+ All Categories
Home > Documents > Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain...

Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain...

Date post: 22-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
19
HAL Id: halshs-00426146 https://halshs.archives-ouvertes.fr/halshs-00426146 Submitted on 23 Oct 2009 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Chromosomes and the origins of Apes and Australopithecines Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes To cite this version: Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo- somes and the origins of Apes and Australopithecines. Human Evolution, Springer Verlag, 1996, 11 (1), pp.43-60. halshs-00426146
Transcript
Page 1: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

HAL Id: halshs-00426146https://halshs.archives-ouvertes.fr/halshs-00426146

Submitted on 23 Oct 2009

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Chromosomes and the origins of Apes andAustralopithecines

Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé,M.J. Deshayes

To cite this version:Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and the origins of Apes and Australopithecines. Human Evolution, Springer Verlag, 1996, 11(1), pp.43-60. �halshs-00426146�

Page 2: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

I1UMA N EVOLUTIO N

J. ChalineA. DurandD. MarchandPaléontologie analytique et Géologiesédimeniuire (UMR CNRS H5561)et Préhistoire et Paléoécologiedu Quaternaire de i'EPHE,Université de Bourgogne,Centre des Sciences de la Terre,6 bd. Gabriel, 21000 Dijon, Franc?

A. Dambricourt MalasséUMR CNRS 9948, InMiiut dePaléontologie humaine,/ rue R. Panhard,75013 Paris, France

M. J. DeshayesRue Pasteur, J814000 Caen, France

Chromosomes and thé originsof Apes and Australopithecines

Comparison of molecular data suggests that thé higher apes (Go-rilla. Pan) and humank ind (Homo) are closely relatcd and thatthey divergcd from thé common ancestor through two speciationevents situated vcry closely togcther in l ime. Examinat ion of Ihechromosomal formulas of thé l i v in g species reveals a paradox inthé distr ibution of mutated chromosomes which can only be re-solved by a model of trichotomic diversif ication. This new modelof divergence from thé common ancestor is characterizcd by thétransi t ion from (1) a monotypic phase to (2) a polytypic phase ofthrec sub-species - p re -go r i l l a, pre-chimpanzee and prc-australopilhecine. The quadruped ancestors of Australoptthecusappear to hâve been one of thé Huée components of (ne commonancestor. The question is whcther ramidus îs an australopilhecineor a pre-australopithecine représentative of thé common ancestor.The new model of diversif ication of thé common ancestor isrcsituatcd in thc paleogeographic and paleoclimatic context which,through Ihe norlh-south pattern of extension of ar idi ty. provides acohérent scénario for thé formation of ex(ant species and sub-species of thé Corilla and Pan gênera.

1. Introductio n

Research into hominoid évolution involves mul t ip le discipl ines. Although scparate stud-ics hâve been conducted in various areas molecular analysis (Miyamoto et al.,1988;Bailey et al.,1992; Goodman et al., 1994), hlood serology (Wiener & Moor-Jankovsky, 1965;Socha & Moor-Jankovski, 1986), chromosomal design (Chiarell i. 1962; De Grouchy et al.,1972; Dutr i l laux et al., 1986; Dutr i l laux & Couturier, 1986; Stanyon and Chiarell i, 1981,1982, 1983; Yunish and Prakash, 1982), developmental data (Dambricourt Malassé, 1987,1988, 1992, I993a & h. 1994; Shea, 1988) and thé fossil record (Walker and Leakcy, 1978;Coppens, 1986; Simons, 1989; Coppens and Geraads, 1992) — there has never been a trulyail-round approach to Ihe subjcct. Current research into evolut ionary concepts (Gould, 1985;Devillers & Chaline, 1993; Chaline. 1994) indicates that there is a hierarchized structure inthé l i v in g world and that thé relations among thé various levels of intégration are h igh lycomplex, ranging from close dependence to complète dissociation.

Page 3: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

44 CHAL1NE, DURAND. MARCHAND. DAMBRICOURT MALASSE and DCSHAYES APES ANH AUSTRAL!

The aim of this paper is:(1) to crit ical ly review progress by analyzing two main levels of organization in

Hominoids: molecular and chromosomal;(2) to put forward explanatory models of chromosomal and morphological évolution

with i n a palaeoclimatic and paleoecological framework;(3) to test thé model using paleontological data.

2- Evolution at thé molecular level

Research at thé molecular level (DNA and protein sequencing. DNA/DNA hybridiza-tion, mitochondrial DNA restriction mapping, protein electrophoresis and immunology, bloodgroupings, etc.) bas confirmed thé proximity between humans and thé hîgher apes, butwithout conclusivcly scltling thc questions of kinship and thé splitt ing of thé différent branches.

I t is thé général consensus that cladistically thé chimpanzee groupe wi t h Homo, thenwith thé gorilla and much further on with thé orangutan. Molecular cladistic classification(Bailey et al., 1991, 1992; Goodman et al., 1994) places ail gréât apes and humans in thésame family (Hominidae)(Fig.l). Within this family, thé subfamily Homininae is dividedinto one tribe for orangutans (Pongini) and another tribe for gorillas, chimpanzees and hu-mans (Hominini). Gorillas are placed in thé subtribe Gori l l ina, whi le chimpanzees and hu-mans form thé Hominina subtribe.

Estimated divergence between higher primates based on thé ipY)-globin gène régioncombined with available nucleotide data ranges from 1.61 % (humans versus common chim-panzees) to 3.52 % (orangutans versus humans and African gréât apes). Pan diverges fromGorilla by 1.84 % (Miyamoto et al., 1987, 1988), a figure simi lar to that obtained by DNA/DNA hybridization analysis (Siblcy and Ahlquist, 1984, 1987; Caccone and PoweL 1989;Sibley et al., 1990). Broader investigation of thé \jrvi-globin gène région (Bailey et al., 1991)and of thé (3-globin gène (Bailey et al., 1992; Perrin-Pecontal et al., 1992) confirms théprevious relationships and classification.

The human-chimpanzee clade is corroborated by several other DNA séquence analysesinvolving thé immunoglobin epsilon and alpha pseudogene (Ueda et al., 1989), 12S ribos-omal gène (Hixson and Brown, 1986), 28S ribosomal gènes (Gonzalez et ai., 1990), 0.9 kbrégion of thé mt génome containing gènes for tRNA His, tRNA Scr, tRNA Lcu and part of ND4and ND5 (Hayasaka et al.. 19K8) and thé cytochrome oxidase I I locus of mitochondrial gènes(Pruvolo et al., 1991; Horai et al., 1992). Only DNA analysis of thc involucr in locus (Djianand Grccn. 1990) fai l s to confirm this clade, perhaps as a resuit of polymorphism.

It should be noted that thé molecular analyses of chimpanzees were conducted onindiv iduals labelled Pan troglodytes without specifying to which of thé three l iv in g sub-species — P. t. verus. P.t. troglodytes or P.t. schweinfurti — they belonged (M. Goodman,Personal communication). Similarly for gorillas. This imprécision explains in part why k in-ship is so di f f icul t to specify, because divergence among thé three sub-specics is probablyvery différent from that w i t h humans.

We are in thé paradoxical and unfortunately increasingly common situation where thémost sophisticated analytical techniques requiring very thorough expérimentation are appliedto samples chosen haphazardly! The population var iabi l i ty of thé study species is over-looked, even though its temporal and paleobiogeographical distr ibut ion is often highly com-plex.

Specialists generally accept that thé séparation of higher primates and humans results

from a double :cation), thé fir 5Pan and thé setevents looks l iî r ichotomy, orand thé seconcconspecific subextant Homo sa

3- Evolution al

3.1 -ChroA major ac

& Lejeune, 197Opinions c

thé chromosomor that alteratiothé phylogenicgrams entail ac(rearrangement ithé next section

By contrasplacing them inaway from heter(s i l ver nitrate) t>differs from thctures indicate fhï

3.2 -A ne\e comm

by déduction. Tshare a commorthem. This is thmosomal changderived froni arconvergence.

Wc can aitsomcs and thé s

Among anlogically thé ontwhich emigrate(m i l l i o n years (/stable from théoccurred since t

After thé stextant gênera -corresponds to

Page 4: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

APEii A M I ) AUSTRALOFITHECINES OR1GINS 45

from a double spl it occurring very close together in time (M. Goodman personal communi-cation), thé first separating thé lineage to Gorilla from thé common ancestor of Homo andPan and thé second separating thé lineages to Homo and Pan. Thèse two ancestral speciationevents looks lik e a trichotomy. But Smouse and Li (1987) suggested there was a truetricholomy, or a pair of ordered dichotomies with a very short time span between thé firstand thé second split. They take thé view that "thé ancestors of ail three taxa were sti llconspecific subséquent to thé second split, perhaps no more différent than thé major races ofextant Homo sapiens". This is an interesting suggestion to which we shall return.

3- Evolution at thé chromosomal levé!

3.1 - Chromosomal dataA major advance in chromosome research was thé development of R banding (Dutril laux

& Lejeune, 1971) and G banding techniques (Sumncr et al., 1971; Dutr i l laux et al., 1971).Opinions differ about thé rôle of heterochromatin. Dutr i l laux and his team consider that

thé chromosome data from primates (Fig.2) provide no évidence either for positional effectsor that altérations in heterochromatin influence gène expression. This idea is materialized atthé phylogenic level by two equally feasible dichotomie diagrams (Fig. 3). Thèse two dia-grams entail acceptance of three convergences or reversions, but a third diagram, where eachrearrangement is regarded as unique, implies complex populational évolution as describcd inthé next section.

By contrast, Stanyon and Chiarei li (1982) argue that "gènes can be (1) repressed byplacing them in, or near, blocks of heterochromatin, or (2) activated by a shift in their positionaway from heterochromatin régions". Thcy set gréât store by active régions detected by Ag-NOR(silver nitrate) type methods. This has repercussions for thé phylogeny shown in figure 4, whichdiffers from thé hypothèses in figure 3. They conclude that common derived karyological fea-tures indicate that Gorilla and Pan share a common descent after thé divergence of Homo.

3.2 - A new trichotomic chromosomal modelThe common ancestral chromosome formula of ail thèse species can be reconstructed

by déduction. The reconstruction is based on thé principle that if two, three or four speciesshare a common chromosome, it is l ike l y that some common ancestor transmitted it lo ail orthem. This is thé simplesl relationship. We may also take thé view that two identical chro-mosomal changes occur in thé same way on thé same chromosome in two related speciesderived from an ancestral form. This is statistically far less l ikely , though it is possible asconvergence.

We can attempt to reconstruct thé chronology of thé formation of thé various chromo-somes and thc successive events that marked thé history of thé family (Chaline et al., 1991).

Among anlhropoid apcs, thé group with thé most primitive chromosomal formula islogically thé one that branched off carliest in thé fami ly history. This is thé orangutan groupwhich emigrated to Asia where it has been eut off from thé African branch for more than 10m i l l i o n years (Andrews & Cronin, 1982; Lipson & Pilbeam, 1982). It has been relat ivelystable from thc chromosomal point of view. only two new chromosome mutations havingoccurred since that time.

After thé séparation of thé orangutan lineage, thé common ancestral lineage of thé threeextant gênera — chimpanzees, gorillas and humans — remained in Africa. This phasecorresponds to thé "common ancestor'" implied by genetic similarities. That there was a

Page 5: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

common ancestor is i rrefutably shown by thé formation of seven spécifie mutanl chromo-somes (2q. 3, 7, 10, 11, 17 & 20) and by thé rétention of clcven non-mutated commonchromosomes (1, 4, 5, 8, 9, 12, 13, 14, 15, 16 & 18} inherited by thé three l iv in g species(Cha l inee ta l ., 1991) (Fig. 5).

The occurrence of seven characleristic mutant chromosomes found in thé gorilla, chim-panzee and h u m an descendants implies that thé common ancestor was a single monotypicspecies, not div ided into subspecies. Genetic pooling as a resuit of interbreeding produces afa i r l y even spread of chromosome variety, inc lud ing chromosomal variations that appear inisolated indiv iduals. This first part of thé hislory of thé common ancestor corresponds towhat we shall term thé "first homogcnous common ancestor phase" (Fig. 5).

Thereafter. thé common ancestor diversified and thé lineages separated, leading on théone hand to thé gor i l l a and chimpanzee and on thé other to humans. This divergence raises acomplex popularïonal problem about thé d is t r ibut ion of fiv e new mutaled chromosomes.

I t is reported that chimpanzees and humans share three mutated chromosomes (2p, 7 &9) thaï gorillas do not hâve. Conversely, chimpanzees and gorillas share two other spécifiemulated chromosomes (12 & 16) not found in humans. In other words. chimpanzees sharethree common mutated chromosomes wi l h humans and two common mutated chromosomeswit h gorillas. But gorillas share no spécial rearrangements with humans!

Thîs position is inexplicable by thé standard hypothesis of a spl it into two branches(dichotomie model) leading to thé gorilla/chimpanzee on one side and to humans on théother.

Though there is a possible solution to thé puzzle: thé "second heterogcneous commonancestor phase" (Fig. 5).

To explain th is major paradox, i t must be supposed that al a certain t ime in their history.after thé tïrsf undilïerentiated phase, thé ancestors of chimpanzees and gorillas were able tointerbrecd and acquire two new chromosome mutations they alone possessed, and not hu-mans. This accords w i t h thé suggestion of Smousc and Li (1987) "that thé ancestors of a ilthree taxa were st i l l conspecific".

But iî must also be accepted that for sornc l ime, perhaps différent from thé first period,thé ancestors of chimpanzees and humans were able to interbreed and to incorporate threenew chromosomal mutat ions into thc ir genetic constitution, possessed by them alonc and notgorillas.

However, thé facl that thé ancestors of gorillas and humans do not share exclusivemutations in their chromosomal formulas implies that they did not at that time hâve contactsal lowing hybr id izal ion. They were geographically isolated.

Three hypothèses can be put forward, necessarily broken down into several phases andstages, summarized as follows:

In thé f i rst homogcnous common ancestor phase, thé ancestors of gori l las, chimpanzeesand humans formed a common undi f ferent ia ted monotypic ancestral group in which aili nd i v i dua ls could interbreed. There was a s ingle common species, not yet identif iée in théfossil record, and so nameless.

I n thé second heterogeneous common ancestor phase, thé ancestral group spl it in to threesubgroups. Probably i n to three subspecies as only subspecies could hâve retained thé ab i l i tyto interbreed in thé areas where they came into contact and to pool their genetic héritage. Wesha ll call them respect ively pre-chimpanzecs, pre-gori l las and pre-homin ians or pre-australopi thecines. By comparison w i t h thé geographical d is t r ibut ion of present-day species

(Collet, 1988)admit a plausib

— thé préday Lake VictiRiver in a fore:

— thé prénorth of thé Za

— thé prAfrican Rif t V;

This thretforerunncrs of Ilas of thé l i v i n t

The pre-clto interbreed \spread and aremans.

S imi la r l y,As a resuit, théthé chromosom,

However, ]acquire mutat io

This suggewest Cameroonthé pre-gorillas

This hypotadvanced by Sn

3.4 - HypoiThis hypotl

pre-gorillas anddif ferent iated (Fform thé pré-ciaustralopi theciruin micc in Japaitnusculus castai,cannot be ruled i

3.5 - HypotA not lier h y

common mutatkgoril las and pré-wise occurred inl io n seems sfatismodel consistent

Page 6: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

(Collet, 1988) (Kig. 6-7), which has probably not changed much over geological t ime, we canadmit a plausible hypothcsis ahout thé distr ibution of thèse three subspecies as follows (Fig. 8):

— thé pre-chimpanzee group must hâve been gcographically ccntred around thé présentday Lake Victoria région. I t stretched to north west Afric a across thé area north of thé ZaireRiver in a forest-savanna mosaic or open woodland environment.

— thé pre-gorilla group must hâve been located on thé western edge of thé former, st i llnorth of thé Zaire River, in thé very wet tropical rain forest zone.

— thé pre-hominian group musl hâve been located furthcr east in thé t'a mous EastAfrican Rif t Valley, thé gréât crack in thé Earth's crust runn ing north-south through Africa.

This three-way division of thé common ancestor into three geographical subspecies,forerunners of thé three extant gênera, accounts for thé formation of thé chromosomal formu-las of thé l i v i n g species by thé fol lowing scénario.

The pre-chi-mpanzees were in contact in thé hast with thé pre-hominians and were ableto interbreed wi t h [hem. As a rcsult, Ihree chromosomal mutat ions occurred in this région,spread and are now found in thé common chromosomal héritage of chimpanzees and hu-mans.

Similar ly, thé pre-chimpanzees bordered on thé west wi t h thé pre-gorillas and inlerbrcd.As a resuit, thé two chromosomal mutations occurring in thé common zone were included inthé chromosomal héritage of l i v in g goriilas and chimpanzees.

However, pre-gorillas and pre-hominians had no contact at that t ime and were unable toacquire mutat ions common to both gênera.

This suggests that thé pre-chimpanzee group was distributed in a wide arc from northwest Cameroon to thé south of Lake Victoria, separating thé pre-hominians in thé east andthé pre-gorillas in thc west (Fig. 8).

This hypothcsis is consistent with a true trichotomic model in compliance with thé ideasadvanced by Smouse and Li (1987).

3.4 - Hypothesis 2This hypothesis suggests that afterthe first common phase, two subspccies, respeclivclly,

pre-gorillas and pre-australopithecines became geographically separated and chromosomallydifferentiated (Fig. 9). Only then. did two small populations of each subspecies meet andfor m thé pre-chimpanzee stock! Chimpanzees could be hybrids of pre-gorillas and pre-australopithecines. A dichotomie model followed by genetic re-melding as has been reportedin mice in Japan (Mus musculus molossinus results from thé two remixed subspecies Musmusculus castaneus and Mus tnu\cutus tnuscu/us) (Bonhomme et al, 1 984). A theory thatcannot be ruled eut a ptioiil

3.5 - llypothesis 3Another hypoîhesis may be envisaged, that of convergence. This would imp ly that two

common mutat ions occurred at thé saine sites and on thé same chromosomes in both pre-gorillas and pre-chimpanzees. Moreover. three fur ther ident ical chromosomal mutations l ike-wise occurred in pre-chimpanzee and pre-human chromosomes. Althougll possible, th is solu-tion seems statist ical ly less probable than thé previous one. It would be a double-dichotomiemodel consistent with thé results of Bailey et al. (1992) and Goodman et al. (1994).

Page 7: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

CHALINE . DURAND. MARCHAND. DAMBRICOURT MAt.ASSF. ;md DKSHAYK S APF.S AND AUSTR,

4- Evolution at thé ecological levcl: a climatological model

The model of trichotomic divergence also implies that at some point between 5 and 4mi l l ion s years ago thé three subspecies f inal l y became three separate species. Either becausenew chromosomal mutations prevented them from interbreeding by abortion of hybrids or,more probably, because they had become geographically and ethologically isolated.

Since this séparation, chimpanzees hâve acquired six chromosomal mutations (4c, 5, 9,15, 17, 13) that they alone possess.

Similarly, gonflas hâve six différent chromosomal mutations (1, 4b, 5, 17, 8, 10, 14)peculiar to their chromosomal make-up.

As for thé pre-australopithecine and then human l ine, it acquired four spécifie chromo-somal mutations (2 mutations on chromosome 1, 2, 18), inc luding thé l'amous fusion of thétwo chromosomes tliat formed thé human chromosome 2.

To account for thé séparation into distinct species. a new décisive factor must beincorporated hère, that of climatic change. This would hâve induced changes in thé environ-menl lhat must hâve been instrumental in thé geographical isolation of thé subspecies andspecies. Figure 8 explains thé logic behind thèse changes.

The original common area in central Africa is currently a favoured cl imatic zone wherethé inter-tropical front (east-west) corresponding to thé thermal and meteorological equatorcrosses thé inter-oceanic confluence (north-south) (Leroux, 1983). Very schematically wefind thé permanent Atlantic monsoon domain and thé tropical rain tbrcst in thé west; théforest is known in thé Congo, Gabon and Cameroon basins from thé onsel of Ihe Miocène(Boltenhagen et al., 1985). To thé north lies thé seasonal At lant ic monsoon domain and thésavannah; in Nigeria a seasonal subtropical climate is reported since thé Oligocène-Miocèneboundary (Takashi & Jux, 1989). Further north st i l l is Ihe Sahara zone; évidence of a largearid zone in North Afric a i'rom Middle Miocène times is provided by rodents (Jaeger, 1975)and by flora (Boureau et. al.,1983). In thé south and east is thé domain of thé Indian Océanmonsoons and trade winds; tropical rain forest, open woodlands and montane forests arerecorded to hâve co-existed since 19 Myrs and savannahs since 14-12 Myrs (Bonnefille,1987; Retallack et al-, 1990). Local reliefs are superimposed on this background pattem toform an environmental mosaicthat is sensitiveto climatic fluctuations (White, 1983; Pickford,1990).

Our hypothesis is that d i f ferent iat ion occurred in connection with thc environment asdetermined by cl imate (fig. 8). Starting from a monotypic common stock (acquisition of 7chromosomal changes), thc pre-gorillas splil avvay in thé permanent monsoon domain northof thé Zaire River barrier. The pre-australopithecines developed on thé eastern margin underthé inf luence of thé Indian Océan monsoons and trade winds and spread north-south alongthé inter-oceanic confluence which roughly coincides with thé eastern arm of thé rif t val ley(fig.8) and may be westward around thé permanent At lant ic monsoon range. The prc-chimpanzees spread widely east-west, on thé northern boundary of thé permanent At lant icmonsoon domain, ranging from Central to West Africa.

This geographical pattern of climates underwent many large changes. First becauseAfric a has drifted relative to thé equator which lay 5° further north about 10 Myr ago(Scotese et al, 1988). But also because of changes in atmospheric circulation. In thé UpperMiocène tropical north Afric a experienced at Icast four épisodes ol substantial climaticdétérioration leading to ar id i ty, thé last at thé top of thé Miocène (ça. 6-5.3 Myrs) coincidingwit h a very dist inct cooling of thé Atlantic (Diester-Haass & Chamley, 1982; Sarnthein et ai,1982). Schematically, since Chudeau (1921) it has been accepted that extensions of thé arid

Page 8: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

APESAND AUSTRALOPITHECINESORIGIISS 49

Sahara zone are relatcd in part to a reduced summertime advance of thé monsoon front (FIT-1; Fig. 8) which may even remain blocked in thé southern hémisphère.

Such variations entailed changes in thé seasonal and permanent monsoon ranges andthus in thé three sub-species and could hâve separated them in a yet unknown history.

Allopatric break up of thé ancestral form would hâve allowed gorillas, australopîthecinesand chimpanzees to become isolated, as evidenced by thé autapomorphic features which hâvesince appearcd.

From thé Upper Pliocène (ça. 3.2 Myrs) général atmospheric circulat ion changed radi-cally for geodynamic reasons. Events such as thé closure of thé Panama isthmus, thé openingof thé Bering Straits and mountain building in North West America and Asia are thought tohâve been décisive factors in conjunction with variations in planetary orbit in triggering thénorthern hémisphère ice âges (Ruddiman & Raymo, 1988; Berger, 1992). Each glacial periodis related to aridily, Jn Africa north of thé equator (Chudeau, 1921; Tongiori & Trevisan,1942; Dubief, 1953; Tricart, 1956).

For more récent times where chronology is relatively précise, we now know that changesoccur suddenly. After thé last glacial maximum it is thought that thé arid zone extendedseveral hundred kilomètres furlhcr South on three occasions betwcen about 19,000 and15,000 years 1JC B.P. with each épisode lasting only 500 to 1000 years (Durand, 1993). Thedense humid forest became fragmented and mountain biotopes spread as a resuit of thé fall intempératures (Maley, 1987).

The répétition of thèse biogeographica! mechanisms dur ing thé Pliocene-Pleistocenefluctuations is thought lo be responsible for thé current diversification of chimpanzees andgorillas, each characterized by three sub-species.

Starting from thé init ial pre-chimpanzee distribution, i t is thought that common chim-panzees then diversified into three suhspecies. One subspecies (Pan troglodytes verus) isisolated in Guinea (Collet, 1988; Fig. fi) , probably as a resuit of a break in thé forest causedperhaps by a southward shift of thé Sahara désert zone in Quaternary times engenderingaridity in what is now Nigeria.

This mechanism of séparation of species into western and eastern populations may hâvebecn compounded because thé prc-gorilla and pre-chimpanzee populations were unable tocross thé gréât natural barrier of ihe marshland basin of thé River Zaïre. Only thé pigmyehimpanzee (Pan paniscus) made thé crossing or perhaps negotiated thé river upstream. It isimpossible at présent to provide détails and a chronology of what might hâve happened, bulthis mechanism is plausible. It can furthermore be tested, since if it is correct, fossils of pre-chimpanzees should be found in Tertiary deposits in areas where chimpanzees no longeroccur from thé Ivory Coast to Nigeria.

Kinal ly , gorillas also split from thé prc-gorilla stock into three subspecies, correspond-ing respectively to thé lowland and Ihe two mountain gorillas separated by thé bend in théRiver Zaire (Collet, 1988) (Fig.8).

Scarce Pre-hominians are known in thé fossil record (Lothagam, Lukeino, Ngorora) andare more or less unrelated. They can be considered as pre-australopithecines, one of thécomponents of Ihe common ancestor.

This new model introduces australopithecines as a missing-l ink between thé commonancestor and thé human lineage proper. They are never considered by chromosome special-ists for thé obvious reason that, being extinct, their chromosomes are unknown. But as theyformed a necessary intermediate stage, they must be included in thé model. By déduction, théchromosomal formula of thé extinct pre-human form Australopithecus can be evaluatedfai r l y accurately, except for thé four chromosomes that appeared after il s genetic isolation.

Page 9: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

50 CHALINC. DURAND. MARCHAND. DAMBR1COURT MA I .ASSh and DESHAYES

The model ot'séparation into three gênera is therefore not s imply one of divergence intotwo groups, as ordinarily occurs in thé animal world. Thcrc is a true trichotomy.

5- Tcsting with paleontological data

This model can be tested from a paleontological point of view, as it is for palaeontolo-gists to find thé ancestors, to date their appearance in thé fossil record and to reconstruct theirhistory proper (Fig.H)).

As said above, thé apc group wi t h thé most primit ive chrornosomal formula is logicallythé orangutan group which emigrated to Asia where it has heen eut off from thé Africanbranch for more than 10 mi l l io n years. It is now accepted that Ramapiihecus and Sivapithecusarc thé mâle a-n'd female of a single species related to orangutans (Andrews & Cronin, 1982;Lipson & Pilbeam, 1982). Our morphological analysis (Chaline, 1994), suggests thé same istrue of Ouranopiîhccus tnacedoniensis (Bonis and Melentis, 1977; Bonis et al., 1990) whichhas thé same facia! af f in i t ies with orangutans.

After thé séparation of thé orangutan lineage, thé common ancestral lineage of thé threeextant gênera remained in Africa. But fossil remains dating frorn 10 to 5 Myrs are vcrysparse. Only four f inds hâve been made to date. Two molars from Lukeino and Ngorora(Kenya) (Pickfbrd, 1975) and a fragment of jaw with a molar Lothagam, again in Kenya,dated to 5,5 Myrs. The latest discoverv is thé most interesting, that of Ardipithecus ramidusfound by Whilc el al. (1994, 1995) in thé Pliocène of thé Middle Awash (Ethiopia) and datedto 4,4 Myrs. Most data about thé teeth (metric, morphology. enamcl thickness) and evenfealures of thé cranium "evincing a s t r ik ing ly chimpanzee-l ikc morphology" are very s imi larlo chimpanzee form (Bonobo ?), but also hâve australopithecinc characters. It may be thatthèse fossils are of one of thé components of thé common ancestor - thé pre-chimpanzee orpre-australopithecine!

The chrornosomal model described hère entails several anatomical implications that canbe tested by paleontology. The first is thaï thé cranial and dental morphologies of thé threesub-species of thé common ancestor should be highly simian. The discovery of ramidus isfu l l y consistent with th is hypothesis and is a first favorable test. The second implicationconcerns thé shapc of thé pelvis. As gorillas and chimpanzees are quadrupeds and as bipedalismis thé apomorphic feature characteristic of australopithecines and their human descendants,thé three components of thé common ancestor must therefore st i l l hâve walked on ail fours.

ACKNO\VU;DGMENTS — Wc arc indchtcd to thé anonymous revjewers and thé editor Bru nette Cliiarelli for hclpfulcriticism. commcnts and suggestions, and to M. Goodman for pcrsonal communications. This woik was supporledby thé Laboratoire de Paléontologie analytique' et Géologie sédimentaire du CNRS (UMR 5561; Université deBourgogne. Dijon). We are also grateful to A. Bussicrc for thc drawings and lo C. Sulcliffc for help withtranslation.

Fig. 1 - The most

PTR: Pan traRludytal., 19S7)

PPYPTR~

PPY-

PPY-

HSA-

PPYHSA

PPY—

PTRHSA~

Page 10: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

APES AND AUSTRALOPITHECINF.S OKIGINS

trqglodytesGorzllagorïlla

Hominini

~\i

Tig. I - The most parsimoniou.s arrange me ni of ihe séquence dala of PPY: Pongo pygmneits; GGO: Gorilia gorilla;PTR: Pan troglodytes; HSA: Homo sapiens. Branch lenj-ths based only un unambiguuus thanges (afler Mivamoto clal., 19K7)

PPY_PTR

GGO

HSA

PPY_GGO

h"2

3 11

4 -o .

PPY ^**~HSA s ^~o-.

-PPA

PTR

HSA

^-PPY

^GGO

^--GGO

PPY-

PPY-

PTRHSA

PPYHSA"

PPYGGOHSA

PPYHSA~

PTR

GGO PPA

8 14

PTRHSA

-GGO

PPYGGOPTR

HSA

PTR - HSA

10

12

13 15

PTR

16

HSA

17

18

20

-PTR

-GGO

PTR"GG O

-PTR

•GGO

HSA

PPY

PTRHSAGGO

Fig. 2 - Companson of chromosomal mutat ions in orangutan, gori l la, chimpanzee and man. l'I'Y : l'onga pygmaeus;GGO: Gorilia gorilla; PTR: Pan troglodytes; HSA: Homo xapiens. White dois: pcriccntric inversion; black dots:paraccntric inversion: triangles: gain in hctcrochromalinc: bïack squares: rcciprocal or te rmina l - te rminal translocation(afler Dulr i l laux and Couturier. I9S6).

Page 11: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

CIIALINE. DURAND, MARCHAND, DAMBRICOURT MAI.ASSK and DESHAYCS APES AND AUSTRALOPm-

PTRGGO -PPA PPY (S) PI

a

PPY !

r !O

s— f\ — • — i

Pa3*

HSA

GGO PTR

PPA PaPaPa.

HSA

GGOPTR

PPA

HSA

Fig. 3 - Threc models explaining thé distribution of mulaled chromosomes in orangutans, gorîllas . chimpanzees andhumans. a - common mulalions vicwe d as convergence in GGO and PTR; b - commnn mutations vie\ved as conver-gence in PTR and HSA; c - individual population évolution. PPY: Pongo pygtnaeu.r, GGO: GoiïIIu gorillct; PTR: Pantrogiodyte\\: Pan paniscits; HSA: Homo supcns. White dots: pcricentric inversion; black dots: paraccnlrîcinversion; triangles: gain in helerochromaiine ; hlack squares : reciprucal or terminal-terminal transiocation (after Dutrillau xand Couturier, 1986).

Page 12: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

APES AND AUSTRALOPITHECINES ORICINS 53

PPY (S) PPY (B) GGO PTR

Pa3* - NOR 15, 14+ NOR1

Pe + De 14Pe8Cx5Pe4

Pal2 + Dupl.Pa lOPa4

PPA

Pa7Additionof G bonds13,14, 23, Y

HSA

Pe2pPe + Del5Dupl. 13?Pe9Pa5Pe4- satellite II+ assoc. 5-MeC

Pe2qPel2Pel6C terminal bands

-NOR 15

Pa7Pe7Pe3Origin of: BrillantQ - bands includingbrillant YLossof2NOR3

Origin of Acrocentricsmultiple rDNA sitessatellites I-IV7PE5Pa6 Fissions

NOR 18Pe + Del8De 15Pe9Pe2Fusion 2Pei —**

l - ig . - l - Chromosoiiial phylogeny for thé l lominoidea. Cx: complex change; De: de ler ion; Pa: paracentric inversion: Pc:pericentric inversion; 5-McC: 5-methyI-cytosine. PPY: Ptiiiga pygmaeus (S: Sumatra; B: Bornéo); GGO: Gorilltigorillu: PTR: Pan troglodytes: PPA: l'an /Hmr.svuv; HSA: Homo sapiens, (aftcr Stanyon and Chiarel l i, ]9S1).

Page 13: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

2 *"* 2 ?ï~•^ 2 '£ g i 3 £ <£&. ri ,_ 3 ,^ § ;r ,

r"g » o ^ "9. -4 =- HII CI3 7T ^ r, =T. -1 2.3 o — — o -1 n0 - =r '-< ~3 - ?CL s- « -2 =r q 4, ;io n - _; £ S o3 i: -> D w 3~ 3^ S r e w ^ f î o n "c i = ri Q. ng ^ w ^ o d n^ " " £ - " " 2 n " - r

W 3 ^ , . ' X ^ ^ 3

•-• S "r t 5' 5" 3 3 -ï; en n ?v* tro 5 S

i à £' -. -• § °- ps ? - 3 D " 5 E . 3 w1 Ë. & * f » S g >3 ~. R ? 3 = o ^ hj>. 3 a. n G -• - hJ" ^ " • ^ 0 ^ " = ' A ?ï " " 7 | " g - S g "'^ . 5 ^ - ë - j w - S ! O

( r â : ? S 2 - ë § - ëB t>5 ? - o ^ 2 o S " - "^3 - S 3 ' 3 o ; D . =yj g_ — i Q ^ rï CR

i ^ s l ' B - " ' ' w " ?^ ' 2 " ? ^ C ^ ^ ? T- S a . ' Q w S ' ^ S—, o . . -n •-!^ 3 ? B: -W S 1 0i <S. 2. P C! | ^ f=Si ^ CJQ "^ -~ 1" 0 " "

°- "2 3 ' 7~ t; r-r> -- n g. — - ci^" 3 ^ ET -j K « ?^ ^- ^ 5" "^ £. c-

^^ speclatloni^1" ?*- event J

cmlogeiietic data. This inodel explains théution for shared PuniUtnno. GoiilUtfPt/n

imorphic cliromosoinal features. Aftcr auid 20, Ihe common ancestor musl hâvepanzee and pre-australopithccus. Some 5CfiriHa, Pan and Au^traiopithvLUs. Aboulive man (Homo erectu.s) and around 0.1 Hmoftomes.

Pi-><DtoH>

tdJO

M^ limltof >| dlachrons |

phase 1monotyplc

tflnSP*o3ossAenff&•f»a«•n0,ffo9

?oo0(A£

-

common ancestor 1 ^7 modified chromosomescommon to ail lineages2q, 3,7. 10, 11, 17, 20

1 1 unmodifled chromosomescommon to ail lineages

1, 4, 5, 8, 9, 12. 13, 14, 15, 16, 18

common a

g iAWrt-O>110

phase 2 polytypic phase 33 subspecies of distinct species

t." 5 K ~" f œ 3r )1 1» * M U ^ " / S* p*

' l S g g pre-gorttlas ai» ta 5i r S S s trr g f t §

CB

N3 Oi

jre-chtmpanzee

g 3 common7 modified 72p chromosomes 2p

pre-austratopirhecine

L -V^- A U1 Oy,^ , OJ ] S"

1 /«S / M

i tt *W M

« ^ ^ a " taa § 3* S* \1 1 f s H*I I 1 s _Jg

i \*^ )Is /S= /n ,,

Australopithecus §

Y ^I 8~r l \aHI a i ? H §f s i i;g |

V^A S Mw \>a O

" "§ "J î B__LJ s o

5 toj

Page 14: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

AHtS AND AUSTRALOPITIICCJNES OR1GINS

CD F"" troglodytes venus

F ' J Pu Irofllodrt " troglodyte»

dUPiH Iroclodytes schnelnfllrth i

Fig.G - Distr ibut ion of thé thrce sub-species of common chimpanzees. The western-most sub-species, thé black chim-panzee (Pan troglodytes l'crus). inhabits (iuinea while ihe other arc found norlh ot Ihe River Zaïre (or Congo): ihctypicat common cliimpan/.ee (Pan troglodytes troglodyte in thé wesl in Congo, Gabon, T.quaiorial Cîuînea andCamcroon ;ind Schweinîï ir l '5 cliinipanxee (Pan troglodytes \chweinfunhi) furt l ier ea l in northcrn /aire (at'ler Collet,

Fie.7 - D i s t r i bu t i on of thé ihree but>-spccics ot gori l las. Oori l las are divided in lo western lowland gori l las (Coi-'illuL'onllti goiiHn) in Congo, Gabon, Equalonal Guinea and southern Cameroon and eastcrn mountam «orillas (GurUtagonllu graiit'fi (Burundi and Rwanda). A third sub-species, thé mounta in goi' i l l a ol' Rwanda and Ijgand.i (Gnritltit>orilla hcringri) is in danger of imminent ext inct ion (al'ter Collet, 19XS).

Page 15: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

CHALINE. DURAND. MARCHAND. DAMBRICOURT MAI.ASSÉ and DESHAYES APKS AND AUSTRAI.OP1T

Fig.K - Distribution of thé tommon ancestor at thé start of thé polytypic phase, Prc-gorillas must hâve occupied (he welAtlantic monsoon zone (dense foresl), prc-chi m pansées thé less rmmid Atlantic monsoon zone (open foresl} and pré-australopithccines thé Indian Océan monsuons zone (accacta savannah). 1: Sumnier; 2: Wmtcr; thick solid line: InterTropical Front; pointed line: Inier Oceanie Confluence.

Fig.9 - Dichotomie model cxplaining thc di.stribution of chromosomes in living species. Tliis most parcimonious modelsuggests thaï at'ter ihe monohpic phaie. thc common ancestor split into two sub-species - pre-gorilla and pre-australopithecine - and that thé populations from thc two sub-species interbred to produce thc third. hybrid, sub-spccies- thc pre-chimpanzees

Page 16: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

âges in Myrs

Sivapithecus-Ramapithecus

, IIBI I I I I IBBBBBBBBBBBBBBBBBBBBBBBBBBBBHi m m Imil l I I llni l I I Hf IBM I I 11 BBBBBBBBBBBBBBBBBBBBBBBBBBBMI I IH I [I [1(11111111 11 Imitll l MMIIMMIBI I I I IM m I I I II III1IIIIIIMIH I I I [IIIB I [I I I I IIB M I I M Mnl l M I I UNI BBBBH '

ft. A OuranOpitheCUS | bllaspurensis blackl'

û IlumiiiauHiiiiiii i

Dryopithecuspygmaeus Q

' BIIIHIIBMIBBBBW I fcj

<fe

ii !•"• =g PIProconsul

n a»s

phase 2 of threesubspectes

=n lin nmid i n IBIII n n UNI 11

I pre-gorilla

homogenouâ ïphase 1 i

IIIIBII H irim n IHI llnn KII i" i IIB MIIIIIIIIHIIIIIIIIHIIIIMIIIHII min n IIHII un i imi 1111 IIBII n n iiBii to m H il MB HIIM ni i| pre-chimpanzee s J

B 2 I 11« a ï 23 * ïM S S i W « a « iw 3 = g. 3 P Ë

? n i S a

troglodytesiiim n nu n ii MB nmui IIIMIIII w IIIBI i •

*d =ft -

n

2H S

3 I E.I Sf S

pre-australopithecine Australopithecus

E=rf 3Ls-T Homo g.g

S cr 5 = HH"2 S'a Q _£> 2 = 0«îMi I y s si?B;?o*M » ' " d û

Page 17: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

APES AND AUSTRALOPITHEC

Références

Andrews, P. and Cronin, LE., 1982. The relat ionships of Sivapithecits and Ramapitliecus and thé évolut ion ofthé o rangufan. Nature, 297: 541-546.

Bailey, W.J., Ficht, D.H.A., Tagle, D.A., C/clusniak, Slighlom, J.L. and Goodman M., 1991. MolecularEvolution of thc i|j i]-Glohi n Gène Locus: Gibbon Phylogeny and thé Hominuid Slowdown. Mol. Biol.Evol. 8(2): 155-184.

Bailey, W.J.. Hayasaka, K., Skinner, C.G., Keheo, S., Sieu, L.C., Slightom, J.L. and Goodman M., 1992.Reexamination of thé Afr ican Hominoid Trichotomy with Additional Séquences from thé Primate (î-Globin Gène Clusîer. Mol. Pliyl. and Evol.. 1(2): 97-135.

Berger, A. 1992. Le climat de la Terre. De Boeck Université, Bruxelles, 479p.Bishop, W.W. and Pickford, M. 1975. Geology, fauna and palaeoenvironments of thé Ngorora Formation,

Kenya Rif t Valley. Nature, 254: 185-192.Boltenhagen, E., Dejax, J. et Salard-Cheboldaeff, M., 1985. Evolut ion de la végétation tropicale africaine du

Crétacé à l 'ac inel d'après les données de la palynologie. Bull. Section Sciences. 8: 165-194.Bonhomme. F., Catalan, J., Bri t ton-Davidian, J., Chapman, V., Moriwaki, D,, Nevo E. and Thaler, L. (1984).

Biochemical diversi ty and évolution in thé genus Mus. Biocliemical Genetics. 22, 275-303.Bonis. L. De and Melentis, G. 1977, Un nouveau genre de primate hominoide dans le Vallésien (Miocène

supérieur) de Macédoine. Comptes Rendus Ac. Se. Paris, 284(D): 1393-1396.Bonis, L. De, Bouvrain, G., Geraads, D., and Kouiros, G. 1990. New hominid skull mater ial from thc late

Miocène ot" Macedonia in Northern Greece. Nature, 345:712-714.Bonnefille, R. 1987. Evolution des m i l i e ux tropicaux africains depuis le début du Cénozoïquc. Mém. Travaux

EPHE, 17: 101-110.Boureau, E., Cheboldaelï-Salard, M.. Koeniguer, J.-C, and Louvet, P. 1983. Evolut ion des flores et de la

végétation tert iaires en Afr ique, au nord de l 'équateur. Bothalia, 14(3-4): 355-367.Cacconc, A. and Powcll, J.R., 1989. DNA divergence among hominoids. Evolution. 43: 925-942.Chalme, J. 1994. Une famille peu ordinaire. Le Seuil, Paris, 222p.Chal ine, J.. Dut r i l laux. B., Coutur ier, J., Durand, A. el Marchand, M., 1991. Un modèle chromosomique et

paléobiogéographique d'évolution des pr imates supérieurs, déobios, 24(1): 105-1 10.Chiarel l i, B. 1962. Comparative rnorphoriietric analysis of primate chromosomes of thc anthropoid apes and

man. Curyologia, 15: 99-121.Chudeau, R. 1921. Les changements de cl imat du Sahara pendant le Quaternaire. C.R. Acad. Sci., 172: 604-

607.Collet, J.Y.. 1988. La planète des Primates. In: Les petits des grands singes. Terre, sauvage. Ed. Nuit et Jour:

6-12.Coppens, Y. 1986. Evolut ion de l 'homme. Comptes Rendus Ac. Se. Paris, 3(3):227-243.Coppens, Y. and Geraads, D. 1992. "Aiuhropogenesis. An overview'". In: History of Humunity. Prchistory

and thé heginning o/Cn iiization. Ed. by De Laet, S.J.,1: 22-26. Routledgc, Unesco.Dambr icourt Malassé, A. 1987. Ontogenèses, paléontogenèses et phylogenèse du corps mandibula i re

catarhin ien. Nouvelle interprétation de la mécanique humanisante (théorie de la foetil isation, Bolk,1926). Thèse de Doctorat Mus. Nat. Hist. Nat. Paris.

Dambricourt Malassé, A. 1988. Hominisation et loetalisation. C.R. Acad. Sciences. Paris, 307, I I : 199-204.Damhricourt Malassé, A. 1992. Droit de réponse. Revue d'Onho petite. Demofaciaie, vol. 26, 1 : 71-79.Dambricourt Malassé, A. 1993a. Conlinuily and Disconl inui ly dur ing Homin i /a t ion. Quaternarv Interna-

tiona!. 29: 86-98.Dambricourt Malassé, A. 19931'. Une nouvelle loi de croissance cranio-faciale et ses importantes conséquences

tfAitstralopithccus à Y Homo sapiens du XXe siècle. In: Actes du Xlie Congrès International desSciences Préhistoriques et Prohistoriques. Bratislava, UISPP: 178-186.

Dambricourt Malassé, A. 1994. De la morphogenèse céphalique embryonnaire à l 'a rch i tec ture cranio-facialeadulte. Problèmes et méthodes pour la reconsti tut ion des ontogenèses fossiles. Colloque '''Ontogenèseet Evolution", Bruxelles j u i n 1994, Anthropologie et Préhistoire.

Dambricourt Malassé, A. 1995. Les attracteurs inédits de l 'hominisation. Ontogenèse fondamentale, attracteurschaotiques et attracteurs harmoniques. Acta Biotheoretica, 43: 113-125.

De Grouchy, J.. Turleau. C. Roubin, M. et Klein, M., 1972. Evolutions caryotypiques de l 'homme et duchimpanzé. Etude comparative des topographies de bandes après dénaturation ménagée. Ann. Génétique,15: 79-84. *

Devillers, C. and ChalintYork, 251p.

Diesler-1 laass, L. and Ch;off Northwest Afri cby Von Rad, (J., I I

Djian, P. and Green. I f . , 1Mai. Biol. Evol. 1: \, J. 1953. Essai sut

Scient., 458 p., 41 fDurand, A. 1993. Enrcgîs

Salie! central (NigeiDutr i l laux, B. et Couturi

l 'exemple des PongDutr i l laux, B. et Lejcune

rendus Ac. Se. ParhDutr i l laux, R. De Grouc

chromosomes hum?Paris, 273: 587-588

Dutr i l laux, B.. Vliegas-PeqGonzalez. I.L., Sylvester,

séquences and homiGoodman, M., Bailey, W

Evidence on PrimateGould, S.J. 1985. Thc parHayasaka, K., Gojori, T,

DNA. Mol. BivI.EvHixson, J.E. and Brown,

drial DNA of thé glions. Mol. Biol. Evt

Horai, S., Satta, Y., HayMan's place ir t Mon

Jaeger, J.-J,, 1975. Les Mévo lu t ion; donnéesniques du Langucdc

King, M.C. and Wilson, A.Leroux, M. 1983. Le clim,Lîpson, S. and Pilhcam 1

545-548.Maley, J. 1987, Fragment

Quaternaire récent:biogéographiques. /

Miyamoto, VI.M. , Koop, 1of higher primates;763 1

Miyamoto, M.M., Slightofron DNA Sequena

Pcrrin-Peconlal, P., Gouy.région: Nutleol idc :ships between Afri c

Pickford, M. 1975. Late 1279-284.

Pickford, M. 1990. Upli lEvolution. 5(1): 1-2

Pruvolo. M.T., Disotell, 'African honiinoid tri1574.

Page 18: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

APES AND AUSTRALOPlTHRCINtS OR1GINS

Devillers, C. and Chaline, J. 1993. Evolution, An Evolving Theory. Springer Verlag, Berlin, London, NewYork, 2.5] p.

Diester-Haass, L. and Chamley, H. 1982. Oligocène and post-Oligocène history of sédimentation and cl imateoff Northwest Afric a (DSDP site 369). In: Geotogy oftht Northwest African Continental Margin ". Ed.by Von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E., Springer-Vcrlag, Ber l in: 529-544.

Djian, P. and Green, 11., 1990. Tlie involucrin gène of thé gibbon: thé middle région shared by thé hominoids.Moi. Bwl. Evol. 1: 220-227.

Dubief, J. 1953. Essai sur l'hydrologie superficielle au Sahara.. Thèse, Alger, et Serv. Col. et Hydr., EludesScient., 458 p., 41 fig. et 3 cartes h.t.

Durand, A. 1993. Enregistrement sédimentuire de la dynamique climatique au Quaternaire supérieur dans leSfiitel central (Niger et Tchad). Thèse d'Etal Université de Bourgogne, Dijon, 562p.

D u t r i l l a u x, B. et Couturier, J.. 1986. Principes de l'analyse chromosomique appliquée à la phylogénie:l 'exemple des Pongidae et des Hominidae. Mummalia, 50: 22-37.

DuLr i l laux, B. et Lejeune, J. 1971. Sur une nouvelle technique d'analyse du caryotype humain. Comptesrendus Ac. Se. Paris. 272: 2638-2640.

Dutr i l laux, B., De Grouchy, J., Fina/ C, et Lejeune, J. 1971. Mise en évidence de la structure fine deschromosomes humains par digestion cnzymalique (pronase en particulier). Comptes Rendus Ac. Se.Paris, 273: 587-588.

Dutri l laux, B., Vlicgas-Pequîgnot. L. et Couturier J., 1986. I-cs méthodes cytogénétiques. Mammalla, 50: 11-20,Gonzalez, I.L., Sylvester, J.E., Smi th, T.F., Slabolian. D. and Schmickel, R.D., 1990. Rihosomal RNA gène

séquences and hominoid phylogeny. Moi Biol. Evol. 1: 203-219.Goodman, M., Bailey, W.J., Hayasaka, K., Stanhope, M.J., Slightom, J. and Czelusniak, J. 1994. Molecular

Evidence on Primate Phylogeny From DNA séquences. Amer. Journal of Pltysical Anthropology, 94: 3-24.Gould, S.J. 1985. The paradox of thé first lier: an agenda for pateobiology. Paleobioiogy, 11(1): 2-12.Hayasaka, K-, Gojori, T., and Ilorai, S. 1988. Molecular phylogeny and évolution of primate mitochondrial

DNA . Moi. Biol. Evol.. 5: 626-644.Hixson, J.E. and Brown, W.M. 1986. A comparison of thé stria!! rihosoma] RNA gcnes from thé mitochon-

dr iaî DNA of thé gréât apos and humans: Séquence, structure, évolution, and phylogenctic implica-tions. Mol Rio!. Evol., 3: 1-18.

Horai, S., Satla, Y., Hayasaka, K., Kondo, R.. Inoue, T., Ishida, T.. Hayashi, S. and Takahata, N. 1992.Man's place in Hominoidea revealed by mitochondrial DNA genealogy.,/. Moi Evol., 35: 32-43.

Jacger. J.-J., 1975. Les Muridae (Mammalia, Rodenlia) du Pliocène el du Pléislocênc du Maghreb. Origine;évolution; données biogéographiques et paléoclimaliques. Thèse d'Etat Université Sciences et Tech-niques du Languedoc, 148p.

King, M.C. and Wilson, A.C., 1975. Evolution at two levcls in humans and chimpanzees. Science. 188: 201-203,Leroux. M, 1983. Le climat de l'Afrique tropicale. Champion, Paris, 2t.: 633p. and 250 maps.Lipson, S. and Pilbeam D., 1982. Ramupithectis and I lomin i d évo lu t ion, Journ. of iinman Evolution, 11:

545-548.Maley, J. 1987. Fragmentation de la forêt dense humidu africaine et extension des biotopes montagnards au

Quaternaire récent: nouvelles données po l l in iques el chronologiques. Impl icat ions paléoclimatiques etbiogéographiques. Pnlaeoecotogy of Africa, Balkema, 17: 307-334.

Miyamolo, M.M.. Koop. B.F., Sl ightom, J.L.. Goodman, M. andTcnnan l, M.R., 1988. Molecular sysiematicsof higher primates: Genealogical relations and classification. Proc. Natl. Acad, Sa. USA, 85: 7627-7631.

Miyamoto, M.M., Sl ightom, J.L.. Goodman, M.. 1987. Phylogenetic Relat ions of Humans and African Apcsl'ron DNA Séquences in thé ipi] Globin région. Science, 238: 369-373.

Perrin-Pecontal, P., Gouy. M., Nigon, V-M. , and Trabtichel, G. 1992. Evolut ion of Ihe pr imate fj-globir t gènerégion: Nucleolide séquence of thé ô-[ï globin intergenic région of gor i l l a and phylogenctic re la t ion-ships between African apes and man.J. Mol. Evol.. 34: 17-30.

Pickford, M. 1975. Laie Mioccne sédiments and fossils from thé Northern Kenya R i f t Val ley. Nature, 256:279-284.

Pickford, M. 1990. Up l i f l of thé Roof of Afric a and il s bearing on thé Evolution of Mankind. HumanEvolution, 5(1): 1-20,

Pruvolo, M.T., Disotell, T., Ammard, M.W., Brown, W.M., and Honeycutt, R.L. 1991. Resolution of théAfr îcan hominoid tricliolomy using a milochondrial gène séquence. Proc. Nail. Acad. Sci. USA, 88:1570-1574.

Page 19: Chromosomes and the origins of Apes and Australopithecines · 2021. 3. 9. · Jean Chaline, Alain Durand, Didier Marchand, Anne Dambricourt Malassé, M.J. Deshayes. Chromo-somes and

CHALiNK , DURAND, MARCHAND. DAMBRICOURT MALASSE and DESHAYES HIJMA N EVOLUTION

Relallack, G.J., Dugas, O.P. and Bestand, E.A. 1990. Fossil soils and grasses of a middle Miocène eastafrican grassland. Nature, 247: 1325-1328.

Ruddiman, W.F.and Raymo, M.E. 1988. Northern Hémisphère climatic régimes during thc past 3 Ma:possible lectonic connections. In: The past thrcc million years; évolution of climatic variability in théNorth Atlantic Région. Ed. by Shackleton, N.J., West, R.G. and Bowen , D.tV'Phil. Trans. R. Soc.Lond., 6318:411-430.

Sarnthein, M., Thieldc, J., Pf laumann, U., Erlenkeuser, H,, Futlerer, D., Koopmanri, B., Lange, H. andSeibold, E. 1982. Almosphcric and oceanic c i rculat ion patterns off Northwest Africa dur ing thé pasi 25mi l l i o n years. In: Gcology of thé North wesi African continental margin. Ed. by Von Rad, U., Hinz,K., Sarnthein. M. and Seibold, E. Springcr-Verlag, Berlin: 545-604.

Scotesc, C.R., Gahagan, L.M. and Larson, R.L. 1988. Plate tectonic reconstructions of thé cretaceous andeenozoic océan basins. Tectvnophysics. 155 (1-4): 27-48.

Shca, B.T. 1984. An Allometric Perspective on thé Morphological and Evolutionary Relationships betweenPygmy (Pan pa ni sens) and Common (Pan troglodytes) Chimpanzccs. In : The Pygtny Chimpanzve.Evolutionary Bioiogy and Behavior. Ed. by Susman R.L.: 89-130.

Shea, B.T. 1988. Hctcrochrony in primates. In: Hctcrochrony in Evolution, A Muhîdisciplinary Approach.Ed. by McKinney, M.L., Plénum press, New York, 7: 237-266.

Sïbley, C.G. and Ahlquist, J.E., 1984. Thc phylogeny of thé hominoid primates, as indicated by DNA-DNAhybridyzation.7. Mol. Evol. 20; 2-15.

Sibley, C.G. and Ahlquist, J.E., 1987. DNA hybridization évidence of hominoid phylogeny: results from ancxpandeddata set. J. Mol. Evol. 26: 99-121.

Sibley. C.G., Comstoc, J.A. and Ahlquist, J.E., 1990. DNA hybridizal ion cvidcnce of hominoid phylogeny: areanalysis of thc data. J. Mo!. Evol. 30: 202-236.

Simons, E.L. 1989, Human Origins. 5cienré-,245:1343-1350.Smouse. P.E. and Li , W.H. 1987. Likelihood analysis of mitochondrial reslriction-cleavage patterns for (he

human-chimpanzee-gori l la trichotorny. Evolution, 41(6):l 162-1176.Socha. W.W. and Moor-Jankovski, J. 1986. Blood Croups of Apes and Monkcys. in: Primates. The Road to

Self'Sustaining populations. Ed. Benirschke, K. Springer Verlag. new York, 921-932.Stanyon, R. and Chiare l l i, B. 1981. The chromosomes of man and apes: evolulion and comparison. Bionature,

1-2: 11-27.Stanyon, R. and Chiarel l i, B. 1982. Phylogeny of thé Hominoidea: thé chromosome évidence. Journal of

Iltiman Evolution, 1 1: 493-504.Stanyon, R. and Chiarell i, B. 1983. Chromosoma! phylogeny in gréât apes and humans. Antropohgia Con-

te m por a ne a, 6(2): 157-159.Su muer, A.T., Evans, HJ. and Buckland, R.A. 1971, A new technique for d is l inguishing between human

chromosomes. Nature, 232: 31-32.Takashi, K. and Jux, LU 1989. Palynology of Middle Tertiary lacustrine deposits from thé Jos Plateau,

Nigeria. Bull. Nuj>asaki Univ. Nat. Se., 29(2): 1H1-367.Tongiorgi. E. and Trevisan, L. 1942. Un falso postulait) di palcoclimalologia del Quaternaria: la corrispondenza

Ira periodi glaciali et pcriodi pluviali. Atti àclla Soc. Toscana di Sa. Nat., Processi Verbali, LI(5): 53-68.Tricarl, J. 1956. Tentative de corrélation des périodes pluviales africaines et des périodes glaciaires. C.R.

Somm. Soc. géoi France : 164-167.Ueda, S.. Watanabc Honjo, T., 1989. Nucleotide séquences of immunoglobul in-epsi lon pseiidogenes in man

and apes and thcir phylogenetic relationships. J. Mol. Bioi. 205: 85-90.Walker, A. and Leakey, R.E.F. 1978. Les Hominides du Turkana. Pour la Science, 48-65.White, F. 1983. The végétation of Afr ica. Unesco, Paris, 356p.White, T.D., Suwa, G, and Asfaw, B. 1994. Australopithecits rainidus, a new species of early hominid from

Ararnis, Ethiopia. Nature, 371:306-312.White, T.D- Suwa. G. and Asfaw, B. 1995. Australopithectts ramidus, a new species of early hominid from

Aramis, Elhiopia. Corrigendum. Nature, 375: 88.Wiener. A.S. and Moor-Jankowski, J.. 1965. Primate Blood Croups and Evolution. Science, 148: 255-256.Ynnis, J.J, and Prakash, O. 1982. The origin of man: a chromosomal pictorial legacy. Science, 215: 1525-

1530.

Recchvfi Nm-ember 3, 1V95 Accepted April 25, 7996

M. L. A. HamR. A. FoleyHominid EvolulionaryResearch GroupDepartment ofBîologiiAnthropologyDowning Street, Camb<3DZ, U.K.

Kcy words: Hominid elongevity, Australopilhbody weighl, brain siztlif e history.

Introduction

Lif e history théterns, and ihe underltion of hominid evoliMcHcnry(1994)atteing thé values of vaestimâtes. While supwe would l i k e to piparameters. In partiesignificance of extentance of selecling thidatabases in making

Lif e history théévolution can and olparticular stages in ttion and longevity rcomponent is that li ftwo structural variât1981; Peters, 1983; <Harvey éta l ., 1987;body size altow lif e \. Thiis in th

species on thé basis (thé principle can be a


Recommended