+ All Categories
Home > Documents > Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling...

Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling...

Date post: 07-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
53
Welcome 1 © 2013 Agilent Technologies, Inc. Christopher Burns RF Power Platform Development Manager Power Broadband Business Unit RF Micro Devices
Transcript
Page 1: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Welcome

1

© 2013 Agilent Technologies, Inc.

Christopher Burns

RF Power Platform Development Manager /

Power Broadband Business Unit

RF Micro Devices

Page 2: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement

Christopher T. Burns

RFMD, Chandler, AZ, [email protected]

Page 3: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Introduction

• Motivation

• Information-rich signals with high peak-to-average ratios

are standard in the commercial wireless infrastructure and

expanding in the military world

• Need to operate backed-off from peak power yet at the

same time maximize efficiency

• Doherty Configuration is mature technology

• PA suppliers are getting very nearly equal results

• Need a well-defined approach to arrive at best design

quickly!

Page 3

Page 4: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

•GaN-on-SiC 48V FET technology features high impedance and

high power density to enable Doherty amplifiers with excellent

performance and bandwidth

Introduction

Page 5: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design - Outline

Concept Introductions

Operational Fundamentals – Load Modulation

Doherty Design Procedure

Doherty Design Example & Results

Practical Doherty Circuit Implementation Hints

1

2

3

4

5

Page 5

Page 6: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design - Outline

Concept Introductions

Operational Fundamentals – Load Modulation

Doherty Design Procedure

Doherty Design Example & Results

Practical Doherty Circuit Implementation Hints

1

2

3

4

5

Page 6

Page 7: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

The Doherty Amplifier

• Carrier amp, biased class B or class AB, is always on

and handles signal at average power

• Peaking amp, biased class C, only handles signal peaks

• C and P’s operation is dependent on each other

C

P

Carrier Amp

Peaking Amp

Page 7

η

Page 8: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

The Doherty Amplifier

Page 8

IV Curves & Class B load lines

10 20 30 40 50 600 70

4

8

12

16

20

0

24

VGS=-3.500VGS=-3.250VGS=-3.000VGS=-2.750VGS=-2.500VGS=-2.250VGS=-2.000VGS=-1.750VGS=-1.500VGS=-1.250VGS=-1.000VGS=-0.750VGS=-0.500VGS=-0.250VGS=0.000VGS=0.250VGS=0.500VGS=0.750VGS=1.000VGS=1.250VGS=1.500

VDS

IDS

RL

2xRL

Output Power

η

RL

2xRL

• Carrier mode:

• Carrier alone operates on 2xRL

load line

• ½ MaxPoutSingleDevice

• Peaking mode:

• Carrier and peaking each operate

on RL load line

• 2 x MaxPoutSingleDevice

Page 9: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design - Outline

Concept Introductions

Operational Fundamentals – Load Modulation

Doherty Design Procedure

Doherty Design Example & Results

Practical Doherty Circuit Implementation Hints

1

2

3

4

5

Page 9

Page 10: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Textbook Load Modulation

• Doherty achieves Load

modulation by using the

principle of “load pulling”

using two devices*

0.5RL V

I1 I2

1

21 15.0

I

IRZ L

Page 10

RL

I1 I2

V1 RL V2

Page 11: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Textbook Load Modulation

LRZZ 21

0.5RL V

I1 I2

0.5RL V

I1

02I

LRZ 5.01

Case I

Both amplifiers contributing equally

Case II

Peaking amp off

Page 11

But we need Z1 = 2xRL for high

efficiency at lower power!

Page 12: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

freq (1.000MHz to 1.000GHz)

ztos

(Zin

1)

indep(ztos(ZL)) (0.000 to 0.000)

ztos

(ZL)

indep(ztos(Z0)) (0.000 to 0.000)

ztos

(Z0)

indep(ztos(Zin)) (0.000 to 0.000)

ztos

(Zin

)

Quarter-wave Impedance Transformer

Page 12

Zin = Z02/ZL

Z0

Zin

ZL

Zin = 100Ω ZL = 25Ω

Z0 = 50Ω

Page 13: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design - Outline

Concept Introductions

Operational Fundamentals – Load Modulation

Doherty Design Procedure

Doherty Design Example & Results

Practical Doherty Circuit Implementation Hints

1

2

3

4

5

Page 13

Page 14: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty PA Concept and Practice

Simple ideal

Doherty PA

Carrier

Peak

λ/4 λ/4

RFOUT

RFIN

Implicit Assumptions: •Single Frequency

•Carrier and Peak amps are ideal current generators with no

reactive parasitics

•Carrier and Peak amps have same S21 magnitude and phase

regardless of biasing or drive level

•System Z = 0.5* optimum device RLoad

Page 15: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

CarrierOut

PeakingOut

Doherty PA Concept and Practice

Page 15

Output

Match

Input

Match

50Ω

•Parasitics, packaging and matching circuitry all have phase shift

•Peaking amp requires output offset line

•Carrier offset line– not necessarily 90 degrees

•Input offset lines to achieve in-phase output

•Output match to System Z0

•Impossible to achieve perfectly over frequency & power

Match

to 50Ω

Splitter

Complex in

Practice!

Page 16: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Topology – Definitions

Page 16

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

Page 17: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

• At the current source plane we want RL→2xRL

• We don’t have access to the current source plane

• We need measured or reliably modeled load contours

Practical Circuit Load Modulation

High Power Low Power

Page 17

RL→2xRL ??

Carrier Device

Page 18: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Select Optimum Impedances from

measured or simulated load contours

• Identify maximum Pout load ZOPT,P

• Drive device well into compression

• Trade off a little, but not too much for

Gain, Efficiency

• Identify “carrier mode” target - ZOPT,C

• Obtain contours at Pout = Max Pout – 3dB

• Superimpose circle of VSWR = 2 centered

on ZOPT,P

• Find point of best Gain, Efficiency

Doherty Design Procedure 1

Page 18

indep(PAE_contours_p) (0.000 to 28.000)

PA

E_c

onto

urs_

p

indep(Pdel_contours_p) (0.000 to 51.000)

Pde

l_co

ntou

rs_p

Readout

ZOPTp

ZOPTp

indep(ZOPTp)=

Pdel_contours_p=0.006 / 2.590E-13

level=53.006379, number=1

impedance = 5.062 + j2.810E-16

8

indep(Pdel_contours_p) (0.000 to 39.000)

Pde

l_co

ntou

rs_p

indep(PAE_contours_p) (0.000 to 26.000)

PA

E_c

onto

urs_

p

indep(circle_of_rhos1) (0.000 to 314.000)

circ

le_o

f_rh

os1

212

0.340 / 62.934

ZOPTc

ZOPTc

indep(ZOPTc)=

circle_of_rhos1=0.340 / 62.934

impedance = Z0 * (1.097 + j0.751)

212

POUT

PAE

Z0=5Ω

Pout compressed

Pout backed off

Page 19: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Procedure - 2

Page 19

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Select ZSUM (i.e., Z0/2)

•If ZSUM is 50Ω, then no need for ZMatch line

•But then Z0 becomes 100Ω!

Page 20: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Procedure - 3

Page 20

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Design Output Match to transform Z0 to ZOPT,P

•Identical for both Carrier and Peaking

Page 21: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Procedure - 4

Page 21

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Design Input Match

•Simplest if identical for both Carrier and Peaking

•May tweak Peaking side later

Page 22: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Procedure - 5

Page 22

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Carrier Z0 output delay line

•When terminated in Z0/2 (low power mode), must present

selected ZOPT,C to Carrier device.

•Not necessarily exactly 90 degrees!

Page 23: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Procedure - 6

Page 23

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Peaking Z0 output delay line

•When Peaking device is off (Low Power operation), ZOFF must

be very high impedance.

Page 24: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Procedure - 7

Page 24

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Peaking and carrier input delay lines and splitter selection

•Whatever delays are necessary to get carrier and peaking

outputs in-phase at summing node

Page 25: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design - Outline

Concept Introductions

Operational Fundamentals – Load Modulation

Doherty Design Procedure

Doherty Design Example & Results

Practical Doherty Circuit Implementation Hints

1

2

3

4

5

Page 25

Page 26: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

GaN Device used for Design Example

RF IN

VGQ

Pin 1 (CUT)

RF OUT

VDQ

Pin 2

GND

BASE

Features

Advanced GaN HEMT Technology

Peak Modulated Power > 240W

Single Circuit for 865 – 960MHz

48V Operation Typical Performance

o Pout 47dBm

o Gain 20dB

o Drain Efficiency 39%

o ACP -31.5dBc

o Linearizable to -55dBc with DPD

Optimized for video bandwidth and minimized

memory effects

RF tested for 3GPP performance

RF tested for peak power using IS95

Large signal models available

Page 26

Page 27: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Example - 1

Page 27

indep(PAE_contours_p) (0.000 to 28.000)

PA

E_c

onto

urs_

p

indep(Pdel_contours_p) (0.000 to 51.000)

Pde

l_co

ntou

rs_p

Readout

ZOPTp

ZOPTp

indep(ZOPTp)=

Pdel_contours_p=0.006 / 2.590E-13

level=53.006379, number=1

impedance = 5.062 + j2.810E-16

8

ZOPT,P = 5.0 +j0 Ω

Pout = 53 dBm

PAE = 61%

Simulated Contours at Pin = 37 dBm

indep(Pdel_contours_p) (0.000 to 39.000)

Pde

l_co

ntou

rs_p

indep(PAE_contours_p) (0.000 to 26.000)

PA

E_c

onto

urs_

p

indep(circle_of_rhos1) (0.000 to 314.000)

circ

le_o

f_rh

os1

212

0.340 / 62.934

ZOPTc

ZOPTc

indep(ZOPTc)=

circle_of_rhos1=0.340 / 62.934

impedance = Z0 * (1.097 + j0.751)

212

Simulated Contours at Pin = 32 dBm

ZOPT,C = 5.5 +j3.8 Ω

Pout = 50 dBm

PAE = 53%

POUT 0.2 dB steps

PAE 2% steps

Page 28: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Example - 2

Page 28

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Select ZSUM = 12.5Ω

•Z0 = 25Ω

Page 29: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Car

Pk

CarrierIn

PeakingIn

??4,0 CarrierOutZ

PeakingOutZ ,0

Doherty Design Example - 3

Page 29

Output

Match

Input

Match

POPTZ ,

COPTZ ,

HIGH POWER

LOW POWER

0Z

??2 0Z

HIGH POWER

LOW POWER

20ZZSUM

4/,50 SUMMatch ZZ

50Ω

0Z

OFFZLOW POWER

Splitter

• Wilkinson

• Gysel

• Hybrid

POPTZ , HIGH POWER

0Z2

0ZH

IGH

P

LO

W P

•Design Output Match to transform Z0 to ZOPT,P

•Identical for both Carrier and Peaking

Page 30: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Example - 3

Page 30

•Design Output Match to transform Z0 to ZOPT,P

freq (860.0MHz to 960.0MHz)

S(1

,1)

Readout

m3

S(2

,2)

m3

freq=

S(1,1)=0.007 / 85.104

impedance = 5.006 + j0.073

900.0MHz

Page 31: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Example - 4

Page 31

•Design Input Match

•Simplest if identical for both Carrier and Peaking

Page 32: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Example - 4

Page 32

•Check Class AB and Class C Response of input match

f req (700.0MHz to 1.100GHz)

S(1

,1)

0.75 0.80 0.85 0.90 0.95 1.00 1.050.70 1.10

-15

-10

-5

-20

0

14

15

16

17

18

13

19

freq, GHz

dB

(S(1

,1))

dB

(S(2

,1))

f req (700.0MHz to 1.100GHz)

S(1

,1)

0.75 0.80 0.85 0.90 0.95 1.00 1.050.70 1.10

-20

-15

-10

-5

-25

0

-1.0

-0.5

0.0

-1.5

0.5

freq, GHz

dB

(S(1

,1))

dB

(S(2

,1))

Class AB

VGG= -3.06V

IDQ = 600 mA

Class C

VGG= -5.06V

IDQ = 0 mA

Page 33: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Example - 5

Page 33

•Carrier Z0 output delay line

•When terminated in Z0/2 (low power mode), must present

selected ZOPT,C to Carrier device.

•Not necessarily exactly 90 degrees!

20ZZSUM

Page 34: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Example - 5

Page 34

•ZOPT,C is nearly perfectly nailed with ZERO δCarrierOut.

•This is not a general result

•This means no line is needed. How is this possible?

indep(Pdel_contours_p) (0.000 to 39.000)

Pde

l_co

ntou

rs_p

indep(PAE_contours_p) (0.000 to 26.000)

PA

E_c

onto

urs_

p

indep(circle_of_rhos1) (0.000 to 314.000)

circ

le_o

f_rh

os1

212

0.340 / 62.934

ZOPTc

ZOPTc

indep(ZOPTc)=

circle_of_rhos1=0.340 / 62.934

impedance = Z0 * (1.097 + j0.751)

212

ZOPT,C = 5.5 +j*3.8 Ω

Recall our loadpull:

freq (860.0MHz to 960.0MHz)

S(1

,1)

Readout

m1

m1freq=S(1,1)=0.336 / 67.991E_len=0.000000impedance = 5.151 + j3.620

900.0MHz

Page 35: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

ZL (12.500 to 25.000)

zto

s(Z

L,5

)

freq (860.0MHz to 960.0MHz)

S(1

,1)

Doherty Design Example - 5

Page 35

•The PCB match itself provides the required impedance inversion from

ZOPT,P to ZOPT,C! •The combination of PCB match, package, bond wires, and CDS parasitics

constitutes the 90 degree shift that allows RL -> 2xRL at the current source

plane when summing node Z goes 25Ω -> 12.5Ω.

•The only reference planes that really matter are the

devices’ current generators and the summing node

ZOPT,C

ZOPT,P

12.5Ω 25Ω

Page 36: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design Procedure - 6

Page 36

•Peaking Z0 output delay line

•When Peaking device is off (Low Power

operation), ZOFF must be very high

impedance.

•Required δPeakingOut is almost exactly

90 degrees

•Inverted Doherty?

freq (900.0MHz to 900.0MHz)

S(2

,2)

Readout

m1

m1freq=S(2,2)=0.922 / 2.472E_len=90.000000impedance = 480.442 + j254.772

900.0MHz

Page 37: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design example - 7

Page 37

•Select Peaking and carrier input delay

lines and splitter selection

•According to our design so far, there is

exactly 90 degree difference between

peaking and carrier path lengths on the

output side.

•An off-the-shelf, surface mount, 90

degree 3dB hybrid is a space efficient

option at 900 MHz

•Let’s use one, connect 0 deg to the

peaking and -90 deg to the carrier and

be done with it!

Page 38: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design example - 8

Page 38

38 40 42 44 46 48 50 52 54 5636 58

14

16

18

12

20

VGG_DIFF=0.000VGG_DIFF=0.750VGG_DIFF=1.500VGG_DIFF=2.250

VGG_DIFF=3.000VGG_DIFF=3.750

Fund. Output Power, dBm

Transducer Power Gain, dB

38 40 42 44 46 48 50 52 54 5636 58

20

40

60

0

80

VGG_DIFF=0.000VGG_DIFF=0.750VGG_DIFF=1.500VGG_DIFF=2.250VGG_DIFF=3.000VGG_DIFF=3.750

Fund. Output Power, dBm

PAE, %

• Put it all together!

• HB 1-tone

simulation results • Vdd = 48V

• Freq = 910 MHz

• Delta VGC – VGP swept

from 0V to -3.75V

Page 39: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design example - 9

Page 39

Ideal TLINE,

MLINE, etc.

Verify with Momentum

Simulation

Fabricate Circuit

Page 40: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Measured CW Efficiency, Gain

Freq = 895 MHz

Vdd = 48V

Power limited by

current capability

of lab VDD supply

Page 41: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

800-1000 MHz Broadband WCDMA Performance

•No DPD correction

•Peak Output Power

measured at 0.01%

probability on CCDF

•Vdd = 48V

•Carrier Idq = 650 mA

•Peaking-Carrier delta

VGG = -3V

•Avg Pout = 50 dBm

Page 42: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Doherty Design - Outline

Concept Introductions

Operational Fundamentals – Load Modulation

Doherty Design Procedure

Doherty Design Example & Results

Practical Doherty Circuit Implementation Hints

1

2

3

4

5

Page 42

Page 43: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Practical Implementation hints

Page 43

• RF Tuning

• Phase adjustment Give yourself options!

Page 44: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Practical Implementation hints

Page 44

• Move coupling

capacitors to

bypass splitter /

summing node

• Test carrier and

peaking halves

independently

Page 45: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Summary

• The Doherty Amplifier topology can provide efficiency

benefits

• GaN-on-SiC technology has significant benefits

• Ideal theory requires numerous extensions and

adjustments to work in practice

• Understanding basics and following correct procedure

leads to functional solution

Page 45

Page 46: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Do You Have

Any Questions?

Page 46

Page 47: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Further Reading

Cripps, S., RF Power Amplifiers for Wireless

Communications, Artech House, 1999, pp. 225-235

Grebennikov, A., Bulja, S.,“High-Efficiency Doherty Power

Amplifiers: Historical Aspect and modern Trends” Proc

of IEEE, Vol. 100, No. 12, Dec. 2012, pp. 3190-3219

Page 47

Page 48: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Acknowledgements

David Runton

Michael LeFevre

Matt Mellor

Rod Miller

Bob Davidson

Basim Noori

Page 48

Page 49: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Appendix: Measured WCDMA Performance with DPD

3GPP WCDMA signal

with 7.5 dB Peak-to-

Average ratio

Digital Pre-distortion

algorithm:

7th order polynomial

with 3 memory taps

Vdd = 48V

Carrier Idq = 650 mA

Freq = 895 GHz

NO DPD

DPD ON

Page 50: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

•DPD ON

•Peak Output Power measured

at 0.01% probability on CCDF

•Vdd = 48V

•Carrier Idq = 650 mA

•Freq = 895 GHz

Appendix: Measured WCDMA Performance with DPD

Page 51: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

Appendix: Load modulation in simulation captured dynamically

Create an ideal directional

coupler

Use it to probe dynamic

impedances at various points

in circuit in HB simulations

Page 52: Christopher Burns - Keysight · 2013-03-12 · GaN-on-SiC RFMD High Power Doherty Design, Modeling & Measurement Christopher T. Burns RFMD, Chandler, AZ, chris.burns@rfmd.com

RFpower (20.000 to 42.500)

zto

s(P

kZ

su

m.Z

L,2

5)

zto

s(C

arZ

su

m.Z

L,2

5)

RFpower (20.000 to 42.500)

zto

s(P

kZ

pkg

.ZL

,Zre

f1)

zto

s(C

arZ

pkg

.ZL

,Zre

f1)

Appendix: Load modulation in simulation captured dynamically

Z0=25Ω

Z0=5Ω

Carrier and

Peaking

impedances vs.

VGS,PK and Pin


Recommended