+ All Categories
Home > Documents > Civil Engineering Curriculum

Civil Engineering Curriculum

Date post: 30-Dec-2016
Category:
Upload: letu
View: 221 times
Download: 0 times
Share this document with a friend
70
Semester wise Course Structure School of Engineering Tezpur University B. Tech Programme Civil Engineering Curriculum Structure Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India
Transcript
Page 1: Civil Engineering Curriculum

Semester wise Course Structure

   

School of EngineeringTezpur University

B. Tech ProgrammeCivil Engineering

Curriculum Structure&

Syllabi(Revised in April 2017)

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 2: Civil Engineering Curriculum

Semester wise Course Structure

Curriculum Structure

Time Duration

Minimum : 8 Semesters

Maximum : 12 Semesters

Credit Requirements

Minimum Total : 176

Core Courses : 152

Electives : 27

Humanities : 3

Science : 3

Department : 12

Open : 9

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 3: Civil Engineering Curriculum

Semester wise Course Structure

Semester I    

Course No. Course TitleCredit Structure Contac

t HoursL T P Total

MS 101 Mathematics I 3 1 0 4 4PH 101 Physics I 2 1 1 4 5CH 101 Chemistry 2 1 1 4 5EL 101 Basic Electrical Engineering 2 1 1 4 5ME 103 Workshop Practice 0 0 2 2 4ME 101 Engineering Graphics 1 0 2 3 5Humanities ElectiveEG101/ SO101/BM 101

Communicative English/ Sociology/ Elementary Economics

3 0 0 3 3

Total  13 4 7 24 31           

Semester II    

Course No. Course TitleCredit Structure Contac

t HoursL T P Total

MS 103 Mathematics II 3 1 0 4 4PH 102 Physics II 2 1 1 4 5ME 102 Engineering Mechanics 3 1 0 4 4EL 102 Basic Electronics 3 1 1 5 6CO 102 Computing Laboratory 0 0 2 2 4CO 101 Introductory Computing 2 1 0 3 3Science Elective ES101

Environmental Science 3 0 0 3 3

                                      Total  16 5 4 25 29         

Semester III

Course No Course title Credit structure Contac

t hoursL T P Total

MS201 Mathematics-III 2 1 0 3 3CE215 Fluid Mechanics 3 0 1 4 5CE214 Solid Mechanics 3 1 0 4 4CE202 Surveying 3 1 0 4 4

CE203 Building Materials & Technology 3 0 0 3 3

CE204 Engineering Geology 3 0 0 3 3CE205 Surveying Practical 0 0 2 2 4CE 213 Concrete & Structure Lab 0 0 2 2 4

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 4: Civil Engineering Curriculum

Semester wise Course Structure  Total 16 4 2 25 30

 

Semester IV Course No Course title

Credit structureContact hoursL T P

Total

MS 203 Numerical Analysis 2 1 0 3 3

CE 216Building Construction and Drawing 2 0 2 4 6

CE217 Hydraulics 3 0 0 3 3CE208 Structural Analysis-I 3 1 0 4 4CE209 Geotechnical Engineering-I 3 1 0 4 4CE210 Transportation Engineering-I 3 0 0 3 3CE212 Geotechnical Engineering Lab 0 0 2 2 4  Total 14 4 5 23 29

   

Semester V Course No Course title

Credit structure Contact

hoursL T P TotalBM321 Fundamentals of Management 3 0 0 3 3CE301 Structural Design-I 3 1 0 4 4CE302 Water Resources Engineering 3 0 0 3 3CE303 Structural Analysis-II 3 1 0 3 3CE304 Geotechnical Engineering-II 3 0 0 3 3CE305 Environmental Engineering-I 3 0 0 3 3CE306 Environmental Engineering Lab 0 0 2 2 4CE311 Transportation Engineering Lab. 0 0 1 1 2  Total 18 3 2 22 25

 

Semester VI Course No Course title

Credit structure Contact

hoursL T P Total

BM322 Social Responsibility & Professional Ethics in Engineering

3 0 0 3 3

CE307 Structural Design-II 3 1 0 4 4CE308 Environmental Engineering-II 3 0 0 3 3

**CE 314/ CE312

**CE 314: Estimating, Costing and Valuation (from spring 2019)/CE312 Construction Technology 3 0 0 3 3

  CE Elective-I 3 0 0 3 3

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 5: Civil Engineering Curriculum

Semester wise Course Structure  Open Elective-I 3 0 0 3 3  Total 18 2 2 19 19

 * Open Elective: Any course of level 400 and above offered in the University and recommended by the department. **From spring 2019

Semester VIICourse No Course title

Credit structure Contact

hoursL T P TotalCE401 Transportation Engineering-II 3 0 0 3 3CE402 Construction Management 3 0 0 3 3  Open Elective-II 3 0 0 3 3  CE Elective-II 3 0 0 3 3  CE Elective-III 3 0 0 3 3CE471 Industrial Summer Training 0 0 2 2CE481 Project-I 0 0 6 6 12  Total 12 0 8 23 27

Semester VIII Course No Course title

Credit structure Contact

hoursL T P Total  Open Elective-III 3 0 0 3 3  CE Elective-IV 3 0 0 3 3CE482 Project-II 0 0 12 12 24  Total 6 0 12 18 30

                 

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 6: Civil Engineering Curriculum

Semester wise Course Structure

CE Electives (All are 3 credit course with L:T:P::3:0:0)     CE421 Advanced Reinforced Concrete Design CE422 Dynamics of Structures CE423 Prestressed Concrete & Industrial Structures CE424 Bridge Engineering CE425 Soil Dynamics & Foundation Engineering CE426 Ground Improvement methods CE427 Earth Retaining Structures CE428 Applied Geotechnical Engineering CE429 Environmental Geo-techniques CE430 Open Channel Flow CE431 Hydraulic Structures CE432 Hydraulic Machines CE433 Groundwater Hydrology & Management CE434 Air Pollution & Industrial Waste Management CE435 Solid Waste Engineering CE436 Environmental Impact Assessment CE437 Remote Sensing & GIS CE438 Pavement Design CE439 Pavements Materials

CE440 Geometric Design of Road Transportation System

CE441 Design and Construction of Rural Roads

CE442 Analysis and design of foundationsAlso any other course of level 400 and above offered in the department of Civil Engg.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 7: Civil Engineering Curriculum

Semester wise Course Structure#Industrial Summer Training: Training shall be of 12 weeks duration carried out during the summer break after the 6th semester. The report will be submitted in the 7th

semester.

$The 7th semester will start a month later than usual and therefore be shorter by a month. To compensate for it there shall be 4 class hours per week for a 3 credit course    

SyllabiFirst Year

Mathematics I MS1013 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: None

Rolle’s theorem, Cauchy’s mean value theorem (Taylor’s and Maclaurin theorems with remainders, Indeterminate forms, Concavity and convexity of a curve, points of inflexion. Asymptotes and curvature.

Limit, continuity and differentiability of functions of several variables, partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions, derivatives of higher order and their commutativity, Euler’s theorem on homogeneous functions, harmonic functions, Taylor’s expansion of functions of several variables, maxima and minima of functions of several variables – Language’s method of multipliers.

First order differential equations – exact, linear and Bernoulli’s form, second order differential equations with constant coefficients, Euler’s equations, system of differential equations.

Limit, continuity, differentiability and analyticity of functions Cauchy-Riemann eqations, Elementary complex functions, Line integrals, Cauchy’s integral theorem, Cauchy’s integral formula, Power series, Taylor’s series, Laurent’s series, Zeros and singularities, Residue theorem.

Fundamental theorem of integral calculus, mean value theorems, evaluation of definite integrals – reduction formulae.

Books:1. Differential & Integral Calculus, Vol-I & II, Piskunov, Mir Publications.2. Engineering Mathematics, B. S. Grewal, S. Chand & Co. New Delhi.

Physics – I PH1012 - 1 - 1 : 4 Credits : 5 Hours Prerequsites: None

Conservation Principles, rotational Dynamics, free, forced and damped oscillations, coupled oscillations, wave motion, reflection and refraction, interference, diffraction, polarisation.Vector calculus: Curvilinear co-ordinates, gradient of a scalar fields, divergence and curl of a vector field, Gauss’s and Stoke’s theorems.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 8: Civil Engineering Curriculum

Semester wise Course StructureElectrostatics, magnetostatics, motion of charges in electric and magnetic fields, electromagnetic induction, displacement current, Maxwell’s equations, electromagnetic Waves.

Laboratory Experiments:

1. To determine the coefficient of viscosity of a liquid from its rate of flow through a capillary tube.

2. To determine the velocity of sound in a solid by Kundt’s tube method.3. To determine the acceleration due to gravity (g) by Kater’s pendulum.4. To determine the wavelength of a monochromatic light by Fresnel’s biprism and

Lloyd’s mirror.5. To determine the wavelength of light and radius of curvature of the convex

surface of a lens by Newton’s ring method.6. To determine the wavelength of light by diffraction through a plane transmission

grating.7. To determine the value of Planck’s constant using photocells.8. To determine the melting point of a solid with a thermocouple.9. To determine the value of e/m of an electron by using a cathode ray tube and a

pair of bar magnets (Thompson’s method).10. To observe waveforms and to measure amplitude, frequency and phase with

cathode ray oscilloscope.11. To verify Thevenin’s, Norton’s and maximum power transfer theorems.12. To study the performance of inverting and non-inverting amplifiers using an

operational amplifiers.

Text/Reference Books:1. Introduction to Electrodynamics-David J. Griffiths, Prentice-Hall of India Pvt. Ltd.2. Electricity and Magnetism by A.S. Mahajan and A.A. Rangwala, Tata McGraw

Hill Publishing Co. Ltd.3. Optics-A.K. Ghatak, Tata McGraw Hill Publishing Co. Ltd.4. Vibrations and Waves in Physics, Iain G. Main, Amazon Books5. Fundamentals of Physics, D. Halliday and R. Resnick, John Wiley Publication

Chemistry CH1012 - 1 - 1 : 4 Credits : 5 Hours Prerequsites: None

Thermodynamics of Chemical Processes: Concept of entropy, Chemical potential, Equilibrium conditions for closed systems, Phase and reaction equilibria, Maxwell relations, Real gas and real solution. Electrochemical Systems: Electrochemical cells and EMF, Applications of EMF measurements: Thermodynamic data, activity coefficients, solubility product and pH, corrosion. Kinetics of Chemical Reactions: Reversible, consecutive and parallel reactions, Steady state approximation, Chain reactions, Photochemical kinetics. Bonding Models in Inorganic Chemistry : Molecular orbital theory, Valence-bond theory, Crystal field theory. Fundamentals of Microwave, IR and UV-VIS Spectroscopy : Basic concepts of spectroscopy, Selection rule, Determination of molecular structure. Coordination Chemistry: Coordination numbers, Chelate effect, Coordination complexes and application, Bio-inorganic chemistry : Metal ions in Biological systems., environmental aspects of Metals, NOx, CO, CO2. Organic Reaction Mechanism: Mechanisms of selected organic, bio-organic, polymerization and catalytic reactions. Stereochemistry of Carbon Compounds : Selected Organic Compounds : Natural products and Biomolecules (Amino acids/nucleic acids/proteins).

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 9: Civil Engineering Curriculum

Semester wise Course StructureLaboratory Experiments:(At least nine of the experiments listed below)1. Surface tension and parachor 2. Measurement of the coefficient of viscosity. 3. Conductometric titration 4. pH-metric/potentiometric titration5. Solubility product 6. Kinetics of ester hydrolysis7. Estimation of Fe2+ 8. EDTA titration 9. Estimation of base content and acid content of commercially available antacid and vitamin C respectively 10. Synthesis of Mohr’s salt 11. Synthesis of aspirin 12.Demonstration of a few important physico-chemical processes. (e.g. Gel electrophoresis, Oscillatory reactions) 13. Determination of CMC of a surfactant

Books:1. Physical Chemistry, Rakshit P. C.2. Inorganic Chemistry, Dutta R. L.3. Organic Chemistry, Finar I. L4. Text Book of Physical Chemistry, Glasston Samuel5. Concise Inorganic Chemistry, Lee J. D.

Communicative English EN 1013 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None Objectives1. To develop overall proficiency in English with a view to enabling the students to use

English for communication and for study purposes;

2. To develop the student’s interactive skills by developing their ability to listen to English for formal as in class lectures and informal as in face to face interactive situations) with a high degree of understanding, and helping them to speak English with a reasonable degree of fluency and with an acceptable pronunciation of the sounds of English;

3. To develop student’s ability to read English texts-both of scientific and non-scientific nature silently with a high degree of comprehension;

4. To develop the student’s skill of writing short paragraphs, formal and informal letters, curriculum vitae/resume, applications of various types, study notes, summery and appropriate words-both scientific and non-scientific.

Course content and activities

A. Oral Communicative ActivitiesInformation transfer activities: Pair and group works involving transfer of information (reading a brochure and advertise/a notice a schedule or programme/drawing etc. and discussing these, finding a solution, arriving at a decision through speaking); extempore speech using clues, group discussion etc.Pair work: describing pictures, interpreting diagrams, gleaning information from different types of written materials including articles etc and talking about them, formal seminar presentation, formal group discussion.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 10: Civil Engineering Curriculum

Semester wise Course StructureB. Reading

Reading and comprehension: global and local comprehension, drawing interferences Materials: Stories and essays (preferably a collection of comparatively short essays on scientific, interestingly written topics, biographical/autobiographical writtings, short stories-adventure and scientific fiction), Reading silently in class followed by short comprehension questions, brief writing exercises, summaries in brief, personal responses (not typical question-answer type)-both oral and written. Reading material from Internet and talking and writing about them; reading scientific reports, articles collected from newspapers and magazines, Internet etc. and writing notes etc. on them

C. Writing Preparing reports, project proposals. Writing applications of various types and for various purposes, curriculum vitae/resume, letters to the editors, letters to various agencies. Writing short notes on article/reports read summary of articles/paragraphs read, notes on lectures (talks-radio/TV/audio, video cassettes), opinions on discussions/letters heard, notice both formal and informal/friendly, notes to inform others etc., interpreting pictures, advertisements, visuals (video, TV etc.) and writing briefly about them.

D. Vocabulary and grammar:Using useful but unfamiliar words and phrases in conversation and in writing; Group verbs, idiomatic expressions; synonyms and antonyms.

Structure of simple sentences; use of adverbials, longer sentences, combining sentences, Tenses, Use of passive in scientific discourse, various types of questions, direct and indirect narration.

Evaluation:Oral skills: 15% of total marksInterview/interacting; group discussion; formal seminar presentationReading-comprehension: 25% of total marksContinuous text; chart/graph/drawing/pictures etc.VocabularyWriting: 40% of total marksNotes/summery/writing; letters; report writing; short essayGrammar and usages 20% of total marksQuestions on grammar in use (using texts/passages from texts); questions to test knowledge of grammar.

Books and equipment:1. Anna University, Madras. English for Engineers and Technologists: a skill

approach. Vol 182. Hyderabad: Orient Longman, 1990. 2. Collins Cobuild English Grammar. Harper Collins India, 19903. Graves, Graham. Foundation English for Science Students. Delhi: Oxford

University Press, 19754. Oxford Advanced Learner’s Dictionary (with CD-ROM), 7th edition, 20055. Thomson and Martinet. A Practical English Grammar. Delhi Oxford ELBS, 19806. Sudarsanam, K., Understanding Technical English. New Delhi: Sterling

Publishers Pvt. Ltd., 1988.

Sociology SO 1013 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

1. Society: Meaning and element of society – Distinction between society, Aggregation and Organisation – Relationship between Individual and Society.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 11: Civil Engineering Curriculum

Semester wise Course StructureSocial Group : Meaning and brief classification of social group- Primary group- meaning, characteristic and importance of primary ground – method of making decision in a primary group – Secondary group- meaning and characteristics – Organization of authority in a Secondary group.

2. Social Change : Concepts and direction of social Change- Deterioration – and Cycle theory- Causes of social change- Deterministic theories of social change- a brief explanation of biological, physical, cultural and technical factors influencing the rate and direction of social change.Social Disorganisation : Meaning, characteristics and causes- social problem- meaning classification and causes- methods for solving social problems.

3. Personal Administration : Concept, aims and objectives, functions and principles of personal administration. Interview- types of interview – training- importance and methods- induction.

4. Human Relations & Behavioural Approach to Manpower : Concept of Human relations- origin and growth- (a brief reference to the Hawthrone Experiments, Mechanical or Commodity concept and social or Human concept of Labour – Classification made by Doghlas Megxg theory – X and theory – Y – importance of Human Relations.Werlmotivation – Meaning and kinds – Baslow’s need Hierarchy- Motivational techniques- meaning and significance of group Dynamics- Employees Morale – meaning and importance of and steps to promote employee morale

5. Concept, characteristics and techniques of leadership- types of leader- functions and qualities of a leader.

Books :1. Induction of Sociology, Dr. Sachdeva and Vidya Bhusan2. Business Administration and management, Dr. S.C. Saksena3. Principle of Sociology, R.N. Sarma4. Human Relation in Management, S. G. Huneryager & L.L. Hechkm.

Engineering Graphics ME1011 – 0 – 2 : 3 Credits : 5 Hours Prerequsites: None

Introduction to IS code of drawing; Conics and Engineering Curves – ellipse, parabola, hyperbola, cycloid, trochoid, involute; Projection of lines – traces, true length; Projection of planes and solids; sold objects – cube, prism, pyramid, cylinder, cone and sphere; Projection on Auxiliary planes; Isometric projection, isometric scale; Section of solids – true shape of section; Introduction to CAD tools – basics; Introduction of Development and Intersection of surfaces. Books:

1. Engineering Graphics, K. L. Narayana, P. Kannaaiah, Tata McGrawHill, New Delhi

2. Elementary Engineering Drawing, N. D. Bhatt, Charotar Book Stall, Anand.3. Engineering Graphics, V. Lakshminarayanan, R. S. Vaish Wanar, Jain Brithers,

New Delhi.4. Engineering Graphics, A. M. Chandra, S. Chandra, Narosa.5. Engineering Drawing and Graphics + AutoCAD, K. Venugopal, New Age

International, New Delhi.

Basic Electrical Engineering EL1013 - 0 - 1 : 4 Credits : 5 Hours Prerequsites: None

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 12: Civil Engineering Curriculum

Semester wise Course StructureEngineering Circuit Analysis : Current, Voltage, Power, Circuit elements, Ohm’s law, Kirchoff’s law, Nodal Analysis, Mesh Analysis, Source transformations, Linearity and Superposition, Thevenin’s and Norton’s Theorems, Maximum power transfer theorem, Star-Delta and Delta-Star Conversion, Simple RL and RC Circuits, Unit Step Forcing Function, source free RLC Circuits, Sinusoidal Forcing Function, Complex Forcing Function, Phasor Concept, Impedance and Admittance, Phasor diagrams, Response as a Function of , Instantaneous Power, Average Power, RMS values of Current and Voltage, Apparent Power and Power Factor, Complex Power, Introduction to Three Phase Circuits.

AC Machines : Transformer : Working principle, Ideal Transformer, Equivalent Circuit, Transformer tests, Voltage regulation, Efficiency. Three Phase Induction Motor : Construction, Production of rotating field, Slip, Torque and Slip, Equivalent Circuit. Single Phase Induction Motor : Double field revolving theory, Equivalent circuit, Typical Applications, Stepper Motors.

DC Machines : Principle of DC Generator, Methods of excitation, Characteristics and Applications, Principle of DC Motor, Types, Speed – Torque Characteristic, Speed Control, Motor starting, Applications.

Electrical Measuring Instruments : Basic Characteristics of Measuring Devices, Error Analysis, Standards and Calibration, Moving Coil, Moving Iron and Electrodynamic Meters, AC/DC ammeters and voltmeters, Ohmmeters, Wattmeters, Watt-hour meter, AC bridges, Q.meter, Cathode Ray Oscilloscope.

Power System : Introduction to generations, Transmissions and Distribution Power Systems, Domestic Wiring, Safety measures.Laboratory Experiments

Experiments on Circuits : Verification of Network Theorems, Design and Study on circuits using R, L and C, Power measurement in single phase A.C. Circuits. Transformer: Open circuit and Short Circuit Tests.D.C machines : Open Circuit Characteristic of Generator, Speed Control of D.C. motors. Electrical Measuring Instruments : Calibration of meters, Power measurement in 3-phase circuits, AC bridges. Power System : Design and Physical model of domestic wiring.

Text :1. W.H. Hayt and J.E. Kemmerly : Engineering Circuit Analysis; Mc Graw-Hill, 19932. V. Del Toro : Electrical Engineering Fundamentals; PHI, 19943. R.J. Smith and R-C-Dorf : Circuits, Devices and Systems; John Wiley & Sons,

19924. D. Helfrick and W.D Copper : Modern Electronic Instrumentation and Measuring

Techniques; PHI, 1990

Reference:1. Golding and Widdis : Electrical Measurements and Measuring Instruments; A.H.

Wheeler & Company, Calcutta, 1993.2. H. Cotton, “Advanced Electrical Technology”, Issac Pitman, London.3. D.P. Kothari, I.J. Nagrath : Basic Electrical Engineering, 2nd Edition, Mc Graw-

Hill, 20024. Rana : Basic Electrical Science

Workshop Practice ME1030 - 0 - 2 : 2 Credits : 4 Hours Prerequsites: None

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 13: Civil Engineering Curriculum

Semester wise Course StructureMachining: Introducing to various machine tools and demonstration on various machining process. Making jobs as per drawings Fitting Practices: Study of different vices, power hammer. Making jobs as per drawing.Welding Practice: Introduction to different welding processes. Practice on Oxy-acetylene gas welding and manual metal arc welding. Carpentry: Introduction to different hand tools and wood turning lathe. Making jobs.

Books:1. M. L. Begeman and B. H. Amstead, Manufacturing Process, John Wiley.2. W. A. J. Chapman and E. Arnold, Workshop Technology Vol. I & II, Viva Low

Priced Student Ed.3. B. S. Raghuwanshi, Workshop Technology Vol. I & II, Dhanpat Rai & Sons.

Mathematics II MS 1033 - 1 - 0 : 4 Credits :4 Hours Prerequsites: None  Linear Algebra: Vector spaces Linear dependence of vectors, basis, linear transformations, rank and inverse of a matrix, solution of algebraic equations consistency conditions. Eigenvalues and eigenvectors, Systems of differential equations, Hermitian and skew Hermitian matrices. Complex Analysis: Limit, continuity, differentiability and analytical of functions, Cauchey-Reimann equations, Elementary complex functions, Line integrals, Cauchys integral theorem, Cauchys integral formula, Power series, Taylors series, Laurents series, Zeros and singularities, Residue theorem. Laplace and Fourier Transforms: Polynomials Orthogonal Polynomials Lagranges Chebysev Polynomials; Trigonometric Polynomials Fourier Series, Fourier transforms, Laplace transforms, z-transform, Wavelet transforms.

 Numerical Analysis: Finite differences, Newtons forward and backward interpolation formulae, Central difference interpolation. Trapezoidal rule and Simpsons 1/3rd rule of integration. Solution of polynomial and transcendental equations bisection method, Newton Raphson method and Regula falsi method.

 BooksLinear Algebra1. K. Hoffman and R Kunze, Linear Algebra Prentice Hall, 19962. Krishnamurthy V, Mainra V P, Arora J L, An Introduction to Linear Algebra.3. T M Apostol, Calculus, Vol II, 2nd Ed. Wiley, 1969Complex Analysis4. R V Churchill and J W Brown, Complex Variables and Applications, 5th Ed. McGraw Hill, 19905. J H Mathew and R W Howell, Complex Analysis for Mathematics and Engineering, 3rd Ed. Narosa, 1998Laplace and Fourier Transforms6. K Sankara Rao, Introduction to Partial Differential Equations, PHI, 19957. Kreyszig E, Advance Engineering Mathematics.8. Grewal B S., Engineering Mathematics.Numerical Analysis9. Kreyszig E, Advance Engineering Mathematics.10. Grewal B S., Engineering Mathematics.

Physics II PH1023 - 0 - 1 : 4 Credits : 5 Hours Prerequsites: None

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 14: Civil Engineering Curriculum

Semester wise Course StructureElements of special theory of relativity: postulates, Galilean and Lorentz transformations, equivalence of mass and energy.Introduction to quantum mechanics and applications: limitations and failure of classical physics, wave-particle duality, uncertainty Principle, atomic and molecular spectra, elements of lasers and holography.Solid state physics: Bravais lattice, Reciprocal lattice, X-ray diffraction, Brillouin zones, Band theory of solids.Statistical physics: Quantum statistics, Fermi energy of metals.

Nuclear physics: Nuclear force, properties and models of nuclei, nuclear excitations and decay, nuclear reactions, elementary particles.

Laboratory Experiments:

1. To verify Hooke’s law and determination the Young’s modulus of elasticity of the material of a bar the method of flexure.

2. To determine the thermal conductivity of a bad conductor in the form of a disc by the Lees and Chorlton method.

3. To determine the thermal conductivity of a good conductor by Searle’s method.4. To determine the Rydberg constant by studying the Hydrogen spectrum.5. B-H curve and determination of Curie temperature of a ferromagnetic material.6. To determine the value of Stefan’s constant.7. To determine the Lande’s g-factor with Electron Spin Resonance spectrometer.8. To study the current-voltage, power output versus load, aerial characteristics

and spectral response of the photoelectric solar cell.9. To determine the Hall co-efficient of a given semiconductor.10. To determine the band gap by measuring the resistance of a thermistor at

different temperatures.11. To construct AND, OR and NOT gates from NOR and NAND gates using IC chips.12. To determine the dielectric constant of a given dielectric material.

Text Books:1. Concepts of Modern Physics- Arthur Beiser, McGraw Hill, International Student

Edition.2. Introduction to Special Relativity-Robert Resnick

Reference:1. Introduction to Solid State Physics VII Edition - C. Kittel, Wiley Eastern Ltd. 2. Quantum Mechanics - L.S.Schiff, Tata McGraw Hill3. Quantum Mechanics - Ghatak and Lokanathan

Introductory Computing CO1013 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: None

Computer Fundamentals:

- History, Generations, Classification of Computers; - Organization of a Computer; - Concept of Programming and Programing Languages.

Introduction to Programming: - Concept of Algorithm, Flow Chart, Pseudocode, Illustrative Problem Solving

Examples.- Features of a Programming Language: Character Set, Identifiers, Keywords,

Data Types, Variables, Declarations, Operators & Expressions; Statements: Assignment, Input/Output; Flow Control- Conditionals and Branching; Iteration; Functions, Function Types, Scope Rule; Recursion; Arrays, Pointers, Structures.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 15: Civil Engineering Curriculum

Semester wise Course Structure(A programming language like C/C++ shall be used as a basis language. The same language is to be used for the laboratory).

Books:1. Programming in C, Balaguruswamy.2. Let us C, Kanetkar Y.3. Programming in C, Gotfreid, McGrawHill4. Fundamentals of Computers, Rajaram, V.

Reference:5. The Elements of Programming Style, Kerningham, B. W.6. Techniques of Program Structures and Design, Yourdon, E.7. Theory and Problems of Computers and Programming, Schied, F. S.8. The C Programming Language, Kerningham & Ritchie.

Computing Laboratory CO1020 - 0 - 2 : 2 Credits : 4 Hours Prerequsites: CO101

Laboratory exercises shall involve the following:1. Familiarization of a computer and the environment and execution of sample programs 2. Expression evaluation 3. Conditionals and branching 4. Iteration 5. Functions 6. Recursion 7. Arrays 8. Structures 9. Linked lists 10. Data structures It is suggested that some problems related to continuous domain problems in engineering and their numerical solutions are given as laboratory assignments. It may be noted that some of basic numerical methods are taught in the Mathematics course.

Books:1. The Elements of Programming Style, Kerningham, B. W.2. The C Programming Language, Kerningham & Ritchie.3. Programming in C, Balaguruswamy.4. Let us C, Kanetkar Y.5. Programming in C, Gotfreid, McGrawHill

Basic Electronics EL1023 - 0 - 2 : 5 Credits : 7 Hours Prerequsites: None

Diodes and Transistors : Semiconductor Materials, Semiconductor Diode, Equivalent Circuits, Diode Testing, Zener Diodes, Load Line Analysis, Rectifier Circuits, Wave Shaping Circuits, Bipolar Junction Transistors, Field-Effect Transistors, Transistors Biasing, Transistors Small Signal Analysis, Transistor Amplifier Circuits.

Operational Amplifiers : Operational Amplifier Basics, Equivalent Circuit, Practical Op-amp Circuits, DC Offset, Constant Gain Multiplier, Voltage Summing, Voltage Buffer, Controlled Sources, Instrumentation Amplifiers, Comparator, Oscillator Circuits.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 16: Civil Engineering Curriculum

Semester wise Course StructureThysistors : Silicon Controlled Rectifier, Silicon Controlled Switch, Shockley Diode, DIAC, TRIAC.

Digital Systems: Number Systems and Codes, r’s Complements and (r-1)’s Complements, Binary Addition and Subtraction, Representation of Negative Number, Floating Point Representation. Logic Gates: Basic and Universal, Boolean Theorems, De’ Morgan’s theorems, Sum-of-Products form, Algebraic Simplification, Karnaugh Map, Basic Combinational Circuit Concept : Half Adder, Full Adder, Sequential circuit concept : Basic Flip-Flops (RS, D, JK Flip-Flop).

Experiments using diodes and bipolar junction transistor (BJT) : diode characteristics, designs and analysis of half-wave and full-wave rectifiers, Clipping circuits and Zener regulators, BJT characteristics and BJT amplifiers.

Experiments using Operational amplifiers : Summing amplifier, Comparator, Oscillators.

Experiments using logic gates : Digital IC testing, Realization of Boolean Equation, Realization of Adder, Subtrator.

Experiments using flip-flops : Realization of Basic Flip-Flops.

Books : 1. R.L. Boylestad and L.Nashelsky : Electronic Devices and Circuit Theory; PHI, 6e,

2001.2. R.J. Tocci : Digital Systems; PHI, 6e, 20013. A.P. Malvino : Electronic Principles; New Delhi, Tata Mc Graw-Hill, 19934. J. Millman & A. Grabel, “Micro electronics”, 2nd Edition, Mc Graw-Hill, 1987 5. R.A. Gayakward, Op.Amps and Linear Integrated Circuits, New Delhi : PHI, 2002

Engineering Mechanics ME1023 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: None

Force systems: Moment of a force about a point and about an axis; couple moment; reduction of a force system to a force and a couple. Equilibrium: Free body diagram; equations of equilibrium; problems in two and three dimensions; plane frames and trusses. Friction: Laws of Coulomb friction., problems involving large and small contact surfaces; square threaded screws; belt friction; rolling resistance. Properties of areas: Moments of inertia and product of inertia of areas, polar moment of inertia, principal axes and principal moments of inertia.Principle of Virtual Work Kinematics and Kinetics of particles: Particle dynamics in rectangular coordinates cylindrical coordinates and in terms of path variables; central force motion.

Rigid Body Dynamics: Relative velocity, Translation, Pure rotation and plane motion of rigid bodies, D’Alembert’s principle, linear momentum, principle of conservation of momentum, Impact of solid bodies, work, energy, power, principle of conservation of energy

Books:1. F. P. Beer and F. R. Johnston, Mechanics for Engineering, McGraw Hill2. I. H. Shames, Engineering Mechanics, Prentice Hall India.3. Timoshenko and Young, Engineering Mechanics, McGraw Hill.4. J. L. Meriam, L. G. Kraige , Engineering Mechanics (Vol. 1) Statics & (Vol. 2)

Dynamics, Wiley India

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 17: Civil Engineering Curriculum

Semester wise Course StructureReference:

1. R.C. Hibbler, Engineering Mechanics, McMillan 2. K.L. Kumar, Engineering Mechanics, Tata McGraw Hill

Elements of Modern Biology BT 1013 – 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Biological Structures and Organization : Biological macromolecules, Cellular Organization, Cell types, Membrane

structures and functions. Cellular energetics: Structure of Mitochondria, Energy transduction; Structure of

Plastids (chloroplast), Photosynthetic light and dark reactions.Biological systems:

Muscular skeletal system, Nervous system (Overview of the major human sensory organs and their functioning), Cardiovascular system.

Biological Information: DNA : Structure, Genetic code, Central dogma in Molecular biology. Protein synthesis. Biological data and Bioinformatics. Signal transduction in plants and animals – Basic concepts.

Text / Reference :1. N. Hopkins, J. W. Roberts, J. A. Steitz and A. M. Weiner : Molecular Biology of

the Gene, J. Watson, Fourth Ed, Benjamin Cummings, Singapore, 1987.2. J. L. Tymoczko, L. Stryer, Biochemistry, J.M. Berg, Fifth Ed, W.H. Freeman & Co,

New York, 2002.3. Dr. C. C. Chatterjee, Human Physiology, 11th Ed, Vol. I and II, Medical Allied

Agency, Kolkata, 1987.4. Guyton, Human Physiology.

Environmental Science ES 1013 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None General :Basic ideas of environment, basic concepts related to environmental perspective, man, society and environment, their inter relationship. 1L

Mathematics of population growth and associated problems, definition of resource, types of resource, renewable, nonrenewable, potentially renewable, effect of excessive use vis-a-vis population growth, definition of pollutant and contaminant. Environmental impact assessment. 2L

Environmental degradation:Acid rain, toxic element, particulates, noise pollution, air pollution and its effect on man.

1LOverall methods for pollution prevention, environmental problems and sustainable development , components of environment. 1L

Ecology:Elements of Ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem, biotic and abiotic components. Ecological balance and consequence of change: Effect of abiotic factor on population, flow chart of different cycles with only elementary reaction [oxygen, nitrogen, phosphate, sulphur], food chain [definition and one example of each food chain] 3L

Air Pollution and Control :

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 18: Civil Engineering Curriculum

Semester wise Course StructureAtmospheric Composition: Troposphere, stratosphere, mesosphere, thermosphere, tropopause, stratopause and mesopause. 1L

Energy Balance: Conductive and convective heat transfer, radiation heat transfer, simple global temperature modal (Earth as a black body, earth albedo), problems. 3L

Green-house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. 1L

Climate, weather: Difference between climate and weather, Global warming and its consequence: Adiabatic lapse rate, atmospheric stability, temperature inversion, radiation inversion, Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, smokestack plumes and atmospheric lapse rate.

3LThe point-source Gaussian plume model excluded.

Source and effect of pollutants: Toxic chemicals in the environment, toxic chemicals in air, suspended particulate matter, carbon dioxide, sulphur dioxide, nitric oxide, lead, carbon monoxide. 2L

Primary and secondary pollutants: Emission standard, criteria pollutant, oxides of carbon, oxide of nitrogen, oxide of sulphur, particulate, PAN. 1LDepletion Ozone layer: CFC, destruction of ozone lair by CFC, impact of other greenhouse gases, effect of ozone modification. 1L

Standards and control measures: Industrial, commercial and residential air quality air quality standard, Control measure (ESP, Cyclone separator, bag house, catalytic converter, scrubber (ventury). Statement with brief reference) 1L

Water Pollution and Control :Hydrosphere: Hydrological cycle. 1LNatural water, Pollutants : their origin and effects: Oxygen demanding wastes, pathogens, nutrients, salts, thermal application, heavy metals, pesticides, volatile organic compounds. 1LRiver / lake / ground water pollution :River : DO, 5day BOD test, BOD reaction rate constants, temperature dependents of BOD, effect of oxygen demanding wastes on river [Deoxygenation, reaeration], COD, Oil, Grease, pH. 2LLake : Eutrophication [Definition, source and effect] 1LGround Water: Aquifers, hydraulic gradient, ground water flow. (Definition only) 1LStandard and control: Waste water standard [BOD,COD,Oil, Grease], Water treatment system [coagulation and flocculation, sedimentation and f1ltration, disinfection, hardness and alkalinity, softening], wastewater treatment, primary treatment, secondary treatmens [Trickling f1lters, rotating biological contractor, activated sludge, sludge treatment, oxidation ponds], tertiary treatment definition. 3LArsenic pollution: Biochemical effect, contamination, speciation 2LLand Pollution:Lithosphere Composition, Pollutants: Municipal, industrial, commercial, agricultural, hazardous solid wastes. 1LRecovery and conversion method Waste and waste management Land filling, incineration, composting. 2LNoise Pollution, Sources, effects: Definition of noise, effect of noise pollution, noise classification, transport noise, occupational noise, neighbourhood noise, definition of noise intensity, noise threshold limit value. 2L

Books:1. Masters, G.M., "Introduction to Environmental Engineering and Science",

Prentice Hall of India Pvt. Ltd., 1991 2. Nebel, B.J., "Environmental Science", Prentice Hall Inc., 1987

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 19: Civil Engineering Curriculum

Semester wise Course Structure3. Odum, E.P., "Ecology: The Link between the natural and social sciences", IBH

Publishing Co. Delhi.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 20: Civil Engineering Curriculum

Semester wise Course Structure

Second Year

Mathematics

Mathematics III MS 2013 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: MS 102

Discrete probability :- Randomness, finite probability space, probability measure, events - Conditional probability, independence, Bayes’ theorem - Discrete random variables - Binomial, Poisson, geometric distributions - Mean and variance: concepts, significance, computations, applications - Integer random variables.

Continuous probability :- Continuous random variables, the nature of these, illustrations of use

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 21: Civil Engineering Curriculum

Semester wise Course Structure- Exponential and normal distribution: probability density functions, calculation of

mean and variance - The central limit theorem and the implications for the normal distribution - Joint distribution.

Expectation:- Moments, transform methods, mean time to failure - Conditional expectation, examples - Imperfect fault coverage and reliability.

Stochastic processes:- Introduction: Bernoulli and Poisson processes, renewal process, renewal model

of program behavior - Discrete parameter Markov chains: transition probabilities, limiting

distributions - Queuing: M/M1 and M/G/1, birth and death process - Finite Markov chains, program execution times

Sampling distributions :- Purpose and the nature of sampling, its uses and applications - Random approaches to sampling: basic method, stratified sampling and variants

thereof, cluster sampling - Non-random approaches: purposive methods, sequential sampling - Data analysis; tools; graphical and numerical summaries - Multivariate distributions, independent random variables

Estimation :- Nature of estimates: point estimates, interval estimates - Criteria to be applied to single point estimators: unbiased estimators, consistent

estimators, efficiency and sufficiency of estimators - Maximum likelihood principle approach, least squares approach; applicability

conditions for these - Confidence intervals - Estimates for one or two samples.

Hypothesis tests :- Development of models and associated hypotheses, the nature of these - Hypothesis formulation: null and alternate hypotheses - Testing hypothesis based on a single parameter, choice of test statistic; choice

of samples and distributions - Criteria for acceptance of hypothesis - t-test, chi-squared test; applicability criteria for these.

Correlation and regression :- The nature of correlation and regression, definitions - Definition and calculation of correlation coefficients - Approaches to correlation: the linear model approach, the least squares fitting

approach, strengths and weaknesses of these and conditions for applicability.

Books:1. Statistical Methods for Engineeris and Scientists, R. m. Bethea, B. S. Duran, T. L.

Boullion, Marcell Dekker Inc.2. Statistics : Concepts and Applications, H. Frank, S. C. Altheon, Cambridge Low

Priced Edition.3. Theory and Problems of Probablity and Statistics, M. R. Spiegel, Scaum’s Outline

Series, McGrawHill.4. Probability, Random Variables, and Stochastic Processes, Papoulis, McGrawHill.

Numerical Analysis MS***2 - 1 - 0 : 3 Credits : 3 Hours Prerequsites: MS 101

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 22: Civil Engineering Curriculum

Semester wise Course StructureNumerical computations and errors analysis : Introduction, Numbers and their accuracy, Floating point arithmetic, errors in numbers, Computational methods for error estimation, General error formulae‐approximation of a function, series approximations and error propagation in computation.

Algebraic and transcendental equations: Revision of some basic concepts on polynomial equations, Bisection method, iterative method, Regula‐falsi method, Newton‐Raphson method, Secant method, Generalized Newton’s method for multiple roots, solution of non‐linear simultaneous equations and finding complex roots by Newton‐Raphson method.

System of simultaneous algebraic equations: Revision of basic properties of matrices and determinants, Matrix inversion and solution of transcendental and system of algebraic equations‐Gauss elimination method, Jacobi’s method and Gauss‐Seidal method, Eigen values and eigen vectors.

Interpolation and function approximations: Least square curve fit and trigonometric approximations, Approximations by trigonometric polynomials and quality of approximations, Finite differences and difference operators, Newtons interpolation formulae, Gauss forward and backward formulae, Sterling, Bessel’s and Evertte’s formulae, Interpolation with unevenly spaced data points‐Lagrange’s interpolation.

Numerical differentiation and integration: Numerical differentiation, errors in numerical differentiation, Maximum and minimum values of a tabulated function, Numerical integration‐Trapezoidal, Simpson’s 1/3 and 3/8 rules, Boole’s and Weddle’s rules, Romberg integration‐recursive formulae, Evaluation of double integrals by Trapezoidal and Simpson’s rules.

Ordinary differential equations: Taylor’s series method, Picard’s method, Euler’s method, Modified Euler’s method, Runge‐ Kutta methods of 2nd and 4th order, Adams‐ Moltan and Miline methods, Solution of simultaneous and higher order equations.

Books :

1. Numerical Methods for Engineers and Scientists : J.N. Sharma2. Numerical Analysis : F. B. Hildbrand3. Numerical Method for Engineers and Scientists : M. K. Jain, S.R.K. Lyngar and R. K. Jain4. Introductory Methods of Numerical Analysis : S.S. Sastry

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 23: Civil Engineering Curriculum

Semester wise Course Structure

Civil Engineering Courses

SEMESTER-III (B.Tech-Civil Engineering)

Solid Mechanics CE2143 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: None

Concept of stress and strain at a point, Hooke’s law, Young’s modulus, Poisson’s ratio, stress - strain diagram, stresses and strains in bars subjected to axial loading, stress produced in compound bars subjected to axial loading, Temperature stress and strain due to applications of combined axial loads and variation of temperature.

Compound Stresses and Strains- Two dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr’s circle of stress, ellipse of stress and their applications, principal strains and principal axis of strain, circle of strain and ellipse of strain. Relationship between elastic constants.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 24: Civil Engineering Curriculum

Semester wise Course StructureBending Moment(BM) and Shear Force(SF) Diagrams- BM and SF diagrams for Cantilevers , simply supported beams without or with overhangs. Calculation of maximum BM and SF and the point of contra flexure under concentrated loads, uniformly distributed loads.

Theory of pure bending of beams- Assumptions in the simple bending theory, derivation of formula: its application to beams of rectangular, circular and channel sections, Shearing stresses in beams, Composite beams.

Torsion- Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts

Thin Cylinders and Spheres- Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures.

Columns and Struts- Columns under uni-axial load, Buckling of Columns, Slenderness ratio and conditions. Derivations of Euler‟s formula for elastic buckling load, equivalent length. Rankine Gordon’s empirical formula.

Text Books:1. Popov E P, “Engineering Mechanics of Solids”, SI Version, Prentice Hall, New

Delhi.2. Timoshenko S. P., “Strength of Materials” Vol. I and II, CBS Publ., 1986

Reference:1. Pytel A H and Singer F L, “Strength of Materials”, Harper Collins, New Delhi. 2. Shames, I. H., Pitarresi, J. M., “Introduction to Solid Mechanics,” Prentice-Hall,

NJ.3. Beer P F and Johston (Jr) E R, “Mechanics of Materials”, SI Version, McGraw

Hill, NY.4. NPTEL courses, http://nptel.iitm.ac.in/courses.php, web and video courses on

Strength of Materials by Prof. Sharma, S. C., and Prof. Harsha, S. P. 5. Ramamrutham, S and Narayanan, R, “Strength of Materials”, Dhanpat Rai

Publications.

Fluid Mechanics CE2013 - 0 - 1 : 4 Credits : 5 Hours Prerequsites: ME 102

Fluid properties, Introduction to Continuum approach of fluid study.

Fluid statics: Pressure measurement, Hydrostatic forces on plane and curved surfaces, Buoyancy and equilibrium, Stability, metacentric height,

Kinematics of flow: Types of flow and examples, Streamlines, path lines, streak lines, Stream function and velocity potential

Continuity, Energy and momentum equations, Bernoullie's theorem, Navier Stoke equation, Shear stress and pressure gradient, velocity distribution and velocity coefficients, practical applications

Flow through Orifice and mouthpiece, Flow over notches and weirs,

Impact of Jets on flat and curved surfaces, Caviitation

Flow through pipes, Hagen-Poiseuille equation, Turbulence, Prandtl's mixing length, eddy viscosity, Darcy-Weisbach equation for flow through pipes, friction factor, Moody

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 25: Civil Engineering Curriculum

Semester wise Course Structurediagram, minor losses, pipes in series and parallel, equivalent length, pipe network analysis, Water hammer.

Boundary layer concept, drag coefficients, control of boundary layer, Dimensional analysis and similitude.

Laboratory:1. Study of laminar, turbulent and transitional flow in pipe in Reynold's experiment

setup2. Study of flow over rectangular and triangular notch3. Study of flow through orifice and mouthpiece4. Study of cavitation in pipe flow

Text Books:1. A. K. Jain (2014), Fluid Mechanics including Hydraulic Machines, (Khanna

Publishers, 12th Edition)2. P. N. Modi and S. M. Seth (2009), Hydraulics and Fluid Mechanics including

Hydraulic Machines (Standard Book House, New Delhi, 19th Edition).Reference

1. F. M. White (2010), Fluid Mechanics, (McGraw Hill, 7th Edition)2. Fox, McDonald and Pritchard (2015), Fluid Mechanics – SI Version, (Wiley,

8th Edition,2015 Reprint)3. Subramanya K (1993), Theory and Applications of Fluid Mechanics, (Tata

McGraw Hill Publishing Co. Ltd.)

Surveying CE2023 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: None

Introduction to Chain and Compass Surveying: Introduction, Definition of surveying, primary divisions of surveying, object and classification of surveying, principles of surveying, approximate methods of chine and tape surveying, unfolding and folding of a chain, instruments for chaining and taping, measurement by tape and chain, errors in tape measurements and their corrections, testing and adjusting of a chain, chaining on flat and sloping ground, obstacle in chaining, direct and indirect methods of ranging, methods of traversing, principle basic definitions.

Leveling and contouring: Definition of terms, principles of leveling, types of levels, leveling staffs, booking and reduction in field book, balancing of sights, errors curvature and refraction, distance of visible horizon, reciprocal leveling, and its merits, contour, contour interval, horizontal equivalent, contour gradient, factors affecting contour interval, characteristics of contours, direct and indirect methods of contouring, uses of contour maps.

Theodolite: Vernier and microscopic theodolite, construction, temporary and permanent adjustments, measurements of horizontal and vertical angles, methods of repetitions and reiteration, sources of errors, checks in traversing, omitted measurements.

Plane table surveying: Principles, merits and demerits, instruments and other accessories, methods used, radiation, traversing, resection, intersection and their uses, two and three point problem.

Tacheometry: General principles of stadia system, fixed and movable hair methods, inclined sights with staff vertical, inclined sight with staff normal to the line of sight,

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 26: Civil Engineering Curriculum

Semester wise Course Structuredetermination of tacheometric constants, analytic lens, field work and seconds, tangential system.

Curves: Types of curves, elements of curve, different methods of setting out‐simple circular curves, compound curves, reverse curves, transition curves, types of transition curves, super‐elevation, suitability of a circular curve, vertical curves.

Books:1. B.C. Punmia, Surveying (Vol-I & II), Laxmi Publications2. Arrora, Surveying, Standard Book House3. P.B. Shahani, Surveying (Vol-I & II)4. T. P. Kanetkar, Surveying & Levelling part-I & part-II, Pune Vidyarthi Griha

Prakashan, 2006

Building Materials & Technology CE2033 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Introduction: Introduction to structures of solids, ductility, brittleness, strength, stiffness, durability, hardness, toughness; Weakness of materials, Introduction to building materials.

Cement & aggregate: Chemical composition, manufacturing, physical characteristics, hydration, properties of cement compounds, different types of cements, tests on cement. Coarse and fine aggregates, Influence of aggregate on the properties of concrete, aggregate selection.

Concrete: Fresh Concrete: Batching, Mixing, workability, effect of admixture, Hardened Concrete: mechanical properties of hardened concrete, Water-cement ratio, Porosity, Curing of concrete, Design of concrete mix: IS code recommendation.

High performance concrete: introduction to special concrete, acid resistant concrete, roller compacted concrete etc.

Brick: Raw materials, drying and burning, Strength and durability, mortar for masonry and strength of masonry. Hollow concrete bricks, fly ash bricks.

Glass: Various types of glasses, strengthening of glasses, uses

Tiles and flooring materials: ceramic and other types of tiles

Metals: Steel for reinforced concrete and prestressed concrete construction, structural steel sections,

Deterioration of building materials: Corrosion, chloride and sulphate attack on concrete, alkali-aggregate reaction, acid aggregate reactions.

Books:1. A. M. Nevelle and J. J. Brooks, Concrete Technology, updated, Addison Wesley

Longman, International student edition 1999.2. Neil Jackson and R. K. Dhir, Civil Engineering materials, Macmillan Fourth

edition 1988.3. S. C. Rangwala, Engineering Materials, Chaortar Publishing House, Anand, 1985

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 27: Civil Engineering Curriculum

Semester wise Course Structure

Engineering Geology CE2043 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

The earth, Origin, age & interior of the earth. Crystallography & mineralogy. Wethering including geological action and wind, running water & glacier. Different types of rocks & their classification, texture & structure. Earthquake, introduction to plate tectonics, structures in rocks (folds, joints & unconformities).

Ground water, selection of sites for bridges, dams & tunnels. Building stones, engineering properties of rocks, geophysical exploration, geological time scale of Indian rock groups, formation of economic mineral deposits. Distribution of mineral deposits in India.Books:

1. S.K. Garg, Physical & Engineering Geology, Khanna Publishers.2. Prabin Singh, Engineering & General Geology, S.K. Kataria & Sons.3. E.S. Dana, A Text Book on Mineralogy, Willey Eastern Limited.

Surveying Practical CE2050 - 0 - 2 : 2 Credits : 4 Hours Prerequsites: CE202

Open and closed Traversing with chain and compass, Road leveling for both longitudinal and Cross sectioning, Fly leveling, Contouring, Plane Table Surveying, Theodolite Traversing, Determination of Tacheometric constants K and C, Area and volume determination by planimeter, Simple Circular Curve with both linear method and instrument method, Setting out of the combined curve.

Concrete & Structure Lab CE2130-0-2: 2 Credits : 4Hours Prerequsites: None

Determination of initial & final setting time of cement, compressive strength & soundness of cement, sieve analysis of aggregates, specific gravity, water absorption of aggregates, bulking of sand, workability of concrete by slump test, splitting tensile strength of concrete, tensile strength & elongation of reinforcing bars.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 28: Civil Engineering Curriculum

Semester wise Course Structure

SEMESTER-IV (B.Tech-Civil Engineering)

Building Construction and Drawing CE2162 - 0 - 2 : 4 Credit : 6 Hours Prerequsites: None

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 29: Civil Engineering Curriculum

Semester wise Course Structure

Introduction: Types of Buildings; Components of a Building; Earthwork and excavation. Foundations: Functions of foundations; Essential requirements of a good foundation; Types of foundations. Brickwork: Bonds in brickwork; Methods of brick laying.Doors and Windows: Location and types of doors and windows, suitabilityStaircases: Requirements of a good stair; Different types of stairs, suitability.Roofs: Types of roofs- Pitched roof, flat roof, curved roof, trussed roof. Shoring and Scaffolding: Types of shoring and scaffolding and their suitability.Painting: Types of paints; Painting on different surfaces; defects in painting. Planning: Principles of planning- Orientation, Functional requirements, Building Byelaws.

Practicals Size of Drawings, Layout of Drawing, Title Block, Scales. Lettering & Dimensioning; Graphical Symbols; Abbreviations. Different Types of Foundations (Spread footing, Raft foundation etc.); Plinth, Damp

Proof Course and Basement. Sizes of Doors, Designation; Classification of Doors; Classification of windows. Types of Stairs, Maximum riser and minimum width of Tread, minimum width of

staircase, width of landing and handrails. Sloping Roofs- Timber Truss; Flat Roofs. Working drawing of a three-bed room single storied and double storied flat roofed

residential building.

Text Books-

For Theory:1. Punmia, B. C. and Jain, A. K.(2016), Building Construction. (Laxmi Publications,

10th Edition).2. Rangwalla (2016). Building Construction. (Charotar Publishing House, 33rd.

Edition).

For Laboratory:

1. Chakraborty, M. (2009) Civil Engineering Drawing (Bhakti Vedanta Book Trust)

2. Shah, M.G. & Kale, C.M.(2000), Principles of Building Drawing (Macmillan India Ltd.

Hydraulics CE2173 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE201

Open channel flow in rigid boundary channels- Comparison with pipe flow, Classification of flow,

Uniform flow – Equations for uniform flow such as Chezy’s and Manning’s formula, most efficient channel section – Circular. Rectangular, and Trapezoidal channel sections,

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 30: Civil Engineering Curriculum

Semester wise Course StructureVelocity distribution in Open channels, Conveyance, Normal depth, Hydraulic exponents for uniform flow, Determination of normal depth and velocity,

Specific energy and Specific force diagrams, Critical flow, Channel transitions.

Non-uniform flow, Basic assumptions, Gradually Varied Flow, Dynamic Equation for Gradually Varied flow, Different forms of the Dynamic equation, Flow Profiles in Prismatic Channels, Computation of the Length of the Back Water Curve- Graphical Integration and Direct Step Methods. Rapidly Varied Flow- Hydraulic Jump, Hydraulic jump equations for a Rectangular Channel, Practical Applications, Energy loss and Efficiency of a Jump,

Unsteady flow: Introduction, Gradually varied unsteady flow, Rapidly varied Unsteady flow – Surges.

Design of Canals: Rigid boundary canals, Design of unlined canals, Regime Theory - Kennedy’s and Lacey’s Theories, Silting in Canals, Scour and Protection against Scour.

Hydraulic Machines: Turbines and Pumps, types, principles, advantages and disadvantages of various types, Specific Speed,

Text Books:

1. K.Subramanya (2010), Flow in Open Channels, (Tata McGraw Hill,New Delhi)2. P. N. Modi and S. M. Seth (2009), Hydraulics and Fluid Mechanics including

Hydraulic Machines (Standard Book House, New Delhi, 19th Edition).

Reference: 1. M. Hanif Chaudhry(2007), Open Channel Flow, (Springer, 2nd Edition)2. K. G. Rangaraju (1984), Flow through Open Channels, (Tata McGraw Hill, New

Delhi)

Structural Analysis-I CE208

3 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: ME201 & ME102

Introduction to Structural Analysis: Forms of structures, loads & forces, free body diagram, condition of equilibrium of forces, support conditions, determinate & indeterminate structures.

Statically determinate beams: Axial thrust, bending moment & shear force diagram with concentrated & distributed loads, point of contraflexures.

Deflection in beams: Computation of slope & deflection by double integration, moment area method, conjugate beam method, application to simply supported, overhang & cantilever beams.

Strain energy & virtual work: Strain energy for axial force, bending, shear & torsion. Castigliano’s theorem & its application to find deflection & redundant forces in simple cases.

Analysis of pin-jointed structures: Method of joints & sections, deflection of joints, maxwell’s reciprocal theorem. Analysis of two-hinged & three hinged arches,

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 31: Civil Engineering Curriculum

Semester wise Course StructureMoving loads & influence lines: Applications to determinate structures, beams, trusses, ILD for bending moment, shear force & normal thrust in three hinged arches, Muller Breslau’s principle for indeterminate structures.

Books:1. C.S. Reddy, Basic structural analysis, Second edition, Tata McGraw Hill

publishing company limited, 1996.2. D.S. Prakash Rao, Structural analysis: Unified approach, Universities Press,

(First edition), 1996.3. S. Utku, C.H. Norris and J.B. Wilbur, Elementary Structural Analysis, Fourth

edition, Tata McGraw Hill publishing company limited, 2003.4. C.K. Wang, Intermediate structural analysis Tata McGraw Hill publishing

company limited, 1986.5. L. S. Negi and R. S. Jangjid, Structural Analysis, Tata Mc. Graw, New Delhi,

1997. Ramamurtham, Theory of Structures

Geotechnical Engineering-I CE2093 - 1 - 0 : 4 Credits : 4 Hours Prerequsites: None

Introduction: Definition of soil, rock, soil mechanics and foundation engineering, soil formation, soil structure.

Soil properties: Soil as a three phase system, basic relationships, index properties of soil and their determination, atterburg’s limits, liquidity & consistency indices, degree of saturation, density index, classification of soils.

Permeability and seepage : Darcy’s law and its validity, seepage velocity, discharge velocity, constant and variable head permea‐meter, pumping in and out tests, permeability of stratified soils, factors affecting permeability, Laplace’s equation, flow potential flow net and its properties, different methods of drawing flownets, seepage pressure, quick sand, exit gradient, piping, design of filter, principle of total and effective stresses, capillarity conditions in soil, effective and pore pressures.

Stress distribution in soils: Need for finding stress distribution in soil, assumptions in elastic theories, Boussinesq’s equation for point, line, circular and rectangular loads, Westergaad’s formula for point load, comparison of Boussinesq’s and Westergaard’s equation, concept and use of pressure bulbs, principle and use of New mark’s influence chart, contact pressure.

Compaction: Mechanism of compaction, objective of compaction, measurement of compaction, factors affecting compaction, optimum moisture content, Standard Proctor test, Modified Proctor test, effect of moisture content and compactive effort on dry density, zero air void curve, compaction of cohesionless soils, field compaction, field control of compaction.

Consolidation: Elastic settlement in cohesionless soils, mechanism of consolidation, e‐log (p) curves, basic definitions, estimation of preconsolidation pressure, normally consolidation and over consolidation ratio, Terzaghi’s theory of one dimensional consolidation, assumptions, governing equation, standard solution, laboratory determination of consolidation properties of soil, magnitude and rate of consolidation, settlements, secondary consolidation, compression characteristics of clays and settlement analysis.

Shear strength : Normal, shear and principal stresses, Columb’s equation, Mohr’s stress circle, Mohr‐Columb failure criteria, laboratory determination of shear parameters of soil by direct shear tests, triaxial test, unconfined compression test, Vane

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 32: Civil Engineering Curriculum

Semester wise Course Structureshear test, Consolidated drained, consolidated undrained and unconsolidated undrained shear test, pore pressure parameters, total & effective stress analysis.

Lateral earth pressure: earth pressure at rest, active & passive earth pressure, rankine’s earth pressure theory & its application to retaining wall.

Books:1. Gopal Ranjan & A.S.R. Rao, Basic and Applied Soil Mechanics, New Age

International, 2000.3. Braja M. Das, Principles of Geotechnical Engineering, Thomson learning4. V.N.S. Murthy, Soil Mechanics & Foundation Engineering, Dhanpat Rai & Sons.5. S.R. Kaniraj, Design Aids in Soil Mechanics & Foundation Engineering, Tata

McGraw Hill, 1988.6. Soil Mechanics – T.W. Lambe & R.V. Whitman – John Wiley & Sons,1969.7. Alam Singh, Soil Engineering-Theory and Practice, Asia Pub.

Transportation Engineering-I CE2103 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Highway Classification, Alignment and Geometrical Design: Introduction - Highway development in India - Classification of roads - Typical cross sections of roads in urban and rural area - Requirements and factors controlling alignment of roads - Engineering surveys for highway location - Pavement surface characteristics - Camber and width requirements - Sight distances - stopping and overtaking sight distances, overtaking zone requirements - Design of horizontal alignment - speed, radius, super elevation, methods of providing super elevation, extra widening of pavements, transition curves - Design of vertical alignment - gradient, grade compensation, summit curves and valley curves - worked out problems on all the above topics.

Traffic engineering: Introduction - Road user, vehicle and traffic characteristics - Speed and volume studies - Simple worked out problems - Principles of design of at-grade intersections - Simple layouts - Objectives, classification and uses of traffic signs and markings.

Pavement Materials and Design: Desirable properties and testing of highway materials: road aggregates, bituminous materials and subgrade soil - Factors influencing the design of pavements, design of flexible & rigid pavements.

Pavement Construction and Maintenance: Historical development of road construction - Construction of earth roads, WBM roads, stabilized roads, bituminous pavements, cement concrete roads and joints in cement concrete roads - Types and causes of failures in flexible & rigid pavements.

Books:1 Khanna S.K. & Justo C.E.G., Highway Engineering, Nem Chand & Bros,

1997, Roorkee.2 Kadiyali L.R., Principles of Highway Engineering, Khanna Publishers,

1998, New Delhi.3 O’ Flaherty C.A., Highway-Traffic Planning and Engineering, Edward

Arnold., 1986, London.4 oder and Witezak, Principles of Pavement Design, John Wiley and Sons,

1975, New York.5 IRC: 37-2001, Guidelines for the Design of Flexible Pavements, IRC 2001,

New Delhi.6 IRC: 58-2002, Guidelines for the Design of Rigid Pavements, IRC 2002,

New Delhi.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 33: Civil Engineering Curriculum

Semester wise Course Structure7 David Croney, The Design and Performance of Road Pavements, McGraw

Hill, 1997, New York.

Geotechnical Engineering Lab CE2110- 0 - 2: 2Credits : 4Hours Prerequsites: None

1. Specific gravity of coarse and fine grained soils2. Determination of water content by oven-dry method.2. Grain size distribution by sieve analysis.3. Atterberg limits and indices4. Determination of field density (a) sand replacement method (b) core cutter method5. Determination of coefficient of permeability by

(a) Constant head method (b Variable head method6. Consolidation test7. Compaction test (a) IS light compaction test (b) IS heavy compaction test9. Direct shear test10. Triaxial shear test11. Unconfined compressive strength test12. Laboratory vane shear test

SEMESTER-V (B.Tech, Civil Engineering)

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 34: Civil Engineering Curriculum

Semester wise Course Structure

Structural Design-I CE3013- 1 - 0: 4Credits : 4Hours Prerequsites: CE208 & CE303

Properties of concrete & reinforcing steel. Limit state design philosophy. Durability, serviceability, shear, bond, flexure & deflection consideration.

Singly reinforced and doubly reinforced beams, T beams, continuous beam, simple & continuous slab.

Columns subjected to centric & eccentric loading, long & short columns.

Design philosophy of footings, isolated & combined footings. design of retaining walls.

Introduction to working stress method of design, application to the design of water retaining structures.

Books:1. Pillai & Menon , Reinforced Concrete Design, Tata McGraw-Hill, 20032. P.C. Varghese, Limit State Design of Reinforced Concrete, Prentice Hall of India.3. Sinha S.N., Reinforced Concrete Design, Tata McGraw Hill4. Punmia B.C., Reinforced Concrete Structures Vol. I, Standard Book House5. Jain A.K., Reinforced Concrete Structures Vol. I &II, Lakshmi Pub6. C.K Wang & C.G. Salmon, Reinforced Concrete Fundamentals, Harpur

International Edition.Relevant Codes:IS-456:2000IS-875SP:16, SP:34, SP:22

Water Resources Engineering CE3023- 0 - 0: 3 Credits : 3Hours Prerequsites: CE207

Surface water hydrology - hydrologic cycle, rainfall and its measurement, mean rainfall, runoff; Flow measurements; Infiltration losses; Storm hydrology; Unit Hydrograph; Storm hydrograph; Reservoir planning - Investigations, life of reservoir; Flood estimation and routing, flood forecasting; Surface and sub-surface drainage, water logging, remedial measures, drainage of land; Ground water hydrology - Introduction,

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 35: Civil Engineering Curriculum

Semester wise Course Structuretypes of aquifers, wells, well yield; Soil-Water-Plant relationships, crop water requirement; Layout of canal system; Types and methods of irrigation.

Books:1. V.T. Chow, D.R. Maidment, L.W. Mays, “Applied Hydrology”, McGraw Hill, 1998.2. V.P. Singh, “Elementary Hydrology”, Prentice Hall, 1993.3. H.M. Raghunath, “Hydrology – Principles, Analysis and Design”, Wiley Eastern

Ltd., 1986.4. A.M. Michael, “Irrigation – Theory and Practice”, Vikas Publishing House, 1987.5. K. Linsley, “Water Resources Engineering”, McGraw Hill, 1995.6. S.K. Garg, “Irrigation Engineering and Hydraulic Structures”, Khanna

Publishers, 1992.7. K. Subramanya, “Engineering Hydrology”, Tata Mc Graw Hill

Structural Analysis-II CE3033- 1 -0: 4Credits : 4Hours Prerequsites: CE208

Introduction to indeterminate structures, static & kinematic indeterminacy

Indeterminate beams: Propped cantilevers, fixed beam, continuous beams, sinking of support, temperature effect, method of consistent deformation, three moment equation.

Classical displacement method: Slope deflection method, moment distribution method, kani’s method & their applications.

Classical force method: Trusses & rigid frames by column analogy & elastic centre method.

Masonry dams, retaining walls, condition for no tension, introduction to creep, fatigue & stress concentration.

Matrix method of structural analysis: Stiffness method: Local and global stiffness matrices, assembly, band storage, solution of resulting simultaneous algebraic equation, boundary conditions, application to plane and space truss, analysis of plane frame, grid and three dimensional frame.

Books:1. V.N Vazirani & M.M. Ratwani, Analysis of Structures (Vol-I & II), Khanna

Publishers.2. C.S. Reddy, Basic structural analysis, Second edition, Tata McGraw Hill

publishing company limited, 1996.3. D.S. Prakash Rao, Structural analysis: Unified approach, Universities Press,

(First edition), 1996.4. S. Utku, C.H. Norris and J.B. Wilbur, Elementary Structural Analysis, Fourth

edition, Tata McGraw Hill publishing company limited, 2003.5. C.K. Wang, Intermediate structural analysis Tata McGraw Hill publishing

company limited, 1986.6. L. S. Negi and R. S. Jangjid, Structural Analysis, Tata Mc. Graw, New Delhi,

1997.7. Ramamurtham, Theory of Structures8. W. Weaver and J.M. Gere, Matrix analysis of framed structures, CBS

Publishers & Dustributors

Geotechnical Engineering-II CE3043- 0 - 0: 3Credits : 3Hours Prerequsites: CE209

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 36: Civil Engineering Curriculum

Semester wise Course StructureSoil exploration & site investigation: Planning of subsurface exploration, methods, sampling, samplers, in-situ tests, bore log.

Shallow foundations: Classifications, shallow & deep foundations, bearing capacity theory, Terzaghy, Meyerhoff, IS code method for determination of bearing capacity, effect of depth of water table, eccentric & inclined loads. Bearing capacity from in-situ tests, immediate & consolidation settlements, corrections, settlement from field tests.

Deep Foundations: Clasification of piles, load carrying capacity of piles, group action, settlement, negative skin friction, lateral load capacity, pile load tests.

Cassion foundations: Types & selections, forces & moments, depth determination.\

Ground improvement techniques: Improvement of soil using admixtures, grouting, vertical drains, stone columns, introduction to soil dynamics & machine foundation. Stability of slopes: causes and prevention, introduction to different methods of analysis.

Books:1. Braja M Das, Principles of Foundation Engineering, Thomson Learning2. Gopal Ranjan & A.S.R. Rao, Basic and Applied Soil Mechanics, New Age

International, 2000.3. S.R. Kaniraj, “Design Aids in Soil Mechanics & Foundation Engineering”, Tata

McGrawHill, 1988.4. J.E. Bowles, “Foundation Analysis and Design”, McGraw Hill, 1996.5. P.N. Kurian, “Design of Foundation Systems: Principles & Practices”, Narosa,

1994.6. V.N.S. Murthy, Soil Mechanics & Foundation Engineering, Dhanpat Rai &

Sons.

Environmental Engineering-I CE3053- 0 - 0: 3Credits : 3Hours Prerequsites: None

Introduction, Population Forecasting and Water Demand, Physical, Chemical and Biological Characteristics of Water and Wastewater, Wastewater Flow, Basic Microbiology: cells, classification and characteristics of living organisms. Metabolic Processes, Microorganisms in Natural Water Systems, Biological Oxidation of Organic Matter. Introduction to Environmental Chemistry, Stoichiometry and Kinetics of Chemical Reactions, Equilibrium Constant and Solubility Products, pH and Alkalinity. Development of Oxygen Sag Model. Flow sheets for Water and Wastewater Treatment, Sewer Design, Introduction to Solid Waste, Air Pollution and Noise Pollution.

Books:1. S.K. Garg, Water Supply Engineering (Vol-I & II), Khanna Publishers2. Terence J McGhee, “Water Supply and Sewerage”, McGraw-Hill, Inc.,1991.3. Mackenzie L Davis & David A Cornwell, “Introduction to Environmental

Engineering”, McGraw-Hill, Inc.,1991.4. Metcalf & Eddy, “Wastewater Engineering- Treatment and Reuse,” Tata McGraw

Hill, 4th Edn., 2003.5. Clair N Sawyer & Perry L McCarty, G. F. Parkin, “Chemistry for Environmental

Engineers”, McGraw-Hill, 1994.6. B.C. Punmia, Environmental Engineering (Vol-I & II), Laxmi Publishers.7. Manual for Sewer and Sewerage – Central Public Health & Environmental

Engineering Organisation –Ministry of Housing and Urban Development, Govt. of India, 1993.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 37: Civil Engineering Curriculum

Semester wise Course StructureEnvironmental Engineering Lab CE3060- 0 - 2: 2Credits : 4Hours Prerequsites: CE305

List of Experiments: Solid Analysis; pH, Alkalinity, Turbidity and Conductivity measurements; Estimation of Hardness, Dissolved Oxygen, BOD and COD; Plate Counts and MPN test; Estimation of Fluoride and Copper using colorimetric methods.

Transportation Engineering Lab CE3110- 0 - 1: 1Credits : 2Hours Prerequsites: CE210

List of Experiments: Impact value & Crushing value of aggregates, Flakiness & Elongation index ofaggregates, Los-angles test, CBR value, penetration test on Bitumen, softening point test of bitumen, ductility value of a bitumen material, float test on bitumen.

SEMESTER-VI (B.Tech-Civil Engineering)

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 38: Civil Engineering Curriculum

Semester wise Course Structure

Structural Design-II CE3073- 1 - 0: 4Credits : 4Hours Prerequsites: CE208 & CE303

Stuctural steel sections & their properties, methods of design. Rivetted, welded & bolted connections, design of tension members, design of compression members-laced & braced columns. Column bases, design of beams-single & built-up sections. Plate girders, Structural connections, roof truss design.

Books:1. Ramachandra, Design of Steel Structures, Standard Book House.2. S.K. Duggal, Design of Steel Structures, Tata Mcgraw Hill3 A.S. Arya & J.L. Azmani, Design of Steel Structures, Nemchand Brothers.4. Salmon & Jhonson, Steel Structural Design & Behaviour, Harper & Row.5. P. Dayaratnam, “Design of Steel Structures”, S. Chand & Co., 2003

6. Subramanian, N. (2008). Design of Steel Structures, Oxford University Press.

Relevant Codes: IS-800, IS-816, SP-6

Environmental Engineering-II CE3083-0-0: 3 Credits : 3Hours Prerequsites: CE305

Particle Fluid Mechanics as applied to the settling of Type I and II suspensions. Design and operation of Sedimentation Tanks. Coagulation and Flocculation. Hydraulics of Filtration, Design and Operation of Filter Units. Disinfection Methods. Ion exchange and Adsorption. Water Softening, Manganese and Iron Removal. Wastewater Treatment – Preliminary, Primary and Secondary Treatment Units. Aerobic and Anaerobic Processes. Purpose, theory and design of aeration units. Sludge treatment and disposal.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 39: Civil Engineering Curriculum

Semester wise Course StructureWastewater treatment by septic tank, wastewater stabilization ponds, aerated ponds and oxidation ditches

Books:1. S.K. Garg, Water Supply Engineering (Vol-I & II), Khanna Publishers2. Terence J McGhee, “Water Supply and Sewerage”, McGraw-Hill, Inc,1991.3. James M Montgomery, “Water Treatment Principles and Design”, John Wiley

& Sons,19854. Mackenzie L Davis & David A Cornwell, “Introduction to Environmental

Engineering”, McGraw-Hill, Inc.,1991.5. Soli J Arceivala, “Wastewater Treatment for Pollution Control”,Tata McGraw

Hill, 1999.6. B.C. Punmia, Environmental Engineering (Vol-I & II), Laxmi Publishers.7. Metcalf & Eddy, “Wastewater Engineering- Treatment and Reuse,” Tata

McGraw Hill, 4th Edn., 2003

Estimating, Costing and Valuation CE3143-0-0: 3 Credits : 3Hours Prerequsites: None

Introduction: Meaning of Estimation; Purpose of Estimation; Cost Planning.Types of Estimate-Sanction-Project: Preliminary and Detailed Estimate; Administrative Approval; Technical sanction; Bill of quantities. Preliminary Estimate: Preparation of preliminary estimate of building. Detailed Estimate: Estimate of Building- Long wall and short wall method, Centre line method; Estimate of Road; Calculation of earthwork. Specifications: Principles of general and detailed specifications; Examples of general and detailed specifications. Rate Analysis: Analysis of rates; Purpose of Rate Analysis; Examples of Rate analysis of typical items. Valuation: Meaning of Valuation; Purpose of Valuation; Methods of Valuation; Escalation and Depreciation calculations.

Text Books-1. Dutta, B. N.(2016), Estimating and Costing in Civil Engineering. (UBS

Publishers’ Distributors Pvt. Ltd., 28th Revised Edition)2. Rangwalla (2013), Estimating, Costing and Valuation. (Charotar Publishing

House Pvt. Ltd. 15th Edition)

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 40: Civil Engineering Curriculum

Semester wise Course Structure

SEMESTER-VII (B.Tech-Civil Engineering)

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 41: Civil Engineering Curriculum

Semester wise Course Structure

Transportation Engineering-II CE4013-0-0: 3 Credits : 3Hours Prerequsites: None

Railway Engineering: Introduction, classification, gauges, railway track, components & their function, cross section, stresses, coning of wheels, wear & creep of rails, failure, fittings & fixtures, ballast, sleepers & drainage, geometric design, alignment, gradient, grade compensation, super elevation, cant, horizontal & transition curves.

Airport Engineering: Airport planning, characteristics, site selection & planning, airport obstructions, zoning laws, imaginary surfaces, approach zone, turning zone, runway & taxiway design, runway orientation, runway length & corrections, configurations, geometric elements of taxiway, exit taxiway, fillets, separation & clearance, airport layout-hangers, parkings & terminal building.

Books:1. Saxena S.P. & Arora S.P, A Textbook of Railway Engineering, Dhanpat Rai &

Sons2. Agarwal M.M, Indian Railway Track, Sachdeva Press3. Khanna S.K , Arora M.G & Jain S.S, Airport Planning & Design, Nemchand

Brothers.4. Hernjeff R & Makelvy, Planning & Design of Airports, Mc. Graw Hill

Construction Management CE4023-0-0: 3 Credits : 3Hours Prerequsites: None

Construction is industry and its challenges, Role of construction management, Methods of construction managements, Basic requirements of construction management:

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 42: Civil Engineering Curriculum

Semester wise Course StructureLearning structures, Life cycle of construction projects: Examples of real projects and its learning requirements, Stages of awarding contract, types of contract, contract documents, arbitration and settlement of disputes, contract laws and handling of contracts, commissioning of project, Introduction to network based project management techniques: Defining activities and their interdependence, drawing of network, time and resource estimations, use of network as scheduling techniques, use of network as control techniques i.e. project monitoring, resource planning , measurement and measurement book.

Books1. Chitkara, K.K. Construction Project Management: Planning, Scheduling and

Controlling (Tata McGraw- Hill, 2004)2. Sengupta, B and Guha, H. Construction Management and Planning (Tata

McGraw Hill,1995)3. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C.J. Construction planning and

methods (Fifth Edition, McGraw Hill International Editions, 1996)4. Berrie, D.S. and Paulson, B.C. Professional Cconstruction Management including

C.M., Design Construct and General Contracting (Third edition, McGraw Hill International Editions, 1992)

5. Srinath, L.S. PERT and CPM principles and Applications (Third Edition, Affiliated East-west Press Pvt Ltd, 2001)

6. Carmichael, D.G. Construction Engineering Networks: Techniques, Planning and Management (Ellis Horwood Publishers, Chichester, 1989)

Project I CE4810 - 0 - 6 : 6 Credits : 12 Hours Prerequsites: None

The students will carry out project works in groups of 3-5 students each under the guidance of a faculty member. The project shall consist of research/ design/ development/ implementation work.

SEMESTER-VIII (B.Tech-Civil Engineering)

Project II CE4820 - 0 - 12 : 12 Credits : 24 Hours Prerequsites: CE481

The students will carry out project works in groups of 3- 5 students each under the guidance of a faculty member. The project shall consist of research/ design/ development/ implementation work. It may also be a continuation of the Project I work.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 43: Civil Engineering Curriculum

Semester wise Course Structure

CE Electives

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 44: Civil Engineering Curriculum

Semester wise Course Structure

Advanced Reinforced Concrete Design CE4213 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE301

Review of limit state & working stress method of design.

Building: Lateral load analysis, portal & cantilever method, transfer of loads from slab to beams, equivalent load, continuous beams.

Water tank: Circular, rectangular water tank design conforming to IS-3370, uncracked design, crackwidth calculation.

Prestressed concrete: Concept, IS code requirements, systems of prestressing, losses, simple design examples.

Books:4. P.C Varghese, Advanced Reinforced Concrete Design, Prentice Hall of India.5. Krishna Raju, Prestressed Concrete, Tata Mc. Graw Hill6. Krishna Raju, Advanced Reinforced Concrete Design, CBS Publishers &

Distributors.Codes: IS-456:2000, SP-16, IS-3370, IS:1343

Dynamics of Structures CE4223 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE301

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 45: Civil Engineering Curriculum

Semester wise Course StructureSDOF systems: Equations of Motion, Free vibration, damping, Forced vibrations under harmonic, impulse and general loadings, Response spectrum Generalized SDOF systems: Rigid body distributed mass and stiffness systems; MDOF Systems: Dynamic properties, modal damping, classical damping, modal super position methods; Numerical methods in dynamics: Eigen value analysis, direct integration scheme, Continuous systems: Equations of motion, Hamilton’s principle, Lagrangian formulation, Free and force vibration scheme, Wave propagation; Introduction to Random vibration: Random variables, Random process, moment and characteristic function, spectral analysis, response to random excitation; Application of structural dynamics in the design of block and frame foundation.  Books:

1. R.W. Clough and J. Penzien, “Dynamics of Structures”, Second edition, McGraw Hill International edition, 1993.

2. Mario Paz, “Structural Dynamics”, CBS Publishers, 1987.3. Anil K. Chopra, :Dynamics of Structures: Theory and applications to earthquake

engineering”, Prentice Hall of India Ltd., 1997.4. K. Rao, “Vibration analysis and foundation dynamics”, Wheeler, 1998.5. Siniu and R.H. Scanlan, “Wind effects on structures: fundamentals and

applications to design”, John wiley an sons, 1997.

Prestressed Concrete & Industrial Structures CE4233 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE301 & CE307

Design of prestressed concrete sections for flexure, shear, bond and anchorage forces- minimum weight design; Analysis and design of indeterminate prestressed structures, Choice of cable profiles, Concordancy and linear transformation of cable profile, effect of creep and shrinkage on prestressed concrete structures; Design of end block, Partial prestressing, Definition- principles and design approach, Composite structures; Wind load analysis on Industrial building, Braced and Unbraced Industrial building. Book:

1. E. G. Nawy, “Prestressed Concrete: A fundamental approach”, Prentice Hall, 1995.

2. T.Y. Lin, “Design of Prestressed Concrete Structures”, John Wiley, & Sons, 1963.

3. S.K. Mallick and A.P. Gupta, “Prestressed Concret”, Oxford & IBH, 1992.4. G.S. Charles and J.E. Johnson, “Steel Structures-Design and Behaviour”,

Addison –Wesley, Pub Co., 19975. W.F.Chen & S.Toma, “Advanced analysis of steel frames”, CRC press,1994.

Bridge Engineering CE4243 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE301 & CE307  Investigation and site selection, hydraulic factors, alignment, traffic aspects, types of bridges; Loading standard, IRC specification, Impact factor, General design consideration, Structural design of highway and railway bridges in masonry, reinforced, pre-stressed concrete and steel; Superstructures: Slab bridge, beam and slab bridge, plate girder and composite bridges, Bearings and expansion joints, Bridge foundation: types of foundation, design of well and pile foundation, Bridge vibration: traffic loading, seismic and wind effect, construction techniques and maintenance.  Books:

1. D. J. Victor, “Essentials of Bridge Engineering”, Oxford and IBH, 1980.2. N. Kridhna Raju, “Design of Bridges”, Oxford and IBH, 1988.3. V. K. Raina, “Concrete bridge Practice: Analysis, Design and Economics”,

Tata McGraw Hill, 2002.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 46: Civil Engineering Curriculum

Semester wise Course Structure4. L. Fryba, “Dynamics of Railway Bridges”, Thomas Telford, 1996.

Soil Dynamics & Foundation Engineering CE4253 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE209 & CE304

Introduction: Dynamic properties of soil, design criteria related to applied loads & material properties, vibration tolerances.Vibration: Vibration of elementary systems, transient vibrations, earthquake & blast loadings, liquefaction of soil.Foundations: Laboratory & field evaluation of soil properties, analysis & design of foundations for hammer type & reciprocating engines.

Vibration isolation & damping, propagation of elastic waves in soil, waves in layered & saturated soils, theories of vibration for for foundation on elastic media, interaction of soils & foundations under dynamic loading.

Books:1. Shamsher Prakash, Soil Dynamics, McGraw Hill2. Alexander Major, Dynamics in Soil Engineering3. Sreenivasalu & Varadarajan, Handbook of Machine Foundations, Tata

McGraw Hill4. Kramer C.L, Geotechnical Earthquake Engineering, Prentice Hall, New

Jersey5. IS 2974 - Part I and II, Design Considerations for Machine Foundations6. IS 5249: Method of Test for Determination of Dynamic Properties Of Soils

Ground Improvement Methods CE4263 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE209 & CE304

General principles of ground improvement, soil stabilization using admixtures.Grouting-different grouting methods, method of applications.Special ground improvement methods - Preloading with or without vertical drains, stone columns, vibro-compaction, compaction piles, blasting, deep dynamic compaction, design principles & applications of these methods.Reinforced earth-Soil nailing, applications.

Books:1. Moseley, Text Book on Ground Improvement, Blackie Academic Professional,

Chapman & Hall2. Boweven R., Text Book on Grouting in Engineering Practice, Applied Science

Publishers Ltd3. Jewell R.A., Text Book on Soil Reinforcement with Geotextiles, CIRIA Special

Publication, Thomas Telford4. Van Impe W.E., Text Book On Soil Improvement Technique & Their Evolution,

Balkema Publishers5. Donald .H. Gray & Robbin B. Sotir, Text Book On Bio Technical & Soil

Engineering Slope Stabilization, John Wiley6. Rao G.V. & Rao G.V.S., Text Book On Engineering with Geotextiles, Tata

McGraw Hill7. Korener, Construction & Geotechnical Methods in Foundation Engineering,

McGraw Hill

Earth Retaining Structures CE4273 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE209 & CE304

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 47: Civil Engineering Curriculum

Semester wise Course Structure

Introduction----Earth dams – types of dams –Design details –upstream and down stream slope protection – central and inclined cores – types and design of filters.Seepage analysis and control – seepage through dam and foundations – control of seepage in earth dam and foundation

Stability analysis –-- critical stability conditions – evaluation of stability by Bishop’s and sliding wedge methods under critical conditions

Earth pressure theories – Rankine’s and Coulomb’s earth pressure theories for cohesionless and cohesive backfills – computation of earth pressures for various cases – inclined – with surcharge – submerged and partly submerged – stratified backfills

Rigid retaining structures – ----active and passive earth pressures against gravity retaining walls – computation of earth pressures by Trial wedge method – a mathematical approach for completely submerged and partly submerged backfills – Perched water table – importance of capability tension in earth pressure.Graphical methods of earth pressure computation.Design of gravity retaining wall – cantilever retaining walls

Flexible retaining structure – type and methods of construction – design strength parameters – safety factor for sheet pile walls – computation of earth pressures against cantilever sheet piles in cohesionless and cohesive soils – anchored sheet piles – free earth method – fixed earth method – Rowe’s moment reduction method – stability of sheet pilingDiaphragm walls and coffer dams – type of diaphragm walls and their construction techniques in various soil types – earth pressure on braced cuts and coffer dams – design of coffer dams

Books:1. Huntington, Earth pressure on retaining walls.2. Bowles, Foundation Analysis and Design.3. Jones, Earth Reinforcements & Soil structures.4. Prakash, Ranjan & Sasan, Analysis & Design of Foundation & Retaining

Structures.

Applied Geotechnical Engineering CE4283 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE209 & CE304

Introduction to site difficulties, construction dewatering & ground freezing.Liquefaction of soils, causes, evaluation of liquefaction potential, liquefaction mitigation measures.Upward flow, quicksand condition, critical hydraulic gradient, methods to prevent piping & sand boiling, design examples.Difficulties associated with highly expansive/collapsible soils, problems of uplift, special foundation requirements, undreamed pile, design examples.Selection of piles as per site conditions, Negative skin friction on piles, its remedies.Settlement analysis of foundations, differential settlements, tolerable limits, measures to minimize differential settlements.

Books:1. Korener, Construction & Geotechnical Methods in Foundation Engineering,

McGraw Hill2. J.E Bowles, Foundation Analysis and Design.3. Prakash, Ranjan & Sasan, Analysis & Design of Foundation & Retaining

Structures.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 48: Civil Engineering Curriculum

Semester wise Course Structure4. Braja M. Das, Principles of Geotechnical Engineering, Thomson Learning5. Braja M Das, Principles of Foundation Engineering, Thomson Learning

Environmental Geotechniques CE4293 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE209 & CE305

Introduction to environmental geotechnology –Regulatory requirements – waste characteristics – Geo chemistry – Geochemical attenuation – ground water monitoring techniques.Contaminant transport – Transport process diffusion – dispersion – Advection – dispersion Analytical solutionsIntroduction to Hydrogeology – Hydraulic conductivity – Infiltration and recharge – flow in unsaturated soils – flow in saturated soils

Landfills and impoundments – objectives of waste disposal facilities – siting of land fills – contaminant technology – disposal unit.Leachate and gas generation – Landfill microbiology – Microbiology of refuse composition – Impact of hazardous waste on leachate and gas characteristics.

Leachate collection and removal systems – Primary and Secondary leachate – collection and removal systems gas collection and removal systems – water balance for land fills – slope stability analysis of land fills – Mine waste disposal systems – Geophysical techniques for site characterization sampling techniques – percussion drilling techniques – Testing of samples.Design of Cover systems – Recovery well design Bio remediation Techniques.

Books:1. David.E.Daniel, Geotechnical practice for waste disposal – Chapman & Hall

London.2. Masashi Kamon, editor – Balkema, Environmental Geotechnics, - Rotterdan

1996

Open Channel Flow CE4303 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE201 & CE207 Basic Flow Concepts: Types of channels, classification of flows, basic equations, velocity distribution, velocity coefficients, pressure distribution.

Energy & momentum principles: Specific energy, critical flow, section factor for critical flow computation, first hydraulic exponent, computation of critical flow, specific force, specific force, channel transitions.

Uniform flow in rigid boundary channels: Shear stress distribution, velocity distribution in turbulent flow, chezy’s equation, manning’s equation, conveyance of a channel, section factor for uniform flow computation, second hydraulic exponent, computation of uniform flow.

Uniform flow in mobile boundary channels: Incipient motion condition, shield’s analysis, regimes of flow, predicton of regimes, flow resistance.

Design of channels: Rigid boundary channels, non-scouring channels, alluvial channels.

Gradually varied flow: Differential equation of GVF, classification & analysis of flow profiles, computation of GVF.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 49: Civil Engineering Curriculum

Semester wise Course StructureHydraulic jump: Types of jump, general equation for jump in prismatic channels, jump in horizontal & slopping rectangular channels.

Rapidly varied flow: Flow over sharp crested weir, spillways, flow under sluice gate.

Unsteady flow: Waves, celerity of small gravity wave, St. Venant’s equation, surges in open channels.

Books:1. K. Subramanya, Flow in Open Channels, Tata Mc. Graw Hill2. K.G Rangaraju , Flow through Open Channels, Tata Mc. Graw Hill3. M.H Chaudhury, Open Channel Flow, Prentice Hall of India4. V.T Chow, Open Channel Hydraulics, Mc Graw Hill

Hydraulic Structures CE4313 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE207 Dams & their characteristics: Classification of dams, features, advantages & disadvantages of each type.

Site selection: Various phases of investigation, geological investigation, sub-surface exploration, choice of location, foundation treatment, economic height of a dam.

River diversion: Diversion schemes, phases of diversion, tunnels, cofferdams.

Gravity dams: Forces acting on a gravity dam, load combinations for design, modes of failure & stability requirement, structural competency of gravity dams, pratical profile & stability analyses, design of non-overflow & overflow sections using single-step method.

Arch dams: Types of arch dams, method of analysis, most economical central angle, design of arch dams based on cylinder theory.

Embankment dams: Types of embankment dams, causes of failure & stability requirements, preliminary design, seepage analsis, flow-net, phreatic line, safety of u/s slope under rapid drawdown, safety of d/s slope under steady seepage.

Weirs & Barrages: Types of weirs, causes of failures, design of weirs on permeable foundations, Bligh’s creep theory, Khosla’s theory, method of independent variables.

Books:1. S.K Garg, Irrigation Engineering & Hydraulic Structures, Khanna Publishers2. Arora, Irrigation, Water Power & Water Resources Engineering, Standard

Publishers.3. B.C. Punmia, “Irrigation and Water Power Engineering”, Standard

Publishers, 19924. Linsley, Water Resources Engineering, Mc Graw Hill.

Hydraulic Machines CE4323 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: CE201

Introduction: Types of hydraulic machines, pumps, theory of rotodynamic machines, Euler’s equation.

Impulse turbines: Work done by impulse turbine, power produced by an impulse turbine, efficiencies of an impulse turbine, design of pelton wheel turbine.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 50: Civil Engineering Curriculum

Semester wise Course StructureReaction turbines: Differences between an impulse & reaction turbine, classification of reaction turbines, power produced by a reaction turbine, efficiencies of a reaction turbine, Francis turbine, Kaplan turbine, cavitation in reaction turbines, draft tube, types of draft tubes, efficiencies.

Governing of turbines: Purpose of governing, elements of governing system, double regulation of turbines, governing of impulse turbines, governing of reaction turbines, relief valve/pressure regulator.

Performance of turbines: Characteristics of turbines, unit power, unit speed & unit discharge, specific speed of a turbine, selection of turbines based on head of water & specific speed, characteristic curve of turbines.

Reciprocating & Centrifugal pumps: Pumps & their classification, reciprocating pumps, types, discharge, power required, slip of pump, indicator diagram, advantage of centrifugal pumps over reciprocating pumps, components of a centrifugal pump, workdone by impeller, heads of pumps, losses & efficiencies.

Hydel power plant: Hydro-electric plants & their classification, essential components of hydel power plant, advantages & disadvantages, pumped storage plants.

Books:1. R.K Bansal; A Text Book of Fluid Mechanics and Hydraulic Machines, Laxmi

Publications (P) ltd., New Delhi2. Dr. Modi & Dr.Seth ; Hyraulic and Fluid Mechnics Including Hydraulic

Machines, Standard Book House.3. K. Subramanya , Theory and Applications of Fluid Mechanics, Including

Hydraulic Machines , Tata McGraw Hill Pub. Co., New Delhi, 1992.4. Dr. Jagdish Lal, Hydraulic Machines, Metropolitan Publication.

Groundwater Hydrology & Management CE4333 - 0 - 0 : 3 Credits : 3 Hours Prerequsites:CE209 & CE302

Introduction to groundwater hydrology; Well and aquifer characteristics; Groundwater flow in aquifers, groundwater recharge, fluctuation of water table beneath a recharge site; Hydraulics of fully and partially penetrating wells in confined, leaky and unconfined aquifers under steady and transient conditions; Analysis of pumping test data; Groundwater investigations; Basin management of groundwater and groundwater quality; Model studies; Sea water intrusion. Books:

1. D.K. Todd, “Groundwater Hydrology”, John Wiley & Sons, 1993.2. C. Walton, “Groundwater Resources Evaluation”, McGraw Hill, 1970.3. H.M. Raghunath, “Groundwater Hydrology”, New Age International, 1993.4. O.D.L. Strack, “Groundwater Mechanics”, Prentice Hall, 1989.5. S.P. Garg, “Groundwater and Tube Wells”, Oxford & IBH Publishing Co.,

1993.

Air Pollution & Industrial Waste Management CE4343 - 0 - 0 : 3 Credits : 3 Hours Prerequsites:CE305 & CE308

Air Pollutants, their sources and harmful effects on the environment; Meteorology as applied to air pollution and dispersion of air pollutants, Air quality and emission standards, Removal of gaseous and particulate matter. Sources and types of wastes;

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 51: Civil Engineering Curriculum

Semester wise Course Structuresolid, liquid and gaseous wastes; Water use in industry, industrial water quality requirements; Control and removal of specific pollutants in industrial wastewaters from dairy, fertilizer, distillery, tannery, sugar, pulp and paper, iron and steel, metal plating etc. Books:

1. K. Wark & C. F. Warner, “Air Pollution-Its Origin and Control”, Harper & Row, New York, 1981.

2. N. D. Nevers, “Air Pollution Control Engineering”, Mc. Graw Hill International Ed., 1985

3. N. L. Nemerow, “Zero Pollution for Industry: Waste Minimization through Industrial Complexes”, John Wiley & Sons, 1995

4. N L Nemerow, “Liquid Waste of Industry: Theoy, Practices and Treatment”, Addison-Wesley, 1971.

5. S. J. Arceivala, “Wastewater Treatment for Pollution Control”, Tata Mc. Graw Hill, 1999

6. W. W. Eckenfelder, “Industrial Water Pollution Control”, Mc. Graw Hill, 2000.

Solid Waste Engineering CE4353 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: E305 & CE308  Solid waste- history, materials flow, the need for integrated solid waste management; Municipal solid waste-characteristics and quantities; Collection Systems-municipal wastes; commercial wastes, recyclable materials; Material separation and processing of municipal solid waste; Combustion and energy recovery-heat value, materials and thermal balances, combustion hardwares, undesirable effectes; Biochemical process-anaerobic digestion, composting and other processes; Landfills-planning, sitting, landfill processes, landfill design, landfill operations, post-closure care and use of old landfills; Current issues in solid waste mangement. Books:

1. P. Aarne Vesilind, William A. Worrel & Debra R. Reinhart, Solid Waste Engineering, Thomson Brooks/Cole, First Edition, 2002.

2. 2. Howard S Peavy, Donald R Rowe & George Techobanoglous, Environmental Engineering, McGraw-Hill International Ed, 1985.

3. 3. Mackenzie L Davis & David A Cornwell, Introduction to Environmental Engineering, Mcgraw-Hill, Inc, International Edition, 1991.

4. 4. Arcadio P. Sincero & Gregoria A. Sincero, Environmental Engineering – A Design Approach, Prentice-Hall India, 1996.

Environmental Impact Assessment CE4363 - 0 - 0 : 3 Credits : 3 Hours Prerequsites:CE305 & CE308

Concepts of environmental impact analysis - key features of the National Environmental Policy Act and its implementation, screening in the EIA process, role of the USEPA, environmental protection and EIA at the national level, utility and scope of the EIA processPlanning and management of environmental impact studiesEnvironmental impact - factors for consideration in assessing the impacts of water related projects, power projects, waste water treatment facilities etc .Concepts and terms in the impact assessment process, Socioeconomic impact analysis.Simple methods for impact identification – matrices, net works and checklists. Description of the environmental settingEnvironmental indices and indicators for describing the affected environment.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 52: Civil Engineering Curriculum

Semester wise Course StructurePrediction and assessment of the impact on surface water, soil, groundwater, air, water quality, vegetation and wild life and biological environments. Case studies and examples.

Prediction and assessment of visual impacts and impacts on the socio-economic setting, decision methods for evaluation of alternatives, public participation in decision-makingPreparing the EIA documentEnvironmental monitoring.

Books:1. Larry W Canter, Environmental Impact Assessment, McGraw Hill, Inc., 19962. Betty Bowers Marriot, Environmental Impact Assessment A Practical Guide,

McGraw Hill, Inc., 1997.3. C.J. Barrow, Environmental & Social Impact Assessment – An Introduction,

Edward Arnold, 2002.4. Evan. K. Paleologos and Ian Lerche,Environmental Risk Analysis, McGraw

Hill Inc., 20011. 5. Peter Morris (ed.) and Riki Therivel (ed.), Methods of Environmental

Impact Assessment, Routledge, 2001.

Remote Sensing & GIS CE4373 - 0 - 0 : 3 Credits : 3 Hours Prerequsites:None

Energy source & radiation principles, Remote Sensing System, Multi-spectral scanner, thematic mapper, Return beam vidicon camera, Thermal infra-red scanner, Side looking, Air borne RADAR, Spectral pattern recognition, visual & digital techniques, Data acquisition from ERS, land sat, SPOT, sea sat, IRS, interpretation of digital data products, application in water resources engg, land use etc.

GIS, introduction to GIS, creation of digital geographic data, characteristics of GIS, utilization of GIS for water resources, application of hydrological modeling.

Books:1. T.M. Lillesand and R.W. Kiefer, Remote Sensing and Image Interpretation, John

Wiley & Sons, New York, 1994.2. J.B. Campbell, Introduction to Remote Sensing, Taylor & Francis, London, 1996.3. Lo, C.P. & Yeung A.K.W., Concepts and Techniques of Geographic Information

Systems, Prentice Hall of India, New Delhi, 2002.4. Anji Reddy, M., Remote Sensing and Geographical Information Systems,

B.S.Publications, Hyderabad, 2001.

Pavement Design CE4383 - 0 - 0 : 3 Credits : 3 Hours Prerequsites:None  Pavement Materials, Pavement as multilayed structure, subgrade, base and subbase, bituminous materials, individual properties, non-linear models of granular materials and bituminous mixes elastic modules and Poisson’s ratio, concrete pavement, Pavement Design, AASHTO, Shell, Asphalt Institute, Japan, Austoroads methods, analytical pavement design, Indian context, overlay design, Pavement Management, Pavement evaluation, Benkelman beam and Falling Weight Deflectometer, pavement maintenance management, financial viability.  

Books:

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 53: Civil Engineering Curriculum

Semester wise Course Structure1. E. J. Yoder and M. W. Witczak, Principles of Pavement Design, 2nd Edition,

John Wiley & Sons. 1. D. Croney and P. Croney, The Design and Performance of Road Pavements,

2nd Edition, McGraw-Hill, International Series in Civil Engineering, 1992.2. Ministry of Surface Transport, Government of India, Specification for Road

and Bridge Work, 3rd revision, Published by IRC, 1995.

Pavements Materials CE4393 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Soil materials: As subgrade, subbase and base course, Basic engineering properties; resilient modulus, CBR and plate load test.

Road Aggregates: Aggregate Classification, physical properties and evaluation, Job mix formula.

Road binders: Bitumen, cutback, emulsion, modified binders and cement. Physical properties of different binders and tests, rheology binders, modified binders

Mix design: WBM and WMM mix design, Marshall mix design and Superpave procedure; design of emulsified mixes, fatigue and rutting behaviours of bituminous mixtures; viscoelastic analysis of asphalt mixes. Concrete mix design, flexural test, concrete block pavement, Alternate and marginal materials in Rural Roads.

Soil stabilization - Methods used in soil stabilizations; Evaluation and design of stabilized subgrade, Use of geosynthetics

Books1. P. H. Wright, Highway Engineering, John Wiley & Sons, 1996.2. S. K. Khanna and C. E. G. Justo, Highway Material Testing, New Chand & Bros.,

1999.3. Reference Books4. E. J. Yoder and M. W. Witczak, Principles of Pavement Design, 2nd Edition, Yang

H.5. Huang, Pavement Analysis and Design, Pearson Prentice Hall, 2004.

Geometric Design of Road Transportation System CE440

3 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: NIL

Geometric design as per IRC and other guidelines; Various curves design, road alignment and surveys, elements of highway geometric design, cross sectional elements and design for rural highways, urban streets and hill roads; at-grade inter-sections – SSD and OSD consideration and principles, channelization, mini round-abouts, layout of round abouts, Inter-changes, entrance and exit ramps, acceleration and deceleration lanes, design of storage lanes at signalised and unsignalised Intersections, bicycle and pedestrian facility design; parking layout and design; terminal layout and design, Road safety measures. Books

1. 1. S. K. Khanna and C. E. G. Justo, Highway Engineering, Nem Chand & Brothers, 2011

2. 2. P. H. Wright and Karen K. Dixion, Highway Engineering, Wiley India3. 3. IRC: 73.1990 Geometric Design Standards For Rural (Non-Urban) Highways

4. 4. IRC: 86.1983 Geometric Design Standards For Urban Roads In Plains

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 54: Civil Engineering Curriculum

Semester wise Course Structure

Design and Construction of Rural Roads CE441

3 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: Transportation Engg. – I Surveying

Planning and Alignment of rural roads, Geometric design standards, Low cost materials: Soil, subgrade, stabilised soils, road aggregates, binding material, Marginal materials. Pavement Design: design of flexible, rigid, and semi rigid pavements, Embankment and subgrade, sub-base, base course, shoulder, bituminous and semi-rigid rural road construction, Use of Waste Materials: Fly ash for road construction, Lime fly ash stabilized soil, lime fly ash bound macadam, lime fly ash concrete, roller compacted concrete, Cement stabilised fly ash, iron and steel slag, Lime-rice husk ash concrete, recycled concrete, cost analysis, quality control measures and maintenance Books

1. S. K. Khanna and C. E. G. Justo, Highway Material Testing, New Chand & Bros.,1999

2. G. R. Chatburn, and J. Wiley and Sons, Highway Engineering, Rural Roads and Pavements, Inc. Publication, 2010.

3. IRC SP 20: Rural Roads Manual, Indian Roads Congress, New Delhi, 2002.4. L. Odier, Low Cost Roads: Design, Construction and Maintenance, Unesco,

Butterworths, 1971.5. K. N. Ramanujam, Rural Transport in India, Mittal Publications, 1993.

Analysis and Design of Foundations CE4423 - 0 - 0 : 3 Credits : 3 Hours Prerequsites:

Shallow foundations: Terzaghi’s bearing capacity theory, Meyerhof, Hansen and Vesic bearing capacity factors, IS code provisions, Skempton’s bearing capacity factors, safe and allowable bearing pressures, plate load test, Housel’s method for determining safe bearing pressure from plate load test, bearing capacity estimation from SPT and CPT values, selection of type and depth of foundations, combined footings, mat foundations, settlement under footing loads, Skempton-Bjerrum modification, foundations on problematic soils and remedial measures.

Pile foundations: Mechanism of load transfer in piles, load carrying capacity, critical depth approach, Pile load test: continuous and cyclic, separating point bearing from skin friction load from cyclic pile load test, Efficiency of pile groups and settlement calculations, negative skin friction, laterally loaded piles.Design loads for foundations, basis of design of footings, structural design of isolated footings, combined footing, and mat footings.

Text Books:1. Ranjan, G. and Rao, A.S.R. (2016), Basic and Applied Soil Mechanics (New Age

International Publishers, 3rd Edition)2. Das, B.M. (2010), Principles of Foundation Engineering (Cengage Learning, 7th

Edition)

Reference:1. Bowles, J.E.(2001), Foundation Analysis and Design (McGraw Hill)2. Varghese, P.C.(2010), Limit State Design of Reinforced Concrete (PHI Learning

Pvt. Ltd., 2010)

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 55: Civil Engineering Curriculum

Semester wise Course Structure3. Pillai, S.U. and Menon, D.(2010), Reinforced Concrete Design (Tata McGraw Hill)

MANAGEMENT COURSESCore

Fundamentals of Management BM 3213 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Part IMeaning, Objectives and Scope of Management; Functions of Management- Planning, Organizing, Staffing, Directing and Controlling; Styles of Management.

Part IIBasics of Financial Magnagement; Marketing Management; Human ResourceManagement; and Production Management

Books:

1. L. M. Prasad : Principles and Practice of Management, Sultan Chand and Sons, New Delhi.

2. V. S. Ramaswamy and S. Namakumari : Marketing Management, Macmillan India, Pvt. Ltd., New Delhi.

3. S. S. Khanka : Human Resource Management, S. Chand & Company Pvt. Ltd., New Delhi.

4. P. Rama Murty : Production and Operations Management, New Age International Publishers, New Delhi.

Social Responsibility and Ethics in Engineering BM 3223 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Engineering and Society: What is Engineering ? The Engineering View, The Engineering Image; The Engineer’s Challenge: Cost, Deadlines, and SafetyMoral Dilemmas in Engineering: Engineering & Business; Frameworks for Engineering Ethics: Moral Thinking and Moral Theories, Codes of Engineering Ethics, Support for Ethical EngineersEngineering Ethics and Public Policy: Risk Assessment and Communication, Product Liability, Engineering and Sustainable Development.Intellectual property: Foundations of intellectual property, Copyrights, patents, and trade secrets, Software piracy, Software patents, Transnational issues concerning intellectual property.Entrepreneurship: prospects and pitfalls, Monopolies and their economic implications, Effect of skilled labor supply and demand on the quality of computing products, Pricing strategies.

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India

Page 56: Civil Engineering Curriculum

Semester wise Course StructureCase Studies in Engineering Ethics: Challenger Disaster, Hyatt Regency Walkway Collapse, The Pfizer Heart Valve Case, The Therac-25 Case etc.

Reference:1. Computers, Ethics and Social Values, Johnson & Nissenbaum, Prentice Hall.2. Social Issues in Computing : Putting Computing in Place, Huff & Finholt,

McGrawHill.3. A Gift of Fire : Social, Legal, and Ethical Issues in Computing, Prentice Hall.4. Cyber Ethics : Morality and Law in Cyber Space, Jones & Bartlett.

Elective

Accounting and Financial Management BM 4213 - 0 - 0 : 3 Credits : 3 Hours Prerequsites: None

Accounting : Principles, Concepts and conventions, Double entry system of Accounting, Introduction of basis books of accounts of sole proprietry concern, Control accounts for debtors l and creditors, closing of books of accounts and preparation of Trail Balance.Final Accounts : Trading, Profit and Loss Accounts and Balances Sheet of Sole Proprietary concern with normal closing entries, Introduction to Manufacturing accounts of partnership firms, Limited Company.Financial Management : Meaning and role.Ratio Analysis : Meaning advantage, limitations, types of ratios and their usefulness.Fund Flow statements : Meaning of the terms- fund, flow and fund, working capital cycle, preparation and interpretation of the fund flow statement.Costing : Nature, Importance and basic principles.Budget and Budgetary Control : Nature and scope, Importance, Method of finalization of master budgets and functional budgets.Marginal Costing :Nature scope and importance, Break Even Analysis, Its uses and limitations, construction of Break Even Chart, Practical application of marginal costing.

Books/References:1. Maheswari S. K.: Financial Accounting2. Khan M. Y. and Jain, P K: Financial Management, TMH

Department of Civil Engineering, Tezpur University, Napaam 784028, Assam, India


Recommended