+ All Categories
Home > Documents > Circuit description of CCM420 monitor - nxp.com · EHT supply I2C control 17” HiRes Date: ... •...

Circuit description of CCM420 monitor - nxp.com · EHT supply I2C control 17” HiRes Date: ... •...

Date post: 28-Jul-2018
Category:
Upload: trinhdung
View: 218 times
Download: 0 times
Share this document with a friend
50
APPLICATION NOTE Circuit description of CCM420 monitor AN97032
Transcript

APPLICATION NOTE

Circuit description of CCM420monitor

AN97032

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

2

Abstract

The CCM420 demo monitor is a full I2C-bus controlled 17” colour monitor. It’s extensive geometry control andexcellent video performance with a high level of integration make it a high-performance monitor at moderatecost and easy application.

© Philips Electronics N.V. 1997All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of thecopyright owner.The information presented in this document does not form part of any quotation or contract, is believed to beaccurate and reliable and may be changed without notice. No liability will be accepted by the publisher for anyconsequence of its use. Publication thereof does not convey nor imply any license under patent- or other indus-trial or intellectual property rights.

Purchase of Philips I2C components conveysa license under the I2C patent to use the com-ponents in the I2C system, provided the systemconforms to the I2C specifications defined byPhilips.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

3

APPLICATION NOTE

Circuit description of CCM420monitor

AN97032

Author:

Hans Verhees

Philips Semiconductors Systems Laboratory Eindhoven,The Netherlands

Keywords

Colour MonitorGeometry control

EHT supplyI2C control

17” HiRes

Date: 97-10-14

Number of pages: 50

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

4

Summary

This application note includes a brief description of the circuits of the CCM420 demo monitor excluding thevideo part (see references); complete circuit diagrams plus printed circuit board lay-out and parts list as well ashints on the pcb lay-out are given. Debugging of the main printed circuit board and alignment in a completemonitor is also included in the report. Highlights of this design are the I

2C controlled monitor deflection controller

TDA4854, I2C controlled video controller TDA4885, full-bridge vertical deflection booster TDA8354, monitor

Microcontroller P83C181* and the control software CCM420S. Combining this board with the CMTM41EHN323X145 and video board completes the CCM420 monitor.

* The Microcontroller P83C181 is pruned. It can be replaced by the P83C180. This device however has 42 pins(additional DACs are included) which requires a redesign of the pcb. See also appendix CICT IC newsletter no.17

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

5

CONTENTS

1. INTRODUCTION .......................................................................................................................................... 7

1.1 CCM420 Specification ........................................................................................................................... 8 1.2 List of abbreviations............................................................................................................................... 9

2. BLOCK DIAGRAM ...................................................................................................................................... 12

3. CIRCUIT DESCRIPTIONS.......................................................................................................................... 14

3.1 Switched mode power supply .............................................................................................................. 14 3.2 Microcontroller..................................................................................................................................... 14 3.3 I2C-bus autosync deflection controller for PC/TV monitors TDA4854.................................................... 14

3.3.1 Brightness uniformity .................................................................................................................. 15 3.4 Horizontal deflection output stage ........................................................................................................ 15

3.4.1 B+ supply ................................................................................................................................... 153.4.2 Line driver and output stage........................................................................................................ 153.4.3 Linearity and S-correction control................................................................................................ 15

3.5 Vertical deflection output stage ............................................................................................................ 16 3.6 EHT supply.......................................................................................................................................... 16

3.6.1 Grid 1 supply .............................................................................................................................. 173.6.2 Grid 2 supply .............................................................................................................................. 173.6.3 Focus supply .............................................................................................................................. 17

3.7 Rotation circuit..................................................................................................................................... 17 3.8 Sound circuit........................................................................................................................................ 17

4. CIRCUIT DIAGRAMS ................................................................................................................................. 18

4.1 Last minute changes............................................................................................................................ 18

5. PARTS LIST............................................................................................................................................... 25

5.1 Resistors and potentiometers .............................................................................................................. 25 5.2 Capacitors ........................................................................................................................................... 28 5.3 Transistors .......................................................................................................................................... 29 5.4 Diodes................................................................................................................................................. 30 5.5 Integrated circuits ................................................................................................................................ 31 5.6 Wire-wound components ..................................................................................................................... 31 5.7 Miscellaneous...................................................................................................................................... 31

6. PRINTED CIRCUIT BOARD LAYOUT................................................................................................ ........ 33

6.1 Lay-out hints........................................................................................................................................ 33

7. ALIGNMENT PROCEDURE ....................................................................................................................... 38

7.1 Equipment ........................................................................................................................................... 38 7.2 Alignment ............................................................................................................................................ 38

8. DEBUGGING PROCEDURE......................................................................................................... .............. 40

9. REFERENCES............................................................................................................................................ 42

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

6

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

7

1. INTRODUCTION

The CCM420 demo monitor is a full I2C bus controlled monitor. Extensive geometry control, a very wide deflec-

tion frequency range (horizontal: 15 - 84 kHz; vertical: 50 - 160 Hz), wide bandwidth video channels (maximumpixel rate 180 Mhz) with perfect grey scale tracking, a full mains range supply combined with complete softwarecontrol result in a monitor with outstanding specifications while maintaining an economic design.

The CCM420 demo monitor is meant to show the latest products of Philips Semiconductors and Philips Com-ponents. Key components are:

• monitor microcontroller P83C181

• CCM420S monitor control software

• I2C-bus autosync deflection controller for PC/TV monitors TDA4854

• I2C-bus controlled octuple eight bit DAC TDA8447

• full bridge vertical booster TDA8354

• 150 Mhz video controller with I2C-bus TDA4885

• hybrid video output stage CR6927

• low power line driver transformer CU15/35

• monitor line deflection transistor BU2532AL

• DC controlled linearity corrector PE4025/01

• EHT transformer AT2097/M1

• 0.27 mm dot triplet pitch CRT M41EHN

• Optionally available is an active convergence control circuit with the vector processor TDA4845

The monitor microcontroller P83C181 has a DDC interface, auto-sync detection and a hardware sync proces-sor. The DDC interface is DDC2AB compliant. The hardware mode detector has 12 bit resolution for the hori-zontal and vertical frequency, polarity detection and sync presence detection. The built-in sync processor alsohas a free-running mode. In this design the microcontroller runs with newly developed software CCM420S. Thissoftware allows extensive user control of geometry and colour adjustment.

The autosync deflection controller for PC/TV monitors TDA4854 is fully I2C-bus controlled and in this application

operating with a horizontal frequency range of 15 to 90 kHz (maximum 150 kHz; maximum ratio 6.5 :1). It al-lows very extensive control of geometry both horizontally and vertically, built-in B+ control part and focus sec-tion. Built-in soft-start as well as controlled shut down for B+ and deflection drive signals safeguard the outputstages at power-up and power-down, while smooth caption of horizontal frequency during mode-changes en-sures adequate protection of the line output stage. The B+ control part is used in the feed-forward mode withoutany feedback (omitting loop stability problems). The focus section has a fixed correction for the delay in the highvoltage output stage.

The vertical booster is the newly introduced TDA8354. This is a LVDMOS full bridge current driven output stagefor 3.2 Ampere peak-peak maximum and a flyback supply voltage of 68 Volt maximum.

The horizontal output stage is separated from the EHT supply to get maximum front of screen performance.The line driver uses a low-power design with the CU15/35 driver transformer and a high-speed switching lineoutput transistor BU2532AL. To obtain optimum scan performance six S-correction switches and a newly de-signed DC-controlled linearity corrector PE4025/01 are used.

The separate EHT supply section is synchronised with the horizontal deflection and uses a dedicated trans-former AT2097/M1. Incorporated in this application are a number of protections to prevent spot burn-in.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

8

The M41EHN tube is fitted with a rotation control coil. The tilt adjustment in this monitor allows an additionalcontrol of the bottom line (Tilt respectively NS trapezium).

Front of screen performance is further enhanced by means of a brightness-uniformity circuit which can beswitched on/off via I

2C.

1.1 CCM420 SpecificationGeneral

• Mains voltage 90 - 264 Volts AC

• Mains frequency 50 - 60 Hz

• Power consumption 100 W typical

• Operating ambient temperature 10 °C to 40 °C

• Weight 20 kg

• Dimensions (W x H x D) 417 x 426 x 446 mm3

Picture tube

• Type M41 EHN 323 x 145 2F01R

• Horizontal deflection impedance 130 µH (max. hor. freq. 84 kHz)

• Vertical deflection impedance 7.7 Ω

• Dot triplet pitch 0.27 mm

• Recommended active screen area 312 x 234 mm2

• Anode voltage 26.0 kV

Video

• Maximum dot rate 180 Mhz

• Video input signal 700 mVpp linear via three BNC inputs

• Video input impedance 75 Ω

• Horizontal shift range > ±12.5 mm

• Vertical shift range > ±12.5 mm

• Horizontal amplitude < 210 mm to > 340 mm

• Vertical amplitude < 160 mm to > 240 mm

• Reference white point x = 0.313; y = 0.329 (D6500)

• White point deviation ∆x < 0.01; ∆y < 0.01

• Grey scale tracking ∆x < 0.02; ∆y < 0.02

Sync signals

• Inputs Separate Horizontal/Composite and Vertical inputs via BNC

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

9

• Level TTL

• Polarity Positive or negative

• Horizontal frequency 15 to 84 kHz

• Vertical frequency 50 to 160 Hz

User interface

• Control Five button keyboard plus USER/SERVICE switch

• Indication On Screen Display with 4 lines of 12 characters

1.2 List of abbreviations

A1 Auxiliary 1

A2 Auxiliary 2

A3 Auxiliary 3

A4 Auxiliary 4

AGCDIS Automatic gain control in vertical oscillator enabled/disabled

ASDC Auto-Sync Deflection Controller

BB Blue Black level

BG Blue gain

Black Lvl B Blue channel black level control register in the TDA4885

Black Lvl G Green channel black level control register in the TDA4885

Black Lvl R Red channel black level control register in the TDA4885

BLKDIS Vertical protection at ‘Clamping/blanking’ and ‘Horizontal unlock’ enabled/disabled in the TDA4854

Brightness Brightness control register in the TDA4885

CLAMP Selection of trailing/leading edge horizontal clamping pulse in the TDA4854

Contrast Contrast control register in the TDA4885

CRT Cathode Ray Tube

CT Colour temperature

DDC Display Data Channel

DISO On Screen Display enabled/disabled in the TDA4885

DISV Video signals enabled/disabled in the TDA4885

DPMS Display Power Management Signalling

EHT Extreme High Tension

ENN Fast blanking pulse for On Screen Display

EW East-West

FHMULT East-West output tracking with / independent of horizontal frequency in the TDA4854

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

10

FPOL Selection of positive / negative feedback polarity in the TDA4885

G2 CRT grid 2

Gain B Blue channel gain control register in the TDA4885

Gain G Green channel gain control register in the TDA4885

Gain R Red channel gain control register in the TDA4885

GB Green Black level

GG Green gain

H Horizontal

H-corner Horizontal corner control register in the TDA4854

H-focus Horizontal focus control register in the TDA4854

H-moiré Horizontal Moiré control register in the TDA4854

H-paral Horizontal parallelogram control register in the TDA4854

H-pin Horizontal pincushion control register in the TDA4854

H-pin-bal Horizontal pin-balance control register in the TDA4854

H-pos Horizontal position control register in the TDA4854

H-Rot Horizontal Rotation or Tilt control register in the TDA8447

H-size Horizontal size register in the TDA4854

H-trap Horizontal trapezium control register in the TDA4854

HB Horizontal Pin-balance

HBC Horizontal pin-balance enable/disable

HC Horizontal Corner

HF Horizontal focus

HL Horizontal linearity

Hlin Horizontal linearity control register in the TDA8447

HP Horizontal Pincushion

HPC Horizontal pincushion enable/disable

HT Horizontal Trapezium

I2C Inter IC

LVDMOS Low Voltage Depletion Metal Oxide Semiconductor

MOD Horizontal and vertical moiré cancellation enabled/disabled in the TDA4854

NS North-South

NStrap North-South trapezium control register in the TDA8447

OC On Screen Display contrast

Oh On Screen Display Horizontal position

OSD On Screen Display

OSD Ctrst On Screen Display contrast control register in the TDA4885

Ov On Screen Display Vertical position

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

11

PA Parallelogram

PEDST Pedestal blanking enabled/disabled in the TDA4885

RB Red Black level

RG Red gain

SCK Serial clock

SDI Serial data

SMPS Switched Mode Power Supply

SMPTE Society of Motion Picture and Television Engineers

SOFTST Softstart control bit in the TDA4854

STDBY Standby control bit in the TDA4854

TI Tilt

TVMOD TV mode at Fmin activated/de-activated in the TDA4854

USB Universal Serial Bus

V Vertical

V-focus Vertical focus control register in the TDA4854

V-lin Vertical linearity control register in the TDA4854

V-lin-bal Vertical linearity balance control register in the TDA4854

V-moiré Vertical Moiré control register in the TDA4854

V-pos Vertical position control register in the TDA4854

V-size Vertical size control register in the TDA4854

VB Vertical linearity balance

VBLK Selection of duration of vertical blanking pulse in the TDA4854

VESA Video Electronics Standard Association

VF Vertical focus

Vg1 Voltage on grid 1 of the CRT

Vg2 Voltage on grid 2 of the CRT

Vg2 Grid 2 voltage control register in the TDA8447

VL Vertical linearity

VLC Vertical linearity balance control enabled/disabled in the TDA4854

VOVSCN VGA vertical size control bit in the TDA4854

VPC Vertical position and Horizontal trapezium control enabled/disabled in the TDA4854

VSC Vertical linearity and Horizontal corner corrections enabled/disabled in the TDA4854

VT Vertical trapezium

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

12

2. BLOCK DIAGRAM

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

13

Remarks to the block diagram:

1. The Dynamic convergence circuit is optional. The Vector Processor TDA4845 is not commercially avail-able.

2. Due to time limitation and mechanical restrictions the sound part is, although present in the printed circuitboard layout, not inserted and therefor not operational.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

14

3. CIRCUIT DESCRIPTIONS

3.1 Switched mode power supplyThe SMPS is preceded by a mains harmonic reduction coil (L1: TU305b2) in order to reduce mains harmonicsdistortion. This coil is short-circuited for mains voltages below 175 VAC (T6, T7 and TH2).

An additional connector ‘USB-supply’ is present for an optional USB supply (under development; available???;see references).

In this SMPS only DPMS level 1 is realised resulting in a burst-mode operation of the SMPS. Transistor T10and T11 act as comparator to control the burst mode. In this burst mode the mains input power reduces to lessthan 2.5 W. In case the USB supply is present, the SMPS is switched-off completely while the microcontrollersupply is maintained from the USB supply part (header X3).

DPMS level 2 is realised by using the Standby-mode of the TDA4854 activated via I2C bus.

Overcurrent protection is achieved by means of resistors R32, R33, and R34 connected to pin 13 of theTDA8380. In case of continuous short circuit diodes D32 and D33 provide extra protection by increasing thedelay time before the next slow-start is initiated.

The only adjustment is the 185 Volt output by means of potentiometer P1.

The output voltages of the supply are:

185 V horizontal deflection and EHT output stages; reference voltage for Vg2.

78 V video output stages;

18 V driver stages, rotation circuit and 12 Volt stabiliser;

11 V vertical deflection output stage, 5 Volt stabiliser and heater current;

-18 V rotation circuit.

3.2 Microcontroller

The microcontroller P83C181 controls all adjustments in the complete monitor by I2C bus. The only two adjust-

ments not accessible by I2C bus are the “SMPS 185 Volt” and the “EHT 26.0 kV”. The user interface consists of

a five button keyboard and an On-Screen-Display.

Communication with the OSD controller on the video board is via a high speed interface bus (signals ENN, SDIand SCK).

In normal operation the user has only access to the first two levels of the software program. The first level beingthe video mode information displaying horizontal and vertical frequencies and mode number/identification. Thesecond level gives access to control the brightness, contrast, degaussing, horizontal and vertical moiré cancel-lation, picture position and size. Brightness and contrast control can be directly accessed by respectively menuu/d buttons and cursor u/d buttons.

In the service mode (jumper J301 closed; service switch down on the front keyboard) the higher levels for con-trol of colour (black levels, gain, etc.) and geometry (pin-cushion, pin-balance, trapezium, etc.) can be ac-cessed.

3.3 I2C-bus autosync deflection controller for PC/TV monitors TDA4854The TDA4854 is applied here in a basic configuration. This means HSMOD, VSMOD and ASCOR pins are notused (separate horizontal deflection and EHT supply; no DC shift circuit for horizontal deflection). ASCOR isinternally connected to PLL2 (bit ACD = 1).

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

15

The horizontal oscillator can be synchronised in the frequency range from 15 to 85 kHz (determined by resistorsR350 and R351 and capacitor C318). The value of R350 and R351 can be determined according to the equa-tions in appendix 3.

The B+ section is fed with the EWDRV signal from pin 11 with the FHMULT bit = 0 (multiplication with the fre-quency is achieved in the output stage). The sawtooth generator uses a current source to minimise influence ofthe supply voltage. Capacitor C312 must have a low temperature coefficient (preferably NP0) to minimise tem-perature effects. Capacitor C314 must be placed as close as possible to pins 3 and 7 to minimise EMS.

The HUNLOCK signal is used as interrupt for the microcontroller in case of a mode change and insertion ofvertical blanking pulses on the CRT grid 1 voltage (12 Volt peak). Via diode D303 the sawtooth generator of theNorth-South trapezium circuit is reset.

3.3.1 Brightness uniformity

A brightness uniformity signal can be extracted from the focus signal on pin 32. The signal is buffered by T304to drive the modulation inputs of the TDA4885 video preamplifier. The brightness uniformity function can beswitched on and off by I

2C control via IC303 register 4 and T305 (Brightness uniformity OFF: register contents

set to ‘255’; Brightness uniformity ON: register contents set to ‘0’).

3.4 Horizontal deflection output stageThe horizontal deflection output stage consists of three main parts:

3.4.1 B+ supply

The signal BDRV from the TDA4854 is buffered (T400/T401) and then fed to the PMOS output transistor. DiodeD401 and resistor R403 are added for protection.

3.4.2 Line driver and output stage

The line driver stage is built around TR401. The use of the BU2532AL results in a low power driver stage(typically 1.8 W) capable of driving the line output transistor over a wide frequency range. The stage is designedto operate from 15 to 90 kHz.

The diode D405 in the collector of T403 BU2532AL ensures the high efficiency of the driver stage. Here aSchottky-barrier type is used for it’s low forward voltage drop. In fact any diode capable of handling the peakdeflection current can be used but forward voltage drop should be minimal (in order not to deteriorate linearity).Maximum reverse voltage for D405 is the forward recovery voltage of the deflection flyback diode D404.

See also application note ETV/AN97002

3.4.3 Linearity and S-correction control

Horizontal linearity is controlled with a newly designed DC-controlled linearity corrector PE4025/01. The controlcoil is current driven by T405 under I

2C control via IC303 register 7.

S-correction is performed with five switches for the frequency range of 30 to 90 kHz and one extra switch forthe TV mode.

The S-correction capacitors are switched according to the following table:

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

16

Freq.range C42347 nF

C417120 nF

C418220 nF

C419470 nF

C4201.2 µF

C4215.6µF

< 30 kHz x x x x x x30 - 34 kHz - - x x x -34 - 37 kHz - - x - x -37 - 45 kHz - - - - x -45 - 53 kHz x x - x - -53 - 61 kHz x x x - - -61 - 65 kHz x - x - - -65 - 71 kHz x x - - - -71 - 78 kHz - x - - - -78 - 85 kHz x - - - - -> 85 kHz - - - - - -

3.5 Vertical deflection output stageThe vertical deflection output stage is the new full-bridge current driven booster TDA8354 which has outputstages with low saturation voltage allowing low power dissipation (depending upon power supply voltage).

The circuit around transistor pair T418 / T419 is used as interface for the active convergence control circuit(optional).

3.6 EHT supplyThe EHT supply is in fact a flyback generator with controlled supply voltage by means of a B+ down converterto enable stabilisation of the EHT output voltage. In order to prevent any kind of visible interaction with thehorizontal deflection the EHT generator is synchronised with the horizontal deflection Although the flyback ofthe EHT generator lags the flyback of the horizontal deflection with ≈ 3µs. The high-voltage transformerAT2097/M1 is specially designed for this EHT generator: primary inductance 450 µH, circuit flyback time 3.3 µs,maximum operating frequency 84 kHz. The extreme high tension output voltage is 26.0 kVolt with a maximumaverage load current of 700µA (short term peak 1.5 mA).

The flyback transistor T109 BUT11A is driven by a one-shot circuit built around IC102A. Using the well definedsawtooth of the PWM controller IC101 and it’s temperature stable reference voltage an accurate pulse is gen-erated. The pulse length is defined by two more or less fixed intervals:

1. storage time of the flyback transistor (≈ 1.2 µs)

2. flyback time of the output stage (≈ 3.4 µs)

Increasing this period with an extra wait interval for safety a total pulse length of 7 µs is required.

The reference voltage for the X-ray sensor IC102B is increased with a small part of the supply voltage to pre-vent false triggering at power-up. This is achieved by means of R116 and R117.

The EHT output voltage is adjusted with potentiometer P101.

The following protections are included:

• No horizontal deflection (horizontal flyback voltage below 500 Voltpp): EHT generator stops; automatic softstart when horizontal deflection starts again.

• Overvoltage / X-ray: EHT generator is stopped and latched in an off-mode; a restart is only possible after amains switch-off and on again.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

17

• Overcurrent: First level protection is here the beam-current level limiter reducing the contrast of the videostages. Second level is the maximum duty-cycle of the UC3843 (≈99%) that cannot be handled by the ACcoupling of the PMOS output stage (T119 will not be driven in conduction anymore); in this situation thegenerator part will continue operating but the output voltage will drop to zero. Restart is only possible aftera mains switch-off and on again.

3.6.1 Grid 1 supply

The CRT grid 1(Vg1) voltage is fixed at -62 Volt DC with vertical blanking pulses of 12 Volt pp. Protection bypulling Vg1 to -200 Volt is activated in case of absence of horizontal deflection, HUNLOCK signal continuouslyhigh, absence of ‘11Volt’ supply voltage and/or a high vertical guard signal.

3.6.2 Grid 2 supply

The CRT grid 2 (Vg2) voltage is generated using a high voltage DC amplifier. Its input is driven by a DAC outputof the TDA8447 to allow I

2C bus control.

The range is 280 to 665 Volt.

3.6.3 Focus supply

The dynamic focus voltage from the output of the TDA4854 is amplified by a high-voltage amplifier and thenconnected to the coupling capacitor in the EHT transformer.

Resistor R173 and diodes D132 and D133 prevent cross-over distortion of the output stage.

3.7 Rotation circuitThe circuit for driving the rotation coil on the CRT is extended with a sawtooth generator (IC201 B) to allowseparate control of the top and bottom horizontal line. So the adjustment sequence is to align the top line withthe tilt control (the complete picture is rotated with this adjustment) and then the bottom line can be aligned withthe NS-trapezium adjustment.

3.8 Sound circuit

The sound part is a 2 x 1 Watt output stage with DC volume control TDA7053A. In this application 25 Ω speak-ers should be used.

Note: Due to mechanical problems it was not possible to implement the sound input connectors and the speak-ers in the cabinet. Therefor the circuit is not present in the demo monitors although the lay-out is prepared for it.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

18

4. CIRCUIT DIAGRAMSOn the next pages the following circuit diagrams are presented:

− Switched mode power supply;

− Microcontroller plus deflection controller part;

− Horizontal and vertical deflection output stages;

− CRT grid supply circuits: Vg1, Vg2, focus and dynamic focus amplifier, EHT supply;

− Rotation and sound.

4.1 Last minute changesWhen debugging the final monitor a few small changes were necessary to obtain maximum performance.

Componentnumber

Old value New value Reason

C8 470 µF / 25 V 220 µF / 25V Decrease start-up time SMPSC12 3.9 pF / NP0 18 pF / NP0 Current sense SMPSC414 (not present) 4.7 µF / 200 V Horizontal ringing damper

D19 BZX79C15 BZX79C18 Increase output power during “OFF”mode

D90 (not present) BZX79C15 Protection of T12 during mains switchingD91 (not present) BZX79C15 Protection of T12 during mains switchingD408 (not present) BYD73D Horizontal ringing damperR50 270 Ω / PR03 270 Ω / AC04 PCB may overheatR62 120 kΩ / SFR25 180 kΩ / SFR25 Increase output power during “OFF”

modeR344 56 kΩ / SMD 0805 33 kΩ / SMD 0805 Pin-cushion rangeR353 8.2 kΩ / SMD 0805 3.3 kΩ / SMD 0805 JitterR390 (not present) 3.3 kΩ / SFR25 See text and drawing belowR391 (not present) 3.3 kΩ / SFR25 See text and drawing belowR416 (not present) 2.2 kΩ / PR02 Horizontal ringing damperR432 2.7 kΩ / PR02 2.2 kΩ / PR02 Horizontal ringingR441 2.7 kΩ / PR01 2.2 kΩ / PR01 Vertical flyback

Zenerdiodes D90 and D91 have to be connected back-to-back (i.e. cathodestied together) and the two anodes must be connected to Gate respectivelySource of T12. In the circuit diagram on the right one can see how it looks.

The two zenerdiodes D90 and D91 are placed on the copperside of the board. T12

D91

D90

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

19

An additional damper for the horizontal deflection cannot be combinedwith the largest S-correction capacitor. Therefor an additional damperis necessary as drawn in the circuit diagram on the left hand side.

The outputs P0.5 pin 16 and P0.7 pin 14 of IC304respectively signal “DEGS” and “DPMS” should beequipped with a pull-up resistor of 3k3 to +5 Volt.These resistors are not present in the lay-out. Bestlocation to add these resistors is near R5 and R6according to the drawing on the right:

The transistors BC375b and BC376 will be pruned. Best replacements for these types are BC337 respectivelyBC327. No further modifications are necessary.

Transistor T124 is not correctly placed in the printed circuit board design : collector and emitter connections areinterchanged on the board. The circuit diagram and parts list however are correct.

C124 and C403 are replaced with 27 nF / 250 Volt due to temporary unavailability of 22 nF / 250 Volt.

The following component on the video board has to be changed:

Video board:Componentnumber

Old value New value Reason

R29 1.0 Ω / SFR16 3.3 Ω / SFR16 Heater tensionPCB track Cut track to pin 3 of

connector 1+5 Volt of Video must be disconnectedof + 5 Volt of main board.

630VDC180nC416

200V4u7C414

PR022k2R416

BYD73D

D408

R315

R313R31 R314

C305

C304 R434

R420

SW1

X303

R439

X1

T415XT301

R4

TH1

R6

T1R5

Add this resistor:

Add this resistor:

SFR25; 3.3 kOhm

SFR25; 3.3 kOhm

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

20

X1C2

275V~

220n

L1 TU305B2

R6470E

T1

BC548

R539k R4

96126

D2

R3

AC04

2E7

C1

275V~

220n

F1 SLOW

2A

R1 1M

TR1

AT4043/20

C4

250V~2n2

C3

250V~2n2

C5

275V~

220n

C6 2n2

C7 2n2

9 7

3 2TH2

MOC2A60_5

R2

PR01

270E

D31

BYD33K

D5BYD13J

SW1

R9NFR25H

10E T2

BSP145

R10

10E

R8 1k5

R7150k

T3BC547

R12

1k

D8BZX79

C33

IC1

TDA8380A

R11 AC05

10E D6

BT151-500R

R13 1M

R76

4E7

NFR25

R15

220k

R14

110k

C9

400V

220u

R24

1k

C17 2n2

R17

100k

R16

18k

R18

5k1

R20

56E

R22

NFR25

22E

D9

BYD33D

C825V 470u

R28

47k

C39

500V2n7

R32

NFR25

15k

C10

680p

C11 63V

4u7

C12

3p9

R78

PR01100k

L7 10u

D21

BZX79

C6V2

T5W9NA80 R30

1k

R31

AC04390E

C18

1kV 470pD10

BYD33M

R33

NFR25H

0E33

R34

NFR25H

0E47

T14

BC548

R46

1k2

C14

2n2

C15

22n

R47

4k7

OC1

CNX82A

C19

10nR48

1k

R51

2k2

C27 25V

470u

R49 VR

374M7 C21

250V~

4n7

C20

500V

220p

R25

PR02

220E

D26

BYR29-800

D25 BYD33G

D24

BYD73D

D23

BYV28/100

D22

BYD73D

L2 10u

R50

PR03

270E C38

680p

TR2

C22 250V

150u

C28

16V

1000u

L3 10u

L4 10u

C23

100V

47u

C24

25V

470u

L5 10u

C25

16V

1000u

L6 10u

C26

25V

470u

C29

25V

470u

D33

1N4148

F3 2AF

D20

BZX79

C6V2

D19

BZX79

C15

T13

BC548

C36

100p

R53

150k

R54

5k1

C35 4n7

P1 1k

T9BC548

R52

100E

T10 BC

558

R57

18k

T11

BC558

R56

100k

R62

120k

R61

24k

D30

1N4148

R59

100k

R58

39k

D18

1N4148 R6

4180k

D13

BZX79C5V6

T12

BSN274

R63 NFR25H

180E

R55

100EC34 16V

1000u

F4 2AF

IC2

7812

R67

NFR25

10E

R45

10k

T8BC548

R44

330E

R43

1k2

D15

1N4148

D16

1N4148

D17

BI-COLORLED

R36

100E

T6 BC548

R37

1k

T7

BC548

R39

820E

R40

22k

R38

36k

R41

680E

C13

50V

10u

R42

15E

D14

1N4148

R35

5k1

D1

4xBYW54

D3

D4

D7BZX79

C6V2

C30

16V

68u

F2 2AF

D32

1N4148

C31

330nIC

378L05

C32

16V

68u

X3 3p-HEADER

D28

1N4148

R68

1kD29

1N4148

9 7

3 2

TH1

MOC2A60_5

R65

NFR25

10E

R74

1k

R66

NFR25

10E

T17

BC548

R75

47k

DEGS

185V

185V

12V

12V

5V_USB

-18V

5V

5V

5V

5V5V

11V

11V

18V

VO

VO

78V

DPMS1

DPMS1

3

2

1

1

USB-supply

GRR

78

90-260V~

Line Power

10 16 14 18 17 11 12 13 1593456

16

15

14

13

12

11

10

98

7

6

5

4

3

2

1

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

21

IC302

PCE8582IC303 TDA8447

IC304

P83C

181

P1.7

SCL0

SDA0

SCL1

SDA1

INT1not

P3.3

ADC0 Vdd

Vss

resetOUT

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

VsyncOUT

VsyncIN

P1.6

HsyncOUT

HsyncIN

XTAL2

XTAL1

P2.0

P2.1

P2.2

P2.3

P2.4P2

.5

XT301

12MHz

R313

100E

C305

100p

IC305

TDA4

854

HUNLOCK

SCL

SDA

ASCOR

n.c.

VAGC

VREF

VCAP

Sgnd

HPLL1

HBUF

HREF

HCAP

HPLL2

i.c.

FOCOS

CLBL

HSYNC

VSYNC

VOUT1

VOUT2

EWDRV

Vcc

Dgnd

HDRV

PGND

BDRV

BIN

BSENSE

BOP

XRAYHFLB

R315

100E

R305

100E

R314

100E

R316

100E

R317

100E

R331

100E

R332

100E

R326

4k7

R325

4k7

R318

100E

R327

22k

C301 16V

68u

R304

100E

R362

2k2

R302

10E

R357

4k7

INTN(USB)

T304

BC548

HFLB

R319

100E

VRotS

R329

4k7

C309

100p

R330

4k7

5V

C308

100p

SCL

J302

open=VGAselftestSDA

SCL_DDC

SDA_DDC

Keyb

C307

16V

4u7

R324

100E

R323

100E

R322

100E

R321

100E

R320

100E

SC0

SC1

SC2

SC3

SC4

D303

1N4148

ENN

SDI

SCK

16kHz

DEGS

DPMS1

C304

100p

J301

closed=service_mode

HSync

R346

100E

Vg2D

VSync

C315

100p

R345

100E

R342

100E

R341

100E

R344

56k

R334

4E7

R340

10k

BDRV

C316 100p

VDEF1

HDRV

R343

100E

FCSD

R350

1%5k23

R351

1%732E

C317

12n

C318

10n

C321

100nC324

100n

R355

100E

R354

100E

R352

22k

C319

100n

C320

100n

CLMP

R333

1k

R339 27k

R353

3k3

C322

3n3

R366

100E

T301

BC558

R336 8k2

X301

7 141312111098654321

CRT_supply

R337

2k2

C312

2n2

R347

10k

R338

1k5

X307

4 3 2 1

C314 10n

R348

10k

C310

10p

12V

SDA

SCL

VBLNK

D301

C5V6

BZX79

C311

16V

68u

VDEF2

R306

10E

C303

16V

68u

R307

100E

R308

100E

5V

C306 2n7

R356

12k

12V

R361

6k8

X303

87654321

CRT_digital

BCL

SModeN

X305

654321

USB

X302

4321

DDC

X306

121110987654321

PeCoMa

78V

11V

CLMP

HBLNK

11V

Vg1

R349

270E

INTN

R301

10E

185V

R309 PR

0315E

SCL

R359 NF

R25

220E

SDA

VSaw

HBLNK

18V

-18V

SCL_DDC

5V

SDA_DDC

X304

4321

Keyboard

R358

6k8

5V_USB

5VR310

100E

SDA

5V

C302 16V

68u

SCL

ENN

SDI

SCK

HUNLOCK

SCL

T303

BC548

HSync

SDA

R328

4E7

R360

27k

R312

22k

5V

SModeN

-18V

HROT

NSTR

HLIN

Keyb

T302

BC548

VSync

HBLNK

12V

IC301

C2E C2EPCE8582

12V

C323

10n

R363

10k

FCSD T3

05BC548

R364

4k7

R365

4k7

UNIFORMITYBRIGHTNESS

(n.c.)

(n.c.)

(n.c.)

(n.c.)

(n.c.)

(n.c.)

5V_DDC(n.c.)

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

22

D405

1N5822

R421

3k9

R405

47E

C400

250V

33n

C412

250V

4n7

R432

PR02

2k7

IC401

TDA8354

X401

STOCKO7

R442

NFR25

0E47

C417 250V

120n

C419 250V

470n

C418 25

0V220n

C406

2kV

4n7

D404

459FBY

T410 10

0BBUK445

T408

100B

BUK445

R414

PRO3

270E

R419

47k

R418

150k

R427

47k

R426

150k

R423

150k

R424

47k

D409

C6V8

BZX79

T412

100B

BUK445

C427 10n

R441

PR01

2k7

D403

BYV99

R444

2k0

C403 250V

22n

C402

250V

150u

R400

100E

D402

C10

BZX79

R404

10k

R403

120E

C401

25V

47u

T400

BC375

T401

BC376

R439

10k

R429

150k

R430

47k

C420 250V

1u2

T403

BU2532AL

C407

150n

R406

2E7

TR401

CU15/35

R408

33E

R420

1k

R407

220E

T404

BC375b

C408 470n

D406

1N4148

D407

1N4148

R411

18k

C410 63

V10u

R410

100E

R409

680E

R443

3k3

R445

1E8

R446

1E8

R450

10k

R451

10k

R449

270k

R453

100E

R452

100E

C426 10n

C428 10n

T406 100B

BUK445

C429 2n7

R447

330E

T417

BC548

L403

10uH

R431

10k

T411

BC548

T413

BC548

T409

BC548

R422

10k

T415

BC548

R425

10k

T407

BC548

R433

47k

C430

1n

X402

D410

C39

BZX79

C424

50V47u

R440 5k6

C425

16V330u

L402

T419 BC

558

R455

3k9

T418

BC558

R456

3k9

R454

330k

C409

10n

R434

10k

T414 100B

BUK445

C421

160V

5u6

C416 630VDC

180n

C422 16V

68u

R435

NFR25

22E

R436

22E

R457

4k7

C431 25V

47u

T402

IRF9630

C423 400V

47n

R437

47k

R438

150k

R428

10k

T416 100B

BUK445

L401

C404

100V2n7

C405

1kV47p

D401

1N4148

R413

10E

R458

PR01

220E R4

15

PR01

27E

T405

BC548C

C411

250V

4n7

R412

47E

+HDEFL

-HDFEL

71

PE40

15/0

1

18V

12V

12V

Vguard

VM

Vcon

VpB

VoB(-)

gndB

Vflb

gndA

VoA(+)

VpA

Ii-

Ii+

Icomp

VertDeflCoil

Vguard

185V

VDEF

2

VDEF

1

VSaw

78V

11V

185V

18V

16kH

zSC0

18V

5V

11V

BDRV

HDRV

HFLB

HLIN

SC4

SC3

SC2

SC1

432 1

U20 core

1.2mH

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

23

C112

500V

2n7

D135 BYD33D

R136

150k

D113

R162

150k

R138

1M5

R139

36k

T113

MPSA44

T120

BC548

T123

BC548

R153

NFR25H

100E

R175

2k2

D121

C119

R137

1M8

R166 3k3

R168 1k

T121

BC548

C108

100n

R167

10k

C129

100V22n

D127

1N4148

D128 1N

4148

D129 1N

4148

T122

MPSA92

R171 1M

R172

120k

R151

C136

27p

C123

D120

C105

100p

T124

BC548

R124

R131

R118

R105

100E

D130

C62

BZX79

T112

MPSA42

D114

1N4148

R135

24k

R176

39k

C118

63V

R132

T111

R122

D108

D109

R129

R130

R123

R116

R128

R178 47k

R117

R133

R156

R126

D112

IC102/B

R119

D106

R109

R110

C106

R108

D133

1N4148

T106

C110

TR101

C102

470p

L102

R155

D124

T119

C124

C126

R115

NFR25H

D125

R157

R158

C125

T107

T108

R159

D122

IC102/A

R170

47k

C120

P101

C121

R154

R127

R150

100k

C116

100n

C104

C109

D132

1N4148

R114

NFR25H

R112

C107

R145

8k2

T103

D118

6V2

D131 BAS32

R142

270k

D105

R141

270k

L101

D117

BYD33M

T109

C111

R173

1kR143

1M5

D111

T115

MPSA44

R152

1k

C122

D110

T114

MPSA44

D123

R146

220kR1

47

220k

R144 1M5

C117 1kV

1n

R140 1k

R107

C103

D116 BYD33M

R163

150k

T117

MPSA44

R148 1k

T118

MPSA44

R149

3k3

R125

D107

R113

D126

T110

R177 11k

R161

10K

C127

IC101

DIL8p

UC3843p

C128

R165

R164

NFR25H

R169

1k D134

C4V7

BZX79 C1

30

250V220n

C13415p

X101

R179 15k

C135

47p

16KHZ

HUnlock

12V

VG1

VBLNK

-200V

Vguard

11V

12V

132

456

87

***

** * *

AT20

97/M

1

27E

6E8

4E7

10E

3E3

820E

270E

120E

100E

100E

BC375b

4k3

51k

BYD73D

BYD73D

BYD33M

HBLNK

13k

10u

22k

47k

Vg2D

4n7

56

BCL

BYD73G

63V

1u

BZX79C

1u

PR01

1N4148

1N4148

2k2

56k

2M7

3M3

3M3

FCSD

12V

12V

Vg2

185V

LM393

1n

680k

10k

LM393

5k6

NFR25

10u

16V

100u

120k

63V

4u7

PR01

6u8

1k1k

560k

3n3

1N4148

16V

16V

16V

68u

68u

68u

EHT

GC

1N4148

BC376

BC375

12V

1n5

1N4148

1N4148

1N4148

1k

C10

3k3

330p

C75

12V

250V

-200V

BZX79

2 1

DF

GF1n1n

GR

4k7

3n0

600M

PH2369

2n2

PH236968k

1kV

BC375b

10V

1kV

26E

BYV

11A

100u

BZD23C5V1

BUT

BYV27-200

3k3

185V

22n

33n

1k

10u

120E

250V

10k

250V

IRF9630

BZX79

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

24

C204

220n

R222

4k7

R207

56k

R203

1k8

IC201/A

LM358a

R209

100k

T203

BC548

R227

100k

R214

680E

IC201/B

LM358b

R211

43k

T204

BC558

C207

25V

47u

C208

25V

47u

C210

25V

47u

X202

R218

3E3

R220

22E

C209

25V

47u

X201

R215

NFR25H

100E

C212

100n

C217

16V

68u

R212

33k

R219

1k

R217

NFR25H

100E

C211

470n

X203

X204

R204

56k

R228

4E7

C213

16V

68u

C214

470n

R224

4k7

R223

4k7

R221

4k7

C216

100n

C215

470n

P201

10k

R216

680E

R205

180k

C203

100n

R213

100E

R208

22k

R206

39k

T202

BC558

X205

6284

+11V

VRotS

4

8

NSTR

HROT

-18V

+18V

Rs = 125 ohm

L = 65 mH

(right)

(left)

+/- to -/+ 20 mA SAW

I = +/-50 mA DC

OUTPUT

SPEAKER

OUTPUT

SPEAKER

INPUT

SOUND

Rotation coil

123

CONTROL

VOLUME

2 31

1313

5

16 13 12 9

107

14

321

123

756

IC202

TDA7053A

RL

-+-+

R-out

L-out

R-in

Vol-R

L-in

Vol-L

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

25

5. PARTS LISTThe parts list is only for the main board. No parts are listed to complete the CCM420 monitor.

5.1 Resistors and potentiometers

Note : Were no type is mentioned a SFR25 is used.

Number Value TypeR1 1MR2 270E PR01R3 2E7 AC04R4 2322 622 96126 PTCR5 39kR6 470ER7 150kR8 1k5R9 10E NFR25R10 10ER11 10E AC05R12 1kR13 1MR14 110kR15 220kR16 18kR17 100kR18 5k1R20 56ER22 22E NFR25R24 1kR25 220E PR02R28 47kR30 1kR31 390E AC04R32 15k NFR25R33 0E33 NFR25R34 0E47 NFR25R35 5k1R36 100ER37 1kR38 36kR39 820ER40 22kR41 680ER42 15ER43 1k2R44 330ER45 10kR46 1k2R47 4k7R48 1kR49 4M7 VR37R50 270E PR03

Number Value TypeR51 2k2R52 100ER53 150kR54 5k1R55 100ER56 100kR57 18kR58 39kR59 100kR61 24kR62 120kR63 180E NFR25R64 180kR65 10E NFR25R66 10E NFR25R67 10E NFR25R68 1kR74 1kR75 47kR76 4E7 NFR25R78 100k PR01R105 100ER107 3k3R108 820ER109 68kR110 560kR112 120k SMD 0805R113 100ER114 10E NFR25R115 6E8 NFR25R116 10kR117 680k SMD 0805R118 4k3R119 51k SMD 0805R122 5k6R123 56kR124 2k2R125 3k3R126 1kR127 1kR128 27 E PR01R129 3M3R130 3M3R131 2M7

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

26

Number Value TypeR132 1kR133 270ER135 24kR136 150kR137 1M8R138 1M5R139 36kR140 1kR141 270kR142 270kR143 1M5R144 1M5R145 8k2R146 220kR147 220kR148 1kR149 3k3R150 100kR151 13kR152 1k Allen BradleyR153 100E NFR25R154 47kR155 120E PR01R156 3E3 NFR25R157 10kR158 120ER159 1kR161 10kR162 150kR163 150kR164 4E7 NFR25R165 100ER166 3k3R167 10kR168 1kR169 1kR170 47kR171 1MR172 120kR173 1kR175 2k2R176 39kR177 11kR178 47kR179 15kR203 1k8R204 56kR205 180kR206 39kR207 56kR208 22k

Number Value TypeR209 100kR211 43kR212 33kR213 100ER214 680ER215 100E NFR25R216 680ER217 100E NFR25R218 3E3R219 1kR220 22ER221 4k7R222 4k7R223 4k7R224 4k7R227 100kR228 4E7R301 10ER302 10ER304 100ER305 100ER306 10ER307 100ER308 100ER309 15E PR03R310 100ER312 22kR313 100ER314 100ER315 100ER316 100ER317 100ER318 100ER319 100ER320 100ER321 100ER322 100ER323 100ER324 100ER325 4k7R326 4k7R327 22kR328 4E7R329 4k7R330 4k7R331 100ER332 100ER333 1kR334 4E7R336 8k2R337 2k2

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

27

Number Value TypeR338 1k5R339 27k SMD 0805R340 10k SMD 0805R341 100ER342 100ER343 100ER344 56k SMD 0805R345 100ER346 100ER347 10kR348 10kR349 270ER350 5k23/1% SMD 0805R351 732E/1% SMD 0805R352 22kR353 8k2 SMD 0805R354 100ER355 100ER356 12kR357 4k7R358 6k8R359 220E NFR25R360 27kR361 6k8R362 2k2R363 10kR364 4k7R365 4k7R366 100ER400 100ER403 120ER404 10kR405 47ER406 2E7R407 220ER408 33ER409 680ER410 100ER411 18kR412 47ER413 10ER414 270E PR03R415 27E PR01R418 150kR419 47kR420 1kR421 3k9R422 10kR423 150kR424 47kR425 10k

Number Value TypeR426 150kR427 47kR428 10kR429 150kR430 47kR431 10kR432 2k7 PR02R433 47kR434 10kR435 22 NFR25R436 22ER437 47kR438 150kR439 10kR440 5k6R441 2k7 PR01R442 0E47 NFR25R443 3k3R444 2k0R445 1E8R446 1ER447 330ER449 270kR450 10kR451 10kR452 100ER453 100ER454 330kR455 3k9R456 3k9R457 4k7R458 220E PR01

Potentiometers

Number Value TypeP1 1k EMP10P101 22k EMP10

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

28

5.2 Capacitors

Electrolytic capacitorsNumber Value TypeC8 470µ/25V 037C9 220µ/400V 057C11 4µ7/63V 037C13 10µ/50V 037C22 150µ/250V 057C23 47µ/100V 037C24 470µ/25V 037C25 1000µ/16V 037C26 470µ/25V 037C27 470µ/25V 037C28 1000µ/16V 037C29 470µ/25V 037C30 68µ/16V 037C32 68µ/16V 037C34 1000µ/16V 037C107 47µ/63V 037C109 100µ/25V 037C110 68µ/16V 037C111 100µ/10V 037C118 10µ/63V 037C119 1µ/250V 044

Number Value TypeC126 10µ/250V 044C127 68µ/16V 037C128 68µ/16V 037C207 47µ/25V 037C208 47µ/25V 037C209 47µ/25V 037C210 47µ/25V 037C213 68µ/16V 037C217 68µ/16V 037C301 68µ/16V 037C302 68µ/16V 037C303 68µ/16V 037C307 47µ/63V 037C311 68µ/16V 037C401 47µ/25V 037C402 150µ/250V 057C410 10µ/63V 037C422 68µ/16V 037C424 47µ/50V 037C425 330µ/16V 037C431 47µ/25V 037

Film and ceramic capacitorsNumber Value TypeC1 220n/275V~ 336-1C2 220n/275V~ 336-1C3 2n2/250V~ 336-1C4 2n2/250V~ 336-1C5 220n/275V~ 336-1C6 2n2/250V~ 336-1C7 2n2/250V~ 336-1C10 680p 730C12 10p/100V 638C14 2n2/100V 630C15 22n/100V 370C17 2n2/500V 655C18 470p/2kV MurataC19 10n/250V 370C20 220p/500V 655C21 4n7/250V~ 336-6C31 330n 370C35 4n7 630C36 100p/100V NP0C38 680p/500V 655C39 2n7/500V 655

Number Value TypeC102 470p/100V 630C103 330p 630C104 2n2 730C105 100p/100V NP0C106 3n3 630C108 100n SMD 0805/X7RC112 2n7/500V 655C116 100n/63V 370C117 1n/1kV MurataC120 4n7/1kV MurataC121 1u/63V 370C122 1n/1kV MurataC123 1n5 630C124 22n/250V 365C125 33n/250V 365C129 22n/100V 370C130 220n/250V 373C134 15p SMD 0805/NP0C135 47p NP0C136 27p SMD 0805/NP0C203 100n/63V 370

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

29

Number Type RemarksC204 220n/63V 370C211 470n/63V 370C212 100n/63V 370C214 470n/63V 370C215 470n/63V 370C216 100n/63V 370C304 100p/100V NP0C306 2n7/500V 655C308 100p/100V NP0C309 100p/100V NP0C310 10p/100V 638C312 2n2 730C314 10n/250V 370C315 100p/100V NP0C316 100p/100V NP0C317 12n SMD 0805/X7RC318 10n SMD 1210/NP0C319 100n/63V 370C320 100n/63V 370C321 100n SMD 0805/X7RC322 3n3 SMD 0805/X7RC324 100n/63V 370

Number Type RemarksC400 33n/250V 365C403 22n/250V 365C404 2n7/100V 630C405 47p/1kV 694C406 4n7/2kV 376C407 150n/63V 370C408 470n/63V 370C409 10n/250V 370C411 4n7/250V 370C412 4n7/250V 370C416 180n/630VDC 378C417 120n/250V 379C418 220n/250V 379C419 470n/250V 379C420 1µ2/250V 379C421 5µ6/160V 379C423 47n/400V 379C426 10n/250V 370C427 10n/250V 370C428 10n/250V 370C429 2n7/500V 655C430 1n/500V 655

5.3 Transistors

Number Type RemarksT1 BC548cT2 BSP145 SMDT3 BC547T5 W9NA80 (to heatsink)T6 BC548cT7 BC548cT8 BC548cT9 BC548cT10 BC558T11 BC558T12 BSN274T13 BC548cT14 BC548cT17 BC548cT103 PH2369T106 PH2369T107 BC375bT108 BC376T109 BUT11A (to heatsink)T110 BC375bT111 BC375bT112 MPSA42T113 MPSA44

Number Type RemarksT114 MPSA44T115 MPSA44T117 MPSA44T118 MPSA44T119 IRF9630 (to heatsink)T120 BC548cT121 BC548cT122 MPSA92T123 BC548cT124 BC548cT202 BC558T203 BC548cT204 BC558T301 BC558T302 BC548cT303 BC548cT304 BC548cT305 BC548cT400 BC375bT401 BC376T402 IRF9630 (to heatsink)T403 BU2532AL (to heatsink)T404 BC375b

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

30

Number Type RemarksT405 BC548cT406 BUK445-100BT407 BC548cT408 BUK445-100BT409 BC548cT410 BUK445-100BT411 BC548cT412 BUK445-100B

Number Type RemarksT413 BC548cT414 BUK445-100BT415 BC548cT416 BUK445-100BT417 BC548cT418 BC558T419 BC558

5.4 Diodes

Number Type RemarksD1 BYW54D2 BYW54D3 BYW54D4 BYW54D5 BYD13JD6 BT151-500R ThyristorD7 BZX79C6V2D8 BZX79C33D9 BYD33DD10 BYD33MD13 BZX79C5V6D14 1N4148D15 1N4148D16 1N4148D17 BICOLOUR-

LEDD18 1N4148D19 BZX79C15D20 BZX79C6V2D21 BZX79C6V2D22 BYD73DD23 BYV28/100D24 BYD73DD25 BYD33GD26 BYR29-800D28 1N4148D29 1N4148D30 1N4148D31 BYD33KD32 1N4148D33 1N4148D105 1N4148D106 1N4148D107 1N4148D108 1N4148D109 1N4148D110 BZD23C5V1D111 BYD73D

Number Type RemarksD112 BYD73DD113 BZX79C75D114 1N4148D116 BYD33MD117 BYD33MD118 BZX79C6V2D120 1N4148D121 BYD73GD122 BYD33MD123 BYV26ED124 BYV27-200D125 BZX79C10D126 1N4148D127 1N4148D128 1N4148D129 1N4148D130 BZX79C62D131 BAS32 SMDD132 1N4148D133 1N4148D134 BZX79C4V7D135 BYD33DD301 BZX79C5V6D303 1N4148D401 1N4148D402 BZX79C10D403 BYV99D404 BY459F (to heatsink)D405 1N5822D406 1N4148D407 1N4148D409 BZX79C6V8D410 BZX79C39

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

31

5.5 Integrated circuits

Number Type RemarksIC1 TDA8380AIC2 L7812 (to heatsink)IC3 78L05IC101 UC3843PIC102 LM393IC201 LM358IC202 TDA7053AIC301 PCE8582C-2EIC302 PCE8582C-2EIC303 TDA8447IC304 P83C181 see appendix 7IC305 TDA4854IC401 TDA8354 (to heatsink)

5.6 Wire-wound components

Number Type/Value RemarksL1 TU305b2 3121 218 61281L2 10µ TDKL3 10µ TDKL4 10µ TDKL5 10µ TDKL6 10µ TDKL7 10µ TDKL101 6µ8 TDKL102 10µ TDKL401 CU20 / 1.2mH 8228 001 25771L402 PE4025/01 8228 001 28021L403 10µ TDKTR1 CU20d 3112 338 32032TR2 CE425V 8228 001 23415TR101 AT2097/M1 3122 268 31292TR401 CU15/35 3128 138 35141

5.7 Miscellaneous

Optical devicesNumber Type RemarksOC1 CNX82ATH1 M0C2A60_5TH2 M0C2A60_5OthersF1 2A SLOWF2 2A FASTF3 2A FASTF4 2A FASTSW1 MAINS-

SWITCH

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

32

XT301 Crystal 12MHzConnectorsNumber Type RemarksJ3 HEADER 3pJ301 HEADER 2pJ302 HEADER 2pX1 STOCKO 3p remove middle pinX2 STOCKO 4pX201 STOCKO 3pX202 STOCKO 3pX203 STOCKO 3pX204 STOCKO 3pX205 STOCKO 3pX301 STOCKO 14pX302 STOCKO 4pX303 STOCKO 8pX304 STOCKO 4pX305 STOCKO 6pX306 STOCKO 12pX307 STOCKO 4pX401 STOCKO 7p remove middle pinX402 STOCKO 3p remove middle pin

Heatsinks:The areas of the heatsinks are:• horizontal deflection: 140 cm

2 ; Rth ≈ 4 K/W.

• vertical deflection: extruded heatsink with ≈60 cm2 ; Rth ≈ 3 K/W.

• EHT: 50 cm2 ; Rth ≈ 9 K/W.

• SMPS: 60 cm2 ; Rth ≈ 8 K/W.

Mounting studs for heatsinks:The heatsinks for horizontal deflection, EHT and SMPS are mounted on the PCB via special mounting studs.For each heatsink one of these studs is connected to the ground plane of the circuit to ensure the heatsink iscorrectly grounded. The heatsink for the vertical deflection is mounted with screws. Again one of these screwsis connected to ground to define the heatsink’s potential.

Clips for device mounting on heatsinks.

Note : the mains voltage is interrupted on the board between filter output and mains switch. This connectionmust be made by two wires soldered between the appropriate points on the board. The reason for not imple-menting this connection in the board lay-out is that it requires too much space.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

33

6. PRINTED CIRCUIT BOARD LAYOUTOn the next pages the following drawings can be found:

− component placement with position numbers as seen from the component side;

− component placement with values as seen from the component side;

− SMD placement with position numbers as seen from the solder side;

− copper pattern of printed circuit board.

The board dimensions are: 388 mm long by 250 mm wide.

6.1 Lay-out hintsGround track:

The common ground track should be kept as clean as possible. This means that only DC currents shouldbe flowing through this track indicating that the AC current is short circuited at it’s source! Therefor youwill find resistor capacitor supply filters at every stage.

Focus:

The focus signal of the TDA4854 and it’s reference ground should be kept close to each other up to theinput of the focus output amplifier due to the high gain of this output stage (and the neighbourhood of theEHT circuit as well as the long distance between source and amplifier).

Vertical deflection:

Keep vertical drive signals of the TDA4854 close together at all places to avoid coupling of magneticfields in the loop.

Horizontal deflection output stage:

Keep flyback capacitor and diode of the horizontal deflection stage located close together to damp theforward recovery ringing of the flyback diode.

Due to the low leakage inductance of the driver transformer the tracks between transformer and line out-put transistor should be kept as short as possible.

EHT X-ray protection:

The connecting points of R129/R130 and R130/R131 are very sensitive due to their high impedance.These points should therefor be kept as small as possible and far away from points with a high voltageswing (i.e. the collector voltage of the BUT11A).

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

34

R51

R53

R54

C35

T13

D20

D8

R5

T1

R6

R10

+ C8

R47 C15

C2

TH1

C1

C5

D6

R12

R13

R14

R8

R7

R15

T3

D7

R9

+

C110

R11

+ C9

C17

C3

L5

L7

C21

D5

R25

R48-

+

C22

R24

C6C7

R31

OC1

IC30

5

+

C26

+ C25

X402

D31

C4

D3

IC1

+ C29

F3

C19

R76

TH2

D24

R22

T14

D1D2

L6

D4

D403

C10

R216

C14

C38

C20

C12

TR1

R46

+

C209

+C24

R17 R16

R18

R28

R179

R34

R33

R32

R30

F1

L403

D22

D107

D26

R4

+ C23

D25

+

C431

R400

C406

R109

C121

R108

D23

C104

R49

XT30

1

D125 L101

+

C107

R114+

C109

R116

T414 R433

C103C105

C106

R132

C112

R426

R423

R429

R430

R424

R419

R427

R418

R438

T406

T408D407

+C410

C408

C409

D406

T404

R410

R409

R411

R407

R414

R406

D405

D128

C403

D404

R405

T401 T4

00

R107

R403

R435

R432

T410

D402

R365

T403

R364

T305

T402

T412

X2

C323

TR40

1L4

02

R363

C324

R135

R362

C417

C418

T304

+

C111

D120

R138

R136

T113

D113D1

0

+

C119

R1

R163

R162

R137

D121

D110

R139

D129

D114

R128

D116

R404

R126

D122

T108

R151

D118

T109

T118

T117

C116

R408

R129

D123

R155

+

C126

T107

D126

R157

R156

C18

R161

R146

R177

R140

T119

+

C11

R158

C400

R141

R150

C123

C124

D124

R143

R145

R149

R436

+ C118

T103

R175

T123

R153

T110

D117

C122

D106

T120

R176

- +C4

02

L102

T111

R144

R131

R127

R147

R133

T115

R130

R154

R173

C125

D135

R142

C117

D108

TR10

1

D111

R148 T114

D132

R110

+

C27

D130

X205

R169

T415

D134

T122

C129

T411

T409

T413

T407

D109

R78

T121

R171

D127

R166

R168R167

R172

R170

C130

D112

L1

R74

R65

R66

D17

D29

R68

+

C213

R228

IC20

2

R227+ C217

C216

C214

C215X203

X202

X204

X201R223R221

R222R224

C212

IC20

1

T203

T204

T202

R219

R218 R213

X3

R205

R206 R208R209

R203

R212

R220R2

17

R215 R2

14

C203

T5

C204

D28

+

C208

+C2

10

D105

C211

C31

+C3

4

T17 R75

C430

C407

X1

+

C28

+

C425

R52

C36

+C424

R58

+

C207

R211

R440

R441

R454

D9

R456

T418

T419

R455

C102

R105

R457

C429

R445R446

R451

R444

L4

R439

R360

T417

R437

C423

X401

T112

C412

R115

366

T106

R159

L401

T416

C420

R309

T124

X306

X301

X303

R50

X305

X304R310

X302

R359

C421

D303R357

R358

R356

T303

T302R349

R348R347

R337

T301

D301

R336

C314

R3

C312

C419

R361

+ C311

R334

R333

C310R338

R352C320

C319

R354R355C316

C315R341

R342R343

+ C303

R306IC303

R308

R307

R304R305

SW1

IC30

4

R2

P101

P1

IC2

+ C301

F4

+C3

0

L2

F2

+C302

IC301

IC30

2

R450

R302

R301

R453R452

C428C427

C426

R449

R443

R447

IC40

1

T405R415

R413

R458

R412

C411

C404

C405

R421

R420

R422

R431

R425

R428

R434

IC10

1

R316

R317

R331

+C3

2IC

3

+

C128

R164

C39

+

C401

D409

D401

R67

L3

R178

R55

T8

D19

D18

T9

T10

R59

R63

R45

R44

R43

R64

R62R61

R57

D15D1

6

T11

+

C13

T12

R332

C308

R56

D14

D13

C309

R330

T7T6

D410

R442

R207

C416

C120

R204

R329

R326

R325

R318

J302R327

R319

R42

R41 R40

R39

+

C307

C306

R328

R320

R321

R322

R323

C304C305

R118R113

IC10

2

R165

+C127

J301

R125

R38

R37

R36

R35

D32 R2

0

TR2

R122

R324

R345

R314

R312

D33

D21

R313

+

C422

R315

R152

D133

R123

X307

R124

C135

R346

5V-USB

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

35

2k2

150k

5k1

4n7

548

BZX7

9C6

V2

BZX79C3339

k54

8

470

10

+ 25V

470u

4k7 22n

275V

220n

MOC2A60-5

275V

220n

275V

220n

500R

BT15

1

1k

1M11

0k

1k5

150k

220k

547

C6V2

BZX7

9

NFR2

5H10

E

+16V

68u

AC05

10E

+

400V

220u

500V 2n225

0V2n

2

10u

10u

250V~4n7

BYD13J

PR02

220

1k-+

250V

150u

1k

250VAC2n2

250VAC2n2

AC04

390

82A

CNX

TDA4

854

+

25V

470u

+ 16V

1000

u

st.2

p

BYD3

3K

250V

2n2

BYW5

4TD

A838

0

+25V470u

FAST2A

10n

NFR2

54E

7

MOC2

A60-

5

BYD73D

NFR2522E

548

BYW5

4

BYW5

410u

BYW5

4

BYV9

9

680p

680

2n2

680p

500V

220p

10p

AT40

43/2

0

1k2

+

25V47u

+470u

25V

100k 18k

5k1

47k

15k

0.47

NFR2

5H

NFR2

5H0.

33NF

R25H15

k

1k

slow2A

10u

BYD73D

4148

BYR29-800

2322-662-96126

+100V47u

BYD33G

+

25V47u

100

2kV4n7

68k

63V

1u

820

BYV28-100

2n2

4M7VR37

12MH

z

BZX79C10

6u8

+

63V

4u7

NFR2

5H10+

25V

100u

10k

BUK4

45 47k

330p100p

3n3

1k

2n7

150k

150k

150k

47k

47k

47k

47k

150k

150k

BUK445

BUK445

4148

+63V

10u

470n

10n

4148

375

100

680

18k

220

270

PR03

2.7

1N58

22

4148

250V22n

BY45

9F

47

37637

5

3k3

120

NFR2

522

PR02

2K7

BUK4

45

BZX79C10

4k7

BU25

32AL

4k7

548

IRF9630

BUK4

45

10n

CU15

/35

PE40

15/0

1

10k

100n

24k

2k2

250V

120n

250V

220n

548

+

100u

41481M5

150k

MPSA

44

C75BZX79

BYD3

3M

+1u25

0V

1M

150k

150k

1M8

BYD7

3G

BZD23C5V1

36k

4148

4148

PR01

27

BYD3

3M

10k

1k

BYD33M

376

13k

C6V2BZX79

BUT11A

MPSA44

MPSA

44

100n

33

3M3

BYV2

6E

PR01120

+

250V10u

375

4148

10k

NFR2

5H3.

3

470P

1kV

10k

220k

11k

1k

IRF9630

+

4u7

63v

120

33n

250V

270k

100k

1n5

250V22n

200VBYV27

1M5

8k2

3k3

22

+63V10u

PH23

69

2k2

548

NFR25H100

375b

BYD3

3M

1kV

1n

4148

548

39k

- +25

0V15

0u

10u

375

1M5

2M7

1k

220k

270

MPSA

44

3M3

47k

1k

33n250V

BYD33D

270k

1kV

1n

4148

AT20

97/M

1

BYD73D

1k MPSA44

4148

+

25V

470u

C62

st.3p

1k

548

C4V7

MPSA

92

100V22n

548

548

548

548

4148

PR01 100k

548

1M

4148

3k3

1k10k

120k

47k

220n/250V

BYD73D

Main

s-

TU30

5b2

1k

NFR25 10E

NFR25 10E

colo

rBi

-

LED

4148

1k

+

68u

16V

4.7TD

A705

3A

100k+68u

16V

100n

470n

470nst

.3p

st.3

p

st.3p

st.3p4k74k7

4k74k7

100n

LM35

8

548

558

558

1k

3.3 100

3p-h

eade

r

180k

39k 22k100k

1k8

33k

22NF

R25H

100E

NFR2

5H10

0E

680

100n

W9NA

80

220n

4148

+25

V47

u+

25V

47u

4148

470n

330n

+10

00u

16V

548 47k

1n

150n

st.2p

+16V1000u

+ 16V

330u

100

100p

+50V

47u

39k

+

25V47u

43k

5k6

PR01

2k7

330k

BYD33D

3k9

558

558

3k9

470p

100

4k7

2n7

1E81E8

10k

2k0 10u

10k

27k

548

47k

400V47n

st.7p

MPSA

42

4n7

NFR2

5H6.

8

100E

PH23

69

1k

U20

1.2m

H

BUK445

250V

1u2

PR0315E

548

st.-

12p

st.-14p

st.-

8p

PR03270

st.-6p

st.-4p100E

st.-4p

NFR2

522

0E

160V

5u6

41486k8

4k7

12k

548

548270E

10k10k

2k2

558

C5V6 8k2

10n

AC042E7

2n2

250V

470n

6k8

+16V

68u

4E7

1k

10p1k5

22k100n

100n

100E100E100p

100p100E

100E100E

+16V

68u

10ETDA8447

100E

100E

100E100E

Swit

ch

P83C

181

PR01

270

22k

EMP1

0

1k

7812

+16V

68u

FAST2A

+

16V68u

10u

FAST2A

+16V

68u

2EPCE8582C

2EPC

E858

2C

10k

10E

10E

100E100E

10n10n

10n

270k

3k3

330E

TDA8

354

548c

PR01 27

10PR01

220

474n

7

2n71kV

47p

3k9

1k

10k

10k

10k

10k

10k

UC38

43

100E

100E

100E

+16

V68

u 78L0

5

+

16V

68u

NFR2

5H4.

7

500V 2n7

+

25V47u

C6V8

4148

NFR2510E

10u47k

100

548

BZX79C15

4148

548

558

100k

NFR2

5h18

0

10k

330

1k2

180k

120k24k

18k

4148

414841

48

558

+

10u

50V

BSN2

74

100E

100p

100k

4148

BZX79C5V6

100p

4k7

54854

8

BZX7

9C3

9

NFR250E47

56k

180n

630V

DC

4n71kV

56k

4k7

4k7

4k7

100E

2p-header22k

100E

1568

0E 22k

820

+

63V

4u7

2n7

4E7

100E

100E

100E

100E

100p100p

4k3100

LM39

3

100

+

16V

68u

2p-header

3k3

SK48

36k

1k

100

5k1

4148 56

DEV.

5k6

100E

100E

100E

22k

4148

BZX79C6V2

100E

+16V68u

100E

AB1k

4148

56k

st.-

4p

2k2

47p

100E

5V-USB

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

36

Location of SMD parts.

Control part:

This drawing shows the SMD components underneath the deflection con-troller TDA4854 seen from the solder side.

EHT and focus part: SMD parts seen fromsolder side:

• D131: located underneath D132.

• R112, R119, C108, C134, C136: locatedunderneath IC101.

• R117: located underneath IC102.

SMPS part:

T2: located underneath D7.

(No drawing shown)

C322

R353

C317R351

R350

C318

C321

R340R339

R344

C108 R117

C136

D131

+

C134

R119

R112

+

+

+

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

37

RED

GREE

N

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

38

7. ALIGNMENT PROCEDUREThis alignment procedure is written for a complete CCM420 monitor: main board, key board, video board andCRT. In case of failure refer to chapter 8: debugging procedure.

7.1 EquipmentVideo generator Quantum Data QD903:

formats ranging from 640 x 400 to 1280 x 1024 pixels;

refresh rates ranging from 60 to 85 Hz.

DMM Fluke PM2421

EHT meter Brandenburg

Oscilloscope Fluke PM3384A

Colour analyser Philips PM5639

PC min. ‘486’ with windows 3.11 with I2C interface card

Software I2C control software version 1.60 for TDA4854, TDA4885 and TDA8447.

7.2 Alignment1. Turn both potentiometers on the main board ccw.

2. Connect the video generator and apply a signal with 1024 x 768 pixels at 76 Hz refresh rate (Fh≈64kHz).Choose testpattern SMPTE.

3. Connect the EHT voltmeter between anode and aquadag of the CRT.

4. Be sure the EEPROM’s are filled with the values as given in appendix Starting values of I2C registers onpage 43.

5. If possible make use of a separate degaussing device to demagnetise the CRT.

6. Connect the mains supply voltage and switch the monitor on with the mains switch.

7. Check that the monitor displays a picture after a few seconds. If not refer to the debug section.

8. Adjust the SMPS ‘185 Volt’ output to 185.0 ± 0.20 Volt measured across C22.

9. Adjust the EHT to 26.0 ±0.2 kV.

10. Display a cross-hatch pattern.

11. Adjust static focus with the focus potentiometers on the EHT transformer.

12. Front panel switch “USER - SERV.” must be placed in SERV. position.

13. Press the Menu button once: check that the OSD shows the mode information. If not refer to the debugsection.

14. Press the Menu button again: the OSD now displays the user control menu.

15. Position the picture in the centre of the screen and adjust width and height to nominal size 312 x 234 mm2.

16. Adjust the pincushion, pincushion-balance, corner, trapezium, parallelogram, horizontal and vertical linear-ity and rotation to obtain optimum geometry.

17. Display a pattern with a 1 Nit luminance. See appendix Video drive levels on page 44.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

39

18. Adjust grid 2 such that the brightest colour reaches the required level for a total luminance of 1.0 Nit. Note:the required level for each of the three colours for a total luminance of 1.0 Nit is: Red: 0.3 Nit; Green 0.59Nit; Blue: 0.11 Nit.

19. Then decrease the cathode voltage of the two remaining colours to their respective brightness for a totalbrightness of 1.0 Nit.

20. Display a pattern with a 10x10 cm2 box in the middle of the screen with RGB input signals of 700 mV. See

also appendix Video drive levels on page 44.

21. Adjust the gain of the three channels to a total luminance of 100 Nit with reference D6500.

22. Check the black levels again and re-adjust if necessary.

23. Display a focus pattern (i.e. Randomtext).

24. Adjust the static focus potentiometers on the EHT transformer for optimum sharpness on a screen positionin a circle of 150 mm diameter around the centre of the screen.

25. Adjust the dynamic focus for optimum sharpness on the centre and the edges of the screen.

26. Readjust static focus (and then dynamic focus) if necessary.

27. Save the settings.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

40

8. DEBUGGING PROCEDUREThe debugging of the main board is described in a complete monitor set-up fitted with CRT M41EHN323X145and video amplifier board PR37981. Only the most common failures are described.

1. No picture:

Check: 185 Volt output of SMPS;

all other output voltages of the SMPS (+11 V; +18 V; -18 V; +78 V; limits for all output volt-ages +/- 10 %);

+12 Volt (+/- 0.75 V) on pin 10 of the TDA4854;

+5 Volt (+/- 0.25 V) on pin 24 of the P83C181;

line deflection;

EHT part;

grid voltages Vg1 (-62 +/- 2 Volt) and Vg2 (400 - 600 Volt);

vertical deflection;

2. 185 Volt output not present:

Check: mains fuse F1;

output rectifier D26;

fusible resistors R9, R22, R32, R33 and R34;

line deflection parts T402 and T403;

supply voltage of IC1;

output drive signals of IC1;

main switching device T5;

over-current protection level on pin 13 of IC1;

3. Auxiliary SMPS output voltages missing:

Check: output rectifiers D22, D23, D24, D25;

fuses F2, F3, F4;

voltage stabilisers IC2 and IC3;

4. Distorted picture:

Check: alignment;

S-correction switches (see table in chapter 3.4.3 Linearity and S-correction control);

linearity control circuit of horizontal deflection;

flyback voltage of vertical deflection (Tfb = 300 ± 50 µs; Vpeak = 43 ± 3 Volt);

all supply voltages for excess ripple voltages (185 V: < 0.200 Vpp; 11 V: < 0.800 Vpp);

5. No line deflection:

Check: presence of horizontal and B+ drive signals of TDA4854;

base drive voltage of T403;

gate drive voltage of T402;

line deflection parts T402 and T403;

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

41

6. No vertical deflection:

Check: vertical drive signals of TDA4854;

flyback supply voltage;

vertical deflection output stage;

7. EHT not present:

Note: the horizontal deflection stage must be operating!

Check: all fusible resistors R114, R115, R156 and R164;

duty-cycle of PWM output pin 6 of IC101 (< 90 %);

base drive signal of T109

X-ray output pin 7 of IC102

8. Vg1 not present:

Check: supply voltage -200 Volt;

protection signals ‘Vguard’, ‘HUNLOCK’ and presence of horizontal flyback pulses;

polarity and value of D130;

9. Vg2 not present:

Check: supply voltage on C120: 700....900 Volt;

output voltage of TDA8447 pin 16 Vg2D: 0.4 to 4.6 Volt;

polarity of D135;

base voltage of T113;

10. Dynamic focus signals not present:

Check: focus signal on pin 32 of TDA4854

supply voltage on C117: 700....900 Volt;

emitter voltage of T123;

position of D116 and D117;

11. No rotation control:

Check: fusible resistors R215, R217;

presence of vertical blanking pulse VrotS;

signals NSTR and HROT (both 0.4 to 4.6 Volt);

signal VRotS;

resistor R220.

12. No OSD:

Check: connector X303 and the cable to the video board;

signals ENN, SDI and SCK on pins 1, 2, 3 of the P83C181 while operating the key board.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

42

9. REFERENCES

AN97072 Pin description of TDA4854 I2C controlled ASDC.

AN97039 Video amplifier board with TDA4885 and CR6927.

ETV/AN97002 Low power and low cost horizontal drive circuits with U15 core.

Data sheets:

TDA4854 I2C-autosync deflection controller for PC/TV monitors

Date of issue: 1997 Apr. 16

TDA4885 150 MHz video controller with I2C-bus

Date of issue: 1996 Mar. 13

TDA8354 Full bridge current driven vertical deflection output circuit in LVDMOS

Date of issue: 1996 July

P83C181 Microcontroller for monitor with DDC interface, auto-sync mode detection and sync processor

Date of issue: 1997 Mar. 14

TDA8447 Bus controlled octuple 8-bit DAC

Date of issue: 1996 Mar. 11

CR6927 Triple video driver hybrid amplifier

Date of issue: 1996 Apr. 19

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

43

APPENDIX 1 STARTING VALUES OF I2C REGISTERS

In the following tables the starting values for the I2C registers and the switch position are shown.

These values should either be present in the EEPROM or loaded via the I2C software control

program in the applicable device.

TDA4854 control registers and switch positions:

Register Value Switch 0/1

H-size 150 BLKDIS 0

H-pos 127 HBC 0

V-size 85 HPC 0

V-pos 63 AGCDIS 0

V-lin 8 VSC 0

V-lin-bal 8 MOD 1

H-pin 40 TVMOD 0

H-pin-bal 8 FHMULT 0

H-trap 8 VOVSCN 0

H-paral 8 CLAMP 1

H-corner 4 VBLK 0

H-focus 27 VLC 0

V-focus 6 VPC 0

H-moire 0 ACD 0

V-moire 0 STDBY 0

SOFTST 1

TDA8447 control registers:

Register Value

Hlin 127

NStrap 127

H-Rot 127

Vg2 185

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

44

TDA4885 control registers and switch positions:

Register Value Switch 0/1

Contrast 58 PEDST 1

Brightness 16 DISO 0

OSD Ctrst 15 DISV 0

Gain R 60 FPOL 1

Gain G 55

Gain B 35

Black level R 190

Black LevelG

190

Black LevelB

190

APPENDIX 2 VIDEO DRIVE LEVELS

To display a grey level of X Nit the necessary drive level at the input of the video stage can be calculated ac-cording to the following rules:

• For a given drive voltage the output luminance can be calculated according to the following equa-

tion: LUM C Vdrive= ´( )g .

• The maximum grey level is set at 100 Nit full screen at a contrast setting of 58 and nominal brightnesssetting 16

• With a maximum video input level Vdrive = 0.700 Volt for LUM =100 Nit one can derive the gain factor of

the video channel with the following equation: C LUMVdrive=

g

. Inserting above mentioned numbers,

assuming γ = 2.25 result in C = 11.061.

• The drive level in Volts for a wanted luminance level LUM can be calculated with the following formula now

that all parameters are known: Vdrive LUM C=

g /

• For example: for 1.0 Nit output, the drive level at the input should be 90.4 mV.

APPENDIX 3 TDA4854 HORIZONTAL FREQUENCY RANGE

The horizontal frequency range of the TDA4854 is determined by the value of two resistors and one capacitor.The value of resistors R350 and R351 is determined by the frequency limits of the application. The capacitorC318 (horizontal oscillator capacitor connected to pin 29) though should be 10 nF for optimum jitter perform-ance. The value of this capacitor should not be changed.

Given a specified frequency range (and C318 = 10 nF) the value of the resistors R350 and R351 can then becalculated with the following formulas:

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

45

Note: the minimum and maximum frequencies in the formulas should be inserted in ‘kHz’. Tolerance taken inaccount is 3 % for the IC, 2 % for the horizontal oscillator capacitor and 1 % for the resistors R350 and R351.

RF F

350 20 0012=

+ ´

78

min . min kΩ

RF F

'max . max

351 2

78

0 0012=

+ ´

RR R

R R351

350 351

350 3510 8=

´

-

´''

. kΩ

Note : R’351 does not really exist; this is only for the calculation.

For a sync frequency range of 15.6 kHz to 85 kHz the resistor values become:

R350 = 5208 Ω; nearest available value: 5230 Ω (1 % SMD resistor);

R351 = 735 Ω; nearest available value: 732 Ω (1 % SMD resistor).

APPENDIX 4 USER INTERFACE

The user interface in the CCM420 monitor consists of a five button keyboard and the control softwareCCM420S. An OSD window pops up when the user operates one of the pushbuttons:

1. The MENU button gives access to the various levels of user control and service control.

2. The SHIFT left/right and ADJUST down/up perform different actions depending upon the control level:When the MENU button was not activated the SHIFT buttons give direct access to the Brightness control,while the ADJUST buttons give direct access to the Contrast control. In both cases an OSD pops up toinform the user about the action taken.

3. With the MENU button one can scroll down through the control levels. In each control level the desiredfunction can be selected by pushing the SHIFT down or up button.

The control is divided into a number of levels. Each of these levels will now be discussed shortly:

First level: Mode identification; no user control possible.First line: Horizontal frequencySecond line: Vertical frequencyThird line: Mode information; either the standard VESA identification (if applicable) is shown or

the number of this user defined mode.

Second level: User controls.First line: Brightness, Contrast, Degauss, Horizontal Moiré, Vertical MoiréSecond line Horizontal position, Horizontal size, Vertical position, Vertical sizeThird line: momentary setting of actual controlFourth line: name of actual control function.

Note : The following control levels can only be accessed if the switch on the left hand side of thekeyboard is set in "Service" position.

Third level: Video control.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

46

First line: Red Black level (RB), Green Black level (GB), Blue Black level (BB), OSD contrast(OC), Colour temperature (CT)

Second line: Red gain (RG), Green gain (GG), Blue gain (BG), CRT grid 2 (G2)Third line: momentary setting of actual controlFourth line: name of actual control function.

Fourth level: Horizontal control.First line: Pincushion (HP), Pin-balance (HB), horizontal linearity (HL), Corner (HC), Trapezium

(HT)Second line: Parallelogram (PA)Third line: momentary setting of actual controlFourth line: name of actual control function.

Fifth level: Vertical control.First line: Vertical linearity (VL), Vertical linearity balance (VB), Vertical trapezium (VT), Tilt (TI)Second line: (not used)Third line: momentary setting of actual controlFourth line: name of actual control function.

Sixth level: Miscellaneous control.First line: Vertical focus (VF), Horizontal focus (HF), Aux 1 (A1)Second line: Aux 2 (A2), Aux 3 (A3), Aux 4 (A4), OSD Hor. pos. (Oh), OSD Vert. pos. (Ov)Third line: momentary setting of actual controlFourth line: name of actual control function.

Seventh level: Automatic save and quit.

APPENDIX 5 KEYBOARD

The circuit diagram of the keyboard to be used with this main board and software is as follows:

1k

100k620E

1k

1k

1k

1k

3k

To X304

4321

SERVICE

USERCURSOR-

ADJUST-

ADJUST+

CURSOR+

STATUS

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

47

APPENDIX 6 I2C CONTROL MENUS

This software can be used in a debugging phase of the hardware for instance in case no µControlleris available (mind the setting of the S-correction switches).The I

2C Control Menus control the IC’s via a Personal Computer, which should fulfil the following

system requirements:

Hardware Requirements:- 80486 compatible PC or a Pentium with a microprocessor running at least 100 Mhz- a hard disk- Centronics parallel printer port- One of the following I

2C -bus interfaces:

- Hardwareless- Single Master (OM 4777; external +5Volt power supply needed)- Multi Master (OM 1022; external +5Volt power supply needed)- HighspeedBoard (Philips PC-MIO board)

Software Requirements:- MicroSoft MS-DOS version 3.1 or later- MicroSoft Windows 3.0 or later in standard or enhanced mode

GENERAL INFORMATION.

ERROR MESSAGES:When starting an I

2C-Control Menus program an hard- and software test is performed to test whether

the Interface card is connected correctly and to test the I2C transfer channel. If one of these tests

fails an Error Message Window will be displayed, explaining the type of error. If such an error occursat start-up the program will run in the “demo-mode’, which means that all functions can be controlledbut there will be NO I

2C data transfer. To be able to control the IC’s you should stop the program,

solve the problem mentioned in the Error Message Window and restart the program again.

SAVING DEFAULT SETTINGS:There are two types of savings:

- Application Settings- Set-up Settings

The settings of all controls (Potentiometers & CheckBoxes) can be saved within a file called‘filename.DEF’, in this way several default settings for different Applications can be saved. (The‘filename’ information can be defined by the user).The Program Environment can be saved by saving the Set-up Settings into a file called‘program_name.INI’ (The ‘program_name’ will be defined by the program itself, and will correspondto the name of the Program Name). The set-up settings include the following information:

- I2C data (Interface type, PrinterPort Number, Device address etc.)

- Last loaded Application Default File- Screen Position of the Menu Window

Both saving actions can be performed via the ‘File’ Menu.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

48

LOADING DEFAULT SETTINGS:Loading Application Default settings can be performed by activating the “Load Application Settings”Menu Item within the “File”-Menu.When the IC’s are situated within the CCM420 monitor, it is also possible to load the actual defaultsettings of the Monitor, which are saved within the EPROM of the monitor. Before the program isable to perform this action it must be initialised to know what mapping is used. This can be done byperforming the “Load Monitors Mapping EPROM File” Menu-Item within the “File”-Menu. After load-ing the mapping file, called ‘filename.MAP’, a test is performed to control this function. If this test issuccessful the “Read Defaults CCM420”-Button will become visible in the Menu Window.

MENU WINDOW SIZE:The I

2C Control menus written for the IC’s used in the CCM420 monitor can be displayed in two or

more appearances. The first one shows all Controls that can be performed, either by Potentiome-ters or by CheckBoxes, and the Information Box showing what actual I

2C data is transferred. By

pressing the Expand-Button the Menu Window will show more detailed information, such as RegisterContents, etc. Within the I

2C-Control menus shown below, the Expand Button(s) are indicated by

the characters “A” and/or “B” and the several Visible Areas are separated by Vertical Black Line(s).

I2C-CONTROL MENU OF THE DEFLECTION CONTROLLER IC TDA4854.

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

49

I2C-CONTROL MENU OF THE VIDEO CONTROLLER IC TDA4885

I2C-CONTROL MENU OF THE D-A CONVERTER IC TDA8447

APPENDIX 7 CICT IC NEWSLETTER NO. 17

Circuit description of CCM420 monitor Application NoteAN97032

Philips Semiconductors

50

P83Cx81 will not be taken to RFS

CICT has decide not to proceed with plans to make available the P83Cx81 family of DDC monitor microcontrol-lers. This family was originally intended to serve the market for DDC monitors which were I

2C bus controlled.

The P83Cx81 was positioned as a cost down version of the P83Cx80 family.

However for the following reasons this positioning no longer makes sense:

• most customers do not think the P83Cx81 32 pins are enough and they prefer the 42 pins P83Cx80 ver-sions.

• the actual cost difference between the P83Cx80 and the P83Cx81 is very small.

• the P83Cx80 family can also be easily used for I2C bus controlled designs, it is not only for DC controlled

designs.

• we have no customer orders currently for P83Cx81.

Therefore we will not proceed with the development of this family. The P83Cx80 family are of course not af-fected by this decision.

If you have any customer interest in the P83Cx81 family please inform them of this decision ASAP.

For those customers investigating the CCM420 demo monitor (which uses P83Cx81) from SLE please be in-formed that functionally the P83Cx81 is a subset of the P83Cx80 so the CCM420 software can also be run onthe P83Cx80.

If you have any further questions please contact me directly.

Ian Jackson

IPM Monitor Microcontrollers

Consumer IC Taipei


Recommended