.K. Geim Nature Physics Volume 2 September 2006 John Watson.

Additional References• Calogeracos, A. and Dombey, N. History and Physics of the Klein

paradox. Contemporary Physics 40,313-321 (1999)• Slonczewski, J.C. and Weiss, P.R. Band Structure of Graphite.

Phys. Rev. Lett. 109, 272 (1958).• Semenoff, Gordon. Condensed-Matter Simulation of a Three-

Dimensional Anomaly. Phys. Rev. Lett. 53, 2449 (1984).• Haldane, F.D.M. Model for a Quantum Hall Effect without Landau

Levels: Condensed-Matter Realization of a “Parity Anomaly”. Phys. Rev. Lett. 2015 (1988).

• Novselov, K.S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Physics 2, 177 (2006)

• McCann, E. and Fal’ko, V. Landau Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer. Phys. Rev. Lett. 96, 086805 (2006)

• Sakurai, J.J. Advanced Quantum Mechanics. Addison-Wesley Publishing Company, Inc. Redwood City, CA. 1984.


Recommended