+ All Categories
Home > Documents > CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS:...

CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS:...

Date post: 31-Mar-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
24
D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 1 HAND BOOK OF MATHEMATICS (Definitions and Formulae) CLASS – 12 SUBJECT: MATHEMATICS D.SREENIVASULU PGT(Mathematics) KENDRIYA VIDYALAYA
Transcript
Page 1: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 1

HAND BOOK OF MATHEMATICS (Definitions and Formulae)

CLASS – 12

SUBJECT: MATHEMATICS

D.SREENIVASULU PGT(Mathematics) KENDRIYA VIDYALAYA

Page 2: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 2

CLASS 12 : CBSE MATHEMATICS

RELATIONS AND FUNCTIONS

TYPES OF RELATIONS:

EMPTY RELATION: A relation 𝑅 in a set 𝐴 is called empty relation, if no element

of 𝐴 is related to any element of 𝐴, i.e., 𝑅 = βˆ… βŠ‚ 𝐴 Γ— 𝐴.

UNIVERSAL RELATION: A relation 𝑅 in a set 𝐴 is called universal relation, if each

element of 𝐴 is related to every element of 𝐴, i.e. , 𝑅 = 𝐴 Γ— 𝐴.

TRIVIAL RELATIONS: Both the empty relation and the universal relation are sometimes

called trivial relations.

A relation R in a set A is called a) Reflexive, if (π‘₯, π‘₯) ∈ 𝑅 π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝐴

b) Symmetric, 𝑖𝑓 (π‘₯, 𝑦) ∈ 𝑅 π‘–π‘šπ‘π‘™π‘–π‘’π‘  π‘‘β„Žπ‘Žπ‘‘ (𝑦, π‘₯) ∈ 𝑅 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝐴

c) Transitive, 𝑖𝑓 (π‘₯, 𝑦) ∈ 𝑅 π‘Žπ‘›π‘‘ (𝑦, 𝑧) ∈ π‘…π‘–π‘šπ‘π‘™π‘–π‘’π‘  π‘‘β„Žπ‘Žπ‘‘ (π‘₯, 𝑧) ∈ 𝑅 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦, 𝑧 ∈ 𝐴

EQUIVALENCE RELATION: 𝐴 relation 𝑅 in a set 𝐴 is said to be an equivalence relation

if 𝑅 is reflexive, symmetric and transitive.

EQUIVALENCE CLASS: Let 𝑅 be an equivalence relation on a non-empty set 𝐴 and

π‘Ž ∈ 𝐴. Then the set of all those elements of 𝐴 which are related to π‘Ž, is

called the equivalence class determined by π‘Ž and is denoted by [π‘Ž].

i.e [π‘Ž] = {π‘₯ ∈ 𝐴 ∢ (π‘₯, π‘Ž) ∈ 𝑅}

TYPES OF FUNCTIONS:

ONE-ONE (INJECTIVE) FUNCTION: A function 𝑓 ∢ 𝑋 β†’ π‘Œ is defined to be one-one

(or injective), if the images of distinct elements of X under f are distinct, i.e., for

every π‘₯1 , π‘₯2 ∈ 𝑋, 𝑓(π‘₯1) = 𝑓( π‘₯2 ) π‘–π‘šπ‘π‘™π‘–π‘’π‘  π‘₯1 = π‘₯2. Otherwise, f is called many-one.

ONTO (SURJECTIVE) FUNCTION : A function 𝑓 ∢ 𝑋 β†’ π‘Œ is said to be onto (or surjective),

if every element of π‘Œ is the image of some element of 𝑋 under f. i.e., for every

𝑦 ∈ π‘Œ, there exists an element π‘₯ 𝑖𝑛 𝑋 such that 𝑓(π‘₯) = 𝑦.

NOTE: f : X β†’ Y is onto if and only if Range of f = Codomain. BIJECTIVE FUNCTION: A function 𝑓 ∢ 𝑋 β†’ π‘Œ is said to be bijective, if 𝑓 is both one-

one and onto.

COMPOSITION OF FUNCTIONS: Let 𝑓 ∢ 𝐴 β†’ 𝐡 and 𝑔 ∢ 𝐡 β†’ 𝐢 be two functions. Then

the composition of 𝑓 π‘Žπ‘›π‘‘ 𝑔, denoted by π‘”π‘œπ‘“, is defined as the function

π‘”π‘œπ‘“ ∢ 𝐴 β†’ 𝐢 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 π‘”π‘œπ‘“ (π‘₯) = 𝑔(𝑓 (π‘₯)), βˆ€ π‘₯ ∈ 𝐴.

INVERTIBLE FUNCTION : A function 𝑓 ∢ 𝑋 β†’ π‘Œ is defined to be invertible, if there

exists a function 𝑔 ∢ π‘Œ β†’ 𝑋 such that π‘”π‘œπ‘“ = 𝐼π‘₯ π‘Žπ‘›π‘‘ π‘“π‘œπ‘” = 𝐼𝑦 (i.e π‘”π‘œπ‘“(π‘₯) = π‘₯

and π‘“π‘œπ‘”(𝑦) = 𝑦) The function 𝑔 is called the inverse of 𝑓 and is denoted by π‘“βˆ’1

Page 3: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 3

NOTE: If 𝑓 is invertible, then 𝑓 must be one-one and onto and conversely, if

𝑓 is one-one and onto, then 𝑓 must be invertible.

BINARY OPERATIONS:

BINARY OPERATION : A binary operation βˆ— on a set 𝐴 is a function βˆ—βˆΆ 𝐴 Γ— 𝐴 β†’ 𝐴.

We denote βˆ— (π‘Ž, 𝑏) 𝑏𝑦 π‘Ž βˆ— 𝑏 Note: In general, βˆ— is said to be binary operation on 𝐴 if π‘Ž, 𝑏 ∈ 𝐴 β‡’ π‘Ž βˆ— 𝑏 ∈ 𝐴

COMMUTATIVE: A binary operation βˆ— on the set 𝑋 is called commutative, if

π‘Ž βˆ— 𝑏 = 𝑏 βˆ— π‘Ž, for every π‘Ž, 𝑏 ∈ 𝑋.

ASSOCIATIVE: A binary operation βˆ—βˆΆ 𝐴 Γ— 𝐴 β†’ 𝐴 is said to be associative if

(π‘Ž βˆ— 𝑏) βˆ— 𝑐 = π‘Ž βˆ— (𝑏 βˆ— 𝑐), βˆ€ a, b, c, ∈ A.

IDENTITY: Given a binary operation βˆ—βˆΆ 𝐴 Γ— 𝐴 β†’ 𝐴, an element 𝑒 ∈ 𝐴, if it exists, is

called identity for the operation βˆ—, if π‘Ž βˆ— 𝑒 = π‘Ž = 𝑒 βˆ— π‘Ž βˆ€ π‘Ž ∈ 𝐴.

INVERSE: Given a binary operation βˆ—βˆΆ 𝐴 Γ— 𝐴 β†’ 𝐴 with the identity element e in

A, an element a ∈ A is said to be invertible with respect to the operation βˆ—, if

there exists an element b in A such that π‘Ž βˆ— 𝑏 = 𝑒 = 𝑏 βˆ— π‘Ž and b is called the

inverse of a and is denoted by π‘Žβˆ’1.

INVERSE TRIGONOMETRIC FUNCTIONS

PRINCIPAL VALUE BRANCHES:

FUNCTION DOMAIN RANGE (Principal Value

Branch)

sinβˆ’1 π‘₯ [βˆ’1, 1] [βˆ’πœ‹

2,πœ‹

2]

cosβˆ’1 π‘₯ [βˆ’1, 1] [0, πœ‹]

tanβˆ’1 π‘₯ R (βˆ’πœ‹

2,πœ‹

2)

cosecβˆ’1 π‘₯ 𝑅 βˆ’ (βˆ’1, 1) [βˆ’πœ‹

2,πœ‹

2] βˆ’ {0}

secβˆ’1 π‘₯ 𝑅 βˆ’ (βˆ’1, 1) [0, πœ‹] βˆ’ {πœ‹

2}

cotβˆ’1 π‘₯ R (0, πœ‹)

PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS:

sin(sinβˆ’1 π‘₯) = π‘₯ , π‘₯ ∈ [βˆ’1, 1]

Page 4: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 4

sinβˆ’1(sin π‘₯) = π‘₯ , π‘₯ ∈ [βˆ’πœ‹

2,πœ‹

2]

sinβˆ’1 1

π‘₯ = cosocβˆ’1 π‘₯ , π‘₯ β‰₯ 1 π‘œπ‘Ÿ π‘₯ ≀ βˆ’1

cosβˆ’1 1

π‘₯ = secβˆ’1 π‘₯ , π‘₯ β‰₯ 1 π‘œπ‘Ÿ π‘₯ ≀ βˆ’1

tanβˆ’1 1

π‘₯= cotβˆ’1 π‘₯ , π‘₯ > 0

sinβˆ’1(βˆ’π‘₯) = βˆ’ sinβˆ’1 π‘₯ , π‘₯ ∈ [βˆ’1, 1]

cosecβˆ’1(βˆ’π‘₯) = βˆ’ cosecβˆ’1 π‘₯, |π‘₯| β‰₯ 1

tanβˆ’1(βˆ’π‘₯) = βˆ’ tanβˆ’1 π‘₯ , π‘₯ ∈ 𝑅

cosβˆ’1(βˆ’π‘₯) = πœ‹ βˆ’ cosβˆ’1 π‘₯, π‘₯ ∈ [βˆ’1, 1],

secβˆ’1(βˆ’π‘₯) = πœ‹ βˆ’ secβˆ’1 π‘₯, |π‘₯| β‰₯ 1

cotβˆ’1(βˆ’π‘₯) = πœ‹ βˆ’ cotβˆ’1 π‘₯, π‘₯ ∈ 𝑅

sinβˆ’1 π‘₯ + cosβˆ’1 π‘₯ =πœ‹

2 , π‘₯ ∈ [βˆ’1, 1]

tanβˆ’1 π‘₯ + cotβˆ’1 π‘₯ =πœ‹

2, π‘₯ ∈ 𝑅

cosecβˆ’1 π‘₯ + secβˆ’1 π‘₯ =πœ‹

2 , |π‘₯| β‰₯ 1

tanβˆ’1 π‘₯ + tanβˆ’1 𝑦 = tanβˆ’1 (π‘₯+𝑦

1βˆ’π‘₯𝑦) , π‘₯𝑦 < 1

tanβˆ’1 π‘₯ + tanβˆ’1 𝑦 = πœ‹ + tanβˆ’1 (π‘₯+𝑦

1βˆ’π‘₯𝑦) , π‘₯𝑦 > 1

tanβˆ’1 π‘₯ βˆ’ tanβˆ’1 𝑦 = tanβˆ’1 (π‘₯βˆ’π‘¦

1+π‘₯𝑦) , π‘₯𝑦 > βˆ’1

2 tanβˆ’1 π‘₯ = tanβˆ’1 (2π‘₯

1βˆ’π‘₯2) , |π‘₯| ≀ 1

2 tanβˆ’1 π‘₯ = cosβˆ’1 (1βˆ’π‘₯2

1+π‘₯2) , π‘₯ β‰₯ 0

2 tanβˆ’1 π‘₯ = sinβˆ’1 (2π‘₯

1+π‘₯2) , π‘₯ ∈ (βˆ’1, 1)

Page 5: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 5

MATRICES

ORDER OF A MATRIX : A general matrix of order π‘š Γ— 𝑛 can be written as

= [π‘Žπ‘–π‘—]π‘šΓ—π‘› , π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑖 = 1,2, β€¦π‘š π‘Žπ‘›π‘‘ 𝑗 = 1,2, … 𝑛

π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘Ÿπ‘œπ‘€π‘  = π‘š π‘Žπ‘›π‘‘ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›π‘  = 𝑛

TYPES OF MATRICES:

COLUMN MATRIX: A matrix is said to be a column matrix if it has only one column.

Examples: 𝐴 = [2

βˆ’9] π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐴 𝑖𝑠 2 Γ— 1

π‘Žπ‘›π‘‘ 𝐡 = [βˆ’βˆš50

βˆ’12

] π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐡 𝑖𝑠 3 Γ— 1

ROW MATRIX: A matrix is said to be a row matrix if it has only one row

Examples: 𝐴 = [14 26] π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐴 𝑖𝑠 1 Γ— 2

𝑩 = [0 √7 12] π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐡 𝑖𝑠 1 Γ— 3

SQUARE MATRIX: A matrix in which the number of rows is equal to the number of

columns, is said to be a square matrix.

Examples: A = [2 46 βˆ’8

] π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐴 𝑖𝑠 2 Γ— 2

X = [

5 0 βˆ’81

2√2 14

7 βˆ’8 4

] order of matrix X is 3 Γ— 3

DIAGONAL MATRIX: A square matrix 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› is said to be a diagonal matrix

if all its non-diagonal elements are zero

Example: 𝐴 = [6 0 0

0 √6 00 0 9

]

Page 6: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 6

SCALAR MATRIX : A diagonal matrix is said to be a scalar matrix if its diagonal

elements are equal

Example : 𝐴 = [5 0 00 5 00 0 5

]

IDENTITY MATRIX: A square matrix in which elements in the diagonal are all 1 and

rest are all zero is called an identity matrix.

Example : 𝐴 = [1 0 00 1 00 0 1

], generally it is denoted by I.

ZERO MATRIX: A matrix is said to be zero matrix or null matrix if all its elements

are zero.

Examples : [0] , [0 0 00 0 0

] ,

[0 0 00 0 00 0 0

] π‘Žπ‘Ÿπ‘’ π‘™π‘Žπ‘Ž π‘π‘’π‘Ÿπ‘œ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘π‘’π‘ , π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘™π‘™π‘¦ π‘‘π‘’π‘›π‘œπ‘‘π‘’π‘‘ 𝑏𝑦 𝑢.

EQUALITY OF MATRICES: Two matrices 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› π‘Žπ‘›π‘‘ 𝐡 = [𝑏𝑖𝑗]π‘šΓ—π‘›

are

said to be equal if (i) they are of the same order (ii) each element of 𝐴 is equal to

the corresponding element of 𝐡, that is π‘Žπ‘–π‘— = 𝑏𝑖𝑗 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑖 π‘Žπ‘›π‘‘ 𝑗.

Example: Let 𝐴 = [2 18 64 βˆ’5

] π‘Žπ‘›π‘‘ 𝐡 = [2 18 64 βˆ’5

] , we say that 𝐴 = 𝐡

OPERATION OF MATRICES:

ADDITION OF MATRICES: Let 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› π‘Žπ‘›π‘‘ 𝐡 = [𝑏𝑖𝑗]π‘šΓ—π‘›

be two matrices of

the same order. Then 𝐴 + 𝐡 is defined to be the matrix of order of π‘š Γ— 𝑛 obtained

by adding corresponding elements of 𝐴 π‘Žπ‘›π‘‘ 𝐡

i.e 𝐴 + 𝐡 = [π‘Žπ‘–π‘— + 𝑏𝑖𝑗]π‘šΓ—π‘›

DIFFERENCE OF MATRICES: Let 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› π‘Žπ‘›π‘‘ 𝐡 = [𝑏𝑖𝑗]π‘šΓ—π‘›

be two matrices of

the same order. Then 𝐴 βˆ’ 𝐡 is defined to be the matrix of order of π‘š Γ— 𝑛 obtained

by subtracting corresponding elements of 𝐴 π‘Žπ‘›π‘‘ 𝐡

i.e 𝐴 βˆ’ 𝐡 = [π‘Žπ‘–π‘— βˆ’ 𝑏𝑖𝑗]π‘šΓ—π‘›

MULTIPLICATION OF MATRICES: The product of two matrices 𝐴 and 𝐡 is defined if the

number of columns of 𝐴 is equal to the number of rows of 𝐡.

Page 7: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 7

Let 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› π‘Žπ‘›π‘‘ 𝐡 = [π‘π‘—π‘˜]𝑛×𝑝

. Then the product of the matrices 𝐴

and 𝐡 is the matrix 𝐢 of order m Γ— p. To get the (𝑖, π‘˜)π‘‘β„Ž π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘ π‘π‘–π‘˜ matrix 𝐢, we take

the i th row of 𝐴 and π‘˜ th column of 𝐡, multiply them elementwise and take the sum of

all these products. i.e πΆπ‘–π‘˜ = βˆ‘ π‘Žπ‘–π‘—.𝑛𝑗=1 π‘π‘—π‘˜

Example: Let 𝑨 = [𝟐 πŸ‘ πŸ“πŸ πŸ” πŸ–

] 𝒂𝒏𝒅 𝑩 = [πŸ’ πŸ‘πŸ” πŸ—πŸ“ πŸ–

]

𝑨𝑩 = [𝟐 Γ— πŸ’ + πŸ‘ Γ— πŸ” + πŸ“ Γ— πŸ“ 𝟐 Γ— πŸ‘ + πŸ‘ Γ— πŸ— + πŸ“ Γ— πŸ–πŸ Γ— πŸ’ + πŸ” Γ— πŸ” + πŸ– Γ— πŸ“ 𝟏 Γ— πŸ‘ + πŸ” Γ— πŸ— + πŸ– Γ— πŸ–

]

= [πŸ– + πŸπŸ– + πŸπŸ“ πŸ” + πŸπŸ• + πŸ’πŸŽπŸ’ + πŸ‘πŸ” + πŸ’πŸŽ πŸ‘ + πŸ“πŸ’ + πŸ”πŸ’

] = [πŸ“πŸ πŸ•πŸ‘πŸ–πŸŽ 𝟏𝟐𝟏

]

MULTIPLICATION OF A MATRIX BY A SCALAR: Let 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘›and π‘˜ is a scalar, then

π‘˜π΄ = π‘˜[π‘Žπ‘–π‘—]π‘šΓ—π‘›= [π‘˜. π‘Žπ‘–π‘—]π‘šΓ—π‘›

Example: 𝑨 = [𝟐 πŸ’ βˆ’πŸ“π’š 𝒛 𝒙

] ⟹ πŸ‘π‘¨ = [πŸ‘(𝟐) πŸ‘(πŸ’) πŸ‘(βˆ’πŸ“)πŸ‘π’š πŸ‘π’› πŸ‘π’™

] = [πŸ” 𝟏𝟐 βˆ’πŸπŸ“πŸ‘π’š πŸ‘π’› πŸ‘π’™

]

TRANSPOSE OF A MATRIX: If 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› be an m Γ— n matrix, then the matrix

obtained by interchanging the rows and columns of 𝐴 is called the transpose of 𝐴.

Transpose of the matrix 𝐴 is denoted by 𝐴′ or 𝐴T .

If 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘›, then 𝐴′ = [π‘Žπ‘—π‘–]π‘›Γ—π‘š

Example: 𝑨 = [𝟏 𝟐 πŸ‘πŸ’ πŸ• πŸ—πŸ“ 𝟏 𝟎

] ⟹ 𝑨𝑻 = [𝟏 πŸ’ πŸ“πŸ πŸ• πŸπŸ‘ πŸ— 𝟎

]

SYMMETRIC MATRIX: A square matrix If 𝐴 = [π‘Žπ‘–π‘—] is said to be symmetric if

𝑨′ = 𝑨, that is, [π‘Žπ‘–π‘—] =[π‘Žπ‘—π‘–] for all possible values of 𝑖 π‘Žπ‘›π‘‘ 𝑗

Example: 𝑨 = [𝟐 πŸ“ πŸπŸπŸ“ πŸ• πŸ‘πŸπŸ πŸ‘ πŸ”

] , π’„π’π’†π’‚π’“π’π’š 𝑨′ = 𝑨.

SKEW-SYMMETRIC MATRIX: A square matrix 𝐴 = [π‘Žπ‘–π‘—] is said to be skew

symmetric matrix if Aβ€² = – A, that is π‘Žπ‘–π‘— = βˆ’π‘Žπ‘—π‘– for all possible values of i and j and

π‘Žπ‘–π‘– = 0 for all i.(all the diagonal elements are zero).

Example: 𝑨 = [𝟎 πŸ“ βˆ’πŸπŸ

βˆ’πŸ“ 𝟎 βˆ’πŸ‘πŸπŸ πŸ‘ 𝟎

] , π’„π’π’†π’‚π’“π’π’š 𝑨′ = βˆ’π‘¨

Page 8: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 8

TRANSFORMATION OF A MATRIX:

The interchange of any two rows or two columns. The interchange of 𝑖 th and 𝑗 th rows is

denoted by 𝑅𝑖 ↔ 𝑅𝑗 and interchange of 𝑖 th and 𝑗 th column is denoted by 𝐢𝑖 ↔ 𝐢𝑗 .

The multiplication of the elements of any row or column by a non-zero number. The

multiplication of each element of the 𝑖 th row by π‘˜, where π‘˜ β‰  0 is denoted by

Ri β†’ k Ri. The corresponding column operation is denoted by Ci β†’ kCi

The addition to the elements of any row or column, the corresponding

elements of any other row or column multiplied by any non-zero number. The

addition to the elements of i th row, the corresponding elements of j th row

multiplied by k is denoted by Ri β†’ Ri + kRj . The corresponding column operation is

denoted by Ci β†’ Ci + kCj .

INVERTIBLE MATRICES: If A is a square matrix of order m, and if there exists

another square matrix B of the same order m, such that AB = BA = I, then B is

called the inverse matrix of A and it is denoted by A– 1. In that case A is said to be

invertible.

PROPERTIES OF MATRICES:

𝐴 + 𝐡 = 𝐡 + 𝐴

𝐴 βˆ’ 𝐡 β‰  𝐡 βˆ’ 𝐴

𝐴𝐡 β‰  𝐡𝐴

(𝐴𝐡)𝐢 = 𝐴(𝐡𝐢)

(𝐴′)β€² = 𝐴

𝐴𝐼 = 𝐼𝐴 = 𝐴

𝐴𝐡 = 𝐡𝐴 = 𝐼, π‘‘β„Žπ‘’π‘› π΄βˆ’1 = 𝐡 π‘Žπ‘›π‘‘ π΅βˆ’1 = 𝐴

𝐴𝐡 = 0 ⟹ 𝑖𝑑 𝑖𝑠 π‘›π‘œπ‘‘ π‘›π‘’π‘π‘’π‘ π‘ π‘Žπ‘Ÿπ‘¦ π‘‘β„Žπ‘Žπ‘‘ π‘œπ‘›π‘’ π‘‘β„Žπ‘’ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝑖𝑠 π‘§π‘’π‘Ÿπ‘œ.

𝐴(𝐡 + 𝐢) = 𝐴𝐡 + 𝐴𝐢

Every square matrix can possible to express as the sum of symmetric and

skew-symmetric matrices.

Page 9: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 9

𝑨 =𝟏

𝟐(𝑨 + 𝑨′) +

𝟏

𝟐(𝑨 βˆ’ 𝑨′), where (𝐴 + 𝐴′) is symmetric matrix and (𝐴 βˆ’ 𝐴′) is

skew-symmetric matrices.

Apply a sequence of row operation on A = IA till we get, I = BA. The matrix

B will be the inverse of A. Similarly, if we wish to find A–1 using column

operations, then, write A = AI and apply a sequence of column operations on

A = AI till we get, I = AB. The matrix B will be the inverse of A.

After applying one or more elementary row (column) operations on

A = IA (A = AI), if we obtain all zeros in one or more rows of the matrix A

on L.H.S., then A–1 does not exist.

_________________________________________________________

DETERMINANTS

DETERMINANT:

𝐿𝑒𝑑 𝐴 = [π‘Ž 𝑏𝑐 𝑑

] , π‘‘β„Žπ‘’π‘› 𝑑𝑒𝑑(𝐴) = |𝐴| = π‘Žπ‘‘ βˆ’ 𝑏𝑐

𝐿𝑒𝑑 𝐴 = [

π‘Ž 𝑏 𝑐𝑑 𝑒 𝑓𝑔 β„Ž π‘˜

] , π‘‘β„Žπ‘’π‘› |𝐴| = π‘Ž |𝑒 π‘“β„Ž π‘˜

| βˆ’ 𝑏 |𝑑 𝑓𝑔 π‘˜

| + 𝑐 |𝑑 𝑒𝑔 β„Ž

|

PROPERTIES OF DETERMINANTS:

If rows and columns are interchanged, then the value of the determinant

remains same.

If any two rows (or columns) of a determinant are interchanged, then sign of

determinant changes

If any two rows (or columns) of a determinant are identical (all

corresponding elements are same), then value of determinant is zero.

If each element of a row (or a column) of a determinant is multiplied by a

constant k, then its value gets multiplied by k.

If, to each element of any row or column of a determinant, the equimultiples

of corresponding elements of other row (or column) are added, then value of

Page 10: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 10

determinant remains the same, i.e., the value of determinant remain same if

we apply the operation Ri β†’ Ri + kRj or Ci β†’ Ci + k Cj .

If some or all elements of a row or column of a determinant are expressed

as sum of two (or more) terms, then the determinant can be expressed as

sum of two (or more) determinants

MINORS: Minor of an element π‘Žπ‘–π‘— of a determinant is the determinant obtained by

deleting its ith row and jth column in which element π‘Žπ‘–π‘— lies. Minor of an element π‘Žπ‘–π‘—

is denoted by 𝑀𝑖𝑗.

CO-FACTORS: Cofactor of an element π‘Žπ‘–π‘— , denoted by 𝐴𝑖𝑗 is defined by 𝐴𝑖𝑗 =

(βˆ’1)𝑖+𝑗. 𝑀𝑖𝑗 , where 𝑀𝑖𝑗 is minor of π‘Žπ‘–π‘—

ADJOINT OF A MATRIX: The adjoint of a square matrix 𝐴 = [π‘Žπ‘–π‘—] is defined as the

transpose of the matrix [𝐴𝑖𝑗] , where 𝐴𝑖𝑗 is the cofactor of the element π‘Žπ‘–π‘— . Adjoint

of the matrix A is denoted by adj A.

INVERSE OF A MATRIX: Let A be a square matrix.

π΄βˆ’1 =1

|𝐴|π‘Žπ‘‘π‘—π΄

SOLUTION OF SYSTEM OF LINEAR EQUATIONS BY USING MATRIX METHOD:

Let the system of linear equations be

π‘Ž1π‘₯ + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

π‘Ž2π‘₯ + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

π‘Ž3π‘₯ + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

These equations can be written as

[

π‘Ž1 𝑏1 𝑐1π‘Ž2 𝑏2 𝑐2

π‘Ž3 𝑏3 𝑐3

] [π‘₯𝑦𝑧] = [

𝑑1

𝑑2

𝑑3

]

𝐴𝑋 = 𝐡

𝑋 = π΄βˆ’1𝐡

π΄βˆ’1𝑒π‘₯𝑖𝑠𝑑𝑠, 𝑖𝑓 |𝐴| β‰  0 𝑖. 𝑒 π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› 𝑒π‘₯π‘–π‘ π‘‘π‘ π‘Žπ‘›π‘‘ 𝑖𝑑 𝑖𝑠 π‘’π‘›π‘–π‘žπ‘’π‘’.

π‘‡β„Žπ‘’ π‘ π‘¦π‘ π‘‘π‘’π‘š π‘œπ‘“ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›π‘  𝑖𝑠 π‘ π‘Žπ‘–π‘‘ π‘‘π‘œ 𝑏𝑒 π‘π‘œπ‘›π‘ π‘–π‘ π‘‘π‘’π‘›π‘‘ 𝑖𝑓 π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› 𝑒π‘₯𝑖𝑠𝑑𝑠.

𝑖𝑓 |𝐴| = 0 , π‘‘β„Žπ‘’π‘› 𝑀𝑒 π‘π‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ (π‘Žπ‘‘π‘—π΄)𝐡.

Page 11: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 11

𝐼𝑓 |𝐴| = 0 π‘Žπ‘›π‘‘ (π‘Žπ‘‘π‘—π΄)𝐡 β‰  𝑂 , (O being zero matrix), then solution does not

exist and the system of equations is called inconsistent.

𝐼𝑓 |𝐴| = 0 π‘Žπ‘›π‘‘ (π‘Žπ‘‘π‘—π΄)𝐡 = 𝑂, then system may be either consistent or

inconsistent according as the system have either infinitely many solutions or

no solution.

IMPORTANT NOTES:

The matrix A is singular if |𝐴| = 0

|πœ†π΄| = πœ†π‘›|𝐴|,π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 = π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐴

𝐴(π‘Žπ‘‘π‘—π΄) = (π‘Žπ‘‘π‘—π΄)𝐴 = |𝐴|𝐼

|π‘Žπ‘‘π‘—π΄| = |𝐴|π‘›βˆ’1, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 = π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐴

|𝐴(π‘Žπ‘‘π‘—π΄)| = |𝐴|𝑛, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 = π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝐴

|𝐴𝐡| = |𝐴||𝐡|

(𝐴𝐡)βˆ’1 = π΅βˆ’1π΄βˆ’1

|π΄βˆ’1| = |𝐴|βˆ’1

|𝐴𝑇| = |𝐴|

CONTINUITY AND DIFFERENTIABLITY

CONTINUITY: Suppose f is a real function on a subset of the real numbers and let a

be a point in the domain of f. Then f is continuous at a limπ‘₯βŸΆπ‘Ž

𝑓(π‘₯) = 𝑓(π‘Ž)

i.e 𝐿𝐻𝐿 = 𝑅𝐻𝐿 = 𝑓(π‘Ž)

limπ‘₯β†’π‘Žβˆ’

𝑓(π‘₯) = limπ‘₯β†’π‘Ž+

𝑓(π‘₯) = 𝑓(π‘Ž)

DIFFERENTIATION:

FIRST PRINCIPLE:

Let 𝑦 = 𝑓(π‘₯), π‘‘β„Žπ‘’π‘› 𝑑𝑦

𝑑π‘₯= lim

β„Žβ†’0

𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)

β„Ž

𝑦 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ ⇒𝑑𝑦

𝑑π‘₯= 0

𝑦 = π‘₯𝑛 ⇒𝑑𝑦

𝑑π‘₯= 𝑛π‘₯π‘›βˆ’1

𝑦 = 𝑠𝑖𝑛π‘₯ ⇒𝑑𝑦

𝑑π‘₯= π‘π‘œπ‘ π‘₯

𝑦 = π‘π‘œπ‘ π‘₯ ⇒𝑑𝑦

𝑑π‘₯= βˆ’π‘ π‘–π‘›π‘₯

Page 12: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 12

𝑦 = π‘‘π‘Žπ‘›π‘₯ ⇒𝑑𝑦

𝑑π‘₯= 𝑠𝑒𝑐2π‘₯

𝑦 = π‘π‘œπ‘ π‘’π‘π‘₯ ⇒𝑑𝑦

𝑑π‘₯= βˆ’π‘π‘œπ‘ π‘’π‘π‘₯. π‘π‘œπ‘‘π‘₯

𝑦 = 𝑠𝑒𝑐π‘₯ ⇒𝑑𝑦

𝑑π‘₯= 𝑠𝑒𝑐π‘₯. π‘‘π‘Žπ‘›π‘₯

𝑦 = π‘π‘œπ‘‘π‘₯ ⇒𝑑𝑦

𝑑π‘₯= βˆ’π‘π‘œπ‘ π‘’π‘2π‘₯

𝑦 = sinβˆ’1 π‘₯ ⇒𝑑𝑦

𝑑π‘₯=

1

√1βˆ’π‘₯2

𝑦 = cosβˆ’1 π‘₯ ⇒𝑑𝑦

𝑑π‘₯= βˆ’

1

√1βˆ’π‘₯2

𝑦 = tanβˆ’1 π‘₯ ⇒𝑑𝑦

𝑑π‘₯=

1

1+π‘₯2

𝑦 = cosecβˆ’1 π‘₯ ⇒𝑑𝑦

𝑑π‘₯= βˆ’

1

π‘₯√π‘₯2βˆ’1

𝑦 = secβˆ’1 π‘₯ ⇒𝑑𝑦

𝑑π‘₯=

1

π‘₯√π‘₯2βˆ’1

𝑦 = cotβˆ’1 π‘₯ ⇒𝑑𝑦

𝑑π‘₯= βˆ’

1

1+π‘₯2

𝑦 = 𝑒π‘₯ ⇒𝑑𝑦

𝑑π‘₯= 𝑒π‘₯

𝑦 = π‘Žπ‘₯ ⇒𝑑𝑦

𝑑π‘₯= π‘Žπ‘₯. π‘™π‘œπ‘”π‘Ž

𝑦 = π‘™π‘œπ‘”π‘₯ ⇒𝑑𝑦

𝑑π‘₯=

1

π‘₯

Product Rule: 𝑦 = 𝑒. 𝑣 ⇒𝑑𝑦

𝑑π‘₯= 𝑒. 𝑣′ + 𝑣. 𝑒′, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒′ =

𝑑𝑒

𝑑π‘₯ , 𝑣′ =

𝑑𝑣

𝑑π‘₯

Quotient Rule: 𝑦 =𝑒

𝑣⇒

𝑑𝑦

𝑑π‘₯=

𝑣.π‘’β€²βˆ’π‘’.𝑣′

𝑣2, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒′ =

𝑑𝑒

𝑑π‘₯ , 𝑣′ =

𝑑𝑣

𝑑π‘₯

Chain Rule: Let 𝑦 = 𝑓(𝑑)π‘Žπ‘›π‘‘ π‘₯ = 𝑔(𝑑) π‘‘β„Žπ‘’π‘› 𝑑𝑦

𝑑π‘₯=

𝑑𝑦

𝑑𝑑.𝑑𝑑

𝑑π‘₯

𝑦 = 𝑓(π‘Žπ‘₯ + 𝑏) βŸΉπ‘‘π‘¦

𝑑π‘₯= π‘Ž. 𝑓′(π‘Žπ‘₯ + 𝑏),

𝐸π‘₯: 𝑦 = sin(4π‘₯ + 9) βŸΉπ‘‘π‘¦

𝑑π‘₯= 4. cos (4π‘₯ + 9)

𝑦 = [𝑓(π‘₯)]𝑛 ⇒𝑑𝑦

𝑑π‘₯= 𝑛. [𝑓(π‘₯)]π‘›βˆ’1. 𝑓′(π‘₯)

Logarithmic Differentiation: Let 𝑦 = [𝑒(π‘₯)]𝑣(π‘₯)

π‘™π‘œπ‘”π‘¦ = 𝑣. π‘™π‘œπ‘”π‘’ ⟹1

𝑦.𝑑𝑦

𝑑π‘₯=

𝑣

𝑒. 𝑒′ + 𝑣′. π‘™π‘œπ‘”π‘’

𝑑𝑦

𝑑π‘₯= 𝑦 [

𝑣

𝑒. . 𝑒′ + 𝑣′. π‘™π‘œπ‘”π‘’]

Page 13: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 13

Mean Value Theorem: Let f : [a, b] β†’ R be a continuous function

on [a, b] and differentiable on (a, b). Then there exists some c in (a, b)

such that some 𝑐 ∈ (π‘Ž, 𝑏) π‘ π‘’π‘β„Žπ‘Žπ‘‘ π‘‘β„Žπ‘Žπ‘‘ 𝑓′(𝑐) =𝑓(𝑏)βˆ’π‘“(π‘Ž)

π‘βˆ’π‘Ž

Rolle’s Theorem: Let f : [a, b] β†’ R be continuous on [a, b] and

differentiable on (a, b), such that f(a) = f(b), where a and b are some

real numbers. Then there exists some c in (a, b) such that fβ€²(c) = 0.

Note: In above all formulas, π’π’π’ˆπ’™ = π’π’π’ˆπ’†π’™

APPLICATION OF DERIVATIVES

RATE OF CHANGE OF QUANTITIES

1) Area of circle (A) = πœ‹π‘Ÿ2

Rate of change of area = 𝑑𝐴

𝑑𝑑= 2πœ‹π‘Ÿ

π‘‘π‘Ÿ

𝑑𝑑

2) Circumference of circle (C) = 2πœ‹π‘Ÿ

Rate of change of Circumference = 𝑑𝐢

𝑑𝑑= 2πœ‹

π‘‘π‘Ÿ

𝑑𝑑

3) Perimeter of a rectangle (P) = 2(π‘₯ + 𝑦), where x = length , y = width

Rate of change of Perimeter = 𝑑𝑃

𝑑𝑑= 2(

𝑑π‘₯

π‘₯𝑑+

𝑑𝑦

𝑑𝑑)

4) Area of rectangle (A) = π‘₯. 𝑦 , where x = length , y = width

Rate of change of area = 𝑑𝐴

𝑑𝑑= π‘₯.

𝑑𝑦

𝑑𝑑+ 𝑦.

𝑑π‘₯

𝑑𝑑

5) Volume of cube (V) =π‘₯3, where x = edge of cube

Rate of change of Volume = 𝑑𝑉

𝑑𝑑= 3π‘₯2 𝑑π‘₯

𝑑𝑑

6) Surface area of cube (S) = 6π‘₯2

Rate of change of Surface area = 𝑑𝑆

𝑑𝑑= 6π‘₯

𝑑π‘₯

𝑑𝑑

7) Volume of sphere (V) = 4

3πœ‹π‘Ÿ3

Rate of change of Volume = 𝑑𝑉

𝑑𝑑=

4

3(3πœ‹π‘Ÿ2)

π‘‘π‘Ÿ

𝑑𝑑

Page 14: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 14

8) Surface area of Sphere (S) = 4πœ‹π‘Ÿ2

Rate of change of Surface area = 𝑑𝑆

𝑑𝑑= 8πœ‹π‘Ÿ

π‘‘π‘Ÿ

𝑑𝑑

9) Total cost = C(x), where C(x) isi Rupees of the production of x units

Marginal cost = 𝑑𝐢

𝑑π‘₯

10) Total Revenue = R(x)

Marginal Revenue = 𝑑𝑅

𝑑π‘₯

INCREASING AND DECREASING FUNCTION

Let I be an interval contained in the domain of a real valued function f. Then

f is said to be

(i) increasing on I 𝑖𝑓 π‘₯ < 𝑦 𝑖𝑛 𝐼 π‘‘β„Žπ‘’π‘› 𝑓(π‘₯) ≀ 𝑓(𝑦), π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝐼.

(ii) strictly increasing on I 𝑖𝑓 π‘₯ < 𝑦 𝑖𝑛 𝐼 π‘‘β„Žπ‘’π‘› 𝑓(π‘₯) < 𝑓(𝑦), π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝐼

(iii) decreasing on I 𝑖𝑓 π‘₯ < 𝑦 𝑖𝑛 𝐼 π‘‘β„Žπ‘’π‘› 𝑓(π‘₯) β‰₯ 𝑓(𝑦), π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝐼.

(iv) strictly decreasing on I 𝑖𝑓 π‘₯ < 𝑦 𝑖𝑛 𝐼 π‘‘β„Žπ‘’π‘› 𝑓(π‘₯) > 𝑓(𝑦), π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝐼

(a) f is strictly increasing in (π‘Ž, 𝑏) 𝑖𝑓 𝑓’(π‘₯) > 0 π‘“π‘œπ‘Ÿ π‘’π‘Žπ‘β„Ž π‘₯ ∈ (π‘Ž, 𝑏)

(b) f is strictly decreasing in (π‘Ž, 𝑏) 𝑖𝑓 𝑓’(π‘₯) < 0 π‘“π‘œπ‘Ÿ π‘’π‘Žπ‘β„Ž π‘₯ ∈ (π‘Ž, 𝑏)

A function will be increasing or decreasing in R if it is so in every interval of R

f is a constant function in [π‘Ž, 𝑏] 𝑖𝑓 𝑓’(π‘₯) = 0 π‘“π‘œπ‘Ÿ π‘’π‘Žπ‘β„Ž π‘₯ ∈ (π‘Ž, 𝑏)

TANGENTS AND NORMALS

Let given curve be y=f(x)

Slope of tangent to the curve at (π‘₯1 , 𝑦1) 𝑖𝑠 π‘š = [𝑑𝑦

𝑑π‘₯]π‘₯=π‘₯1

Slope of normal to the curve at (π‘₯1 , 𝑦1) = βˆ’1

π‘š

Equation of tangent at (π’™πŸ , π’šπŸ) π’Šπ’” π’š βˆ’ π’šπŸ = π’Ž(𝒙 βˆ’ π’™πŸ)

Equation of normal at (π’™πŸ , π’šπŸ) π’Šπ’” π’š βˆ’ π’šπŸ = βˆ’πŸ

π’Ž(𝒙 βˆ’ π’™πŸ)

Page 15: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 15

APPROXIMATION

Let y = f(x)

βˆ†π‘¦ =𝑑𝑦

𝑑π‘₯. βˆ†π‘₯

𝑦 + βˆ†π‘¦ = 𝑦 +𝑑𝑦

𝑑π‘₯. βˆ†π‘₯

i.e 𝑓(π‘₯ + βˆ†π‘₯) = 𝑓(π‘₯) + 𝑓′(π‘₯). βˆ†π‘₯

MAXIMA AND MINIMA

First Derivative Test:

Let f be a function defined on an open interval I. Let f be continuous at a critical

point c in I. Then

(i) If f β€²(x) changes sign from positive to negative as x increases through c, then

c is a point of local maxima and maximum value of 𝑓(π‘₯) = 𝑓( 𝑐) .

(ii) If f β€²(x) changes sign from negative to positive as x increases through c, then

c is a point of local minima and minimum value of 𝑓(π‘₯) = 𝑓( 𝑐) .

(iii) If f β€²(x) does not change sign as x increases through c, then c is neither a

point of local maxima nor a point of local minima. Infact, such a point is called

point of inflexion.

Second Derivative Test

Let f be a function defined on an interval I and c ∈ I. Let f be twice differentiable

at c. Then

(i) π‘₯ = 𝑐 is a point of local maxima if 𝑓 β€²(𝑐) = 0 and 𝑓 β€³(𝑐) < 0 The values f (c) is

local maximum value of f .

(ii) (ii) x = c is a point of local minima if 𝑓 β€²(𝑐) = 0 and 𝑓 β€³(𝑐) > 0 In this case, f (c)

is local minimum value of f .

(iii) The test fails if 𝑓 β€²(𝑐) = 0 and 𝑓 β€³(𝑐) = 0. In this case, we go back to the

first derivative test and find whether c is a point of maxima, minima or a point

of inflexion. Absolute maxima and absolute minima (maxima and minima in a closed interval)

Given 𝑓(π‘₯) π‘Žπ‘›π‘‘ π‘–π‘›π‘‘π‘’π‘Ÿπ‘£π‘Žπ‘™ [π‘Ž, 𝑏]

Find 𝑓’(π‘₯)

Let 𝑓’(π‘₯) = 0

Page 16: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 16

Find critical values. (i.e find the values of x if 𝑓’(π‘₯) = 0 ). say

π‘₯ = π‘₯1 π‘Žπ‘›π‘‘ π‘₯ = π‘₯2

Calculate 𝑓(π‘Ž), 𝑓(π‘₯1), 𝑓(π‘₯2) π‘Žπ‘›π‘‘ 𝑓(𝑏).

Identify maxima and minima values of f(x).

INTEGRALS

INDEFINITE INTEGRALS

1) ∫1𝑑π‘₯ = π‘₯ + 𝑐

2) ∫π‘₯ 𝑑π‘₯ =π‘₯2

2+ 𝑐

3) ∫π‘₯𝑛 𝑑π‘₯ =π‘₯𝑛+1

𝑛+1+ 𝑐, 𝑛 β‰  βˆ’1

4) ∫ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯ = βˆ’π‘π‘œπ‘ π‘₯ + 𝑐

5) ∫ π‘π‘œπ‘ π‘₯ 𝑑π‘₯ = 𝑠𝑖𝑛π‘₯ + 𝑐

6) ∫ π‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯ = π‘™π‘œπ‘”|𝑠𝑒𝑐π‘₯| + 𝑐

7) ∫ π‘π‘œπ‘ π‘’π‘π‘₯ 𝑑π‘₯ = π‘™π‘œπ‘”|π‘π‘œπ‘ π‘’π‘π‘₯ βˆ’ π‘π‘œπ‘‘π‘₯| + 𝑐

8) ∫ 𝑠𝑒𝑐π‘₯ 𝑑π‘₯ = π‘™π‘œπ‘”|𝑠𝑒𝑐π‘₯ + π‘‘π‘Žπ‘›π‘₯| + 𝑐

9) ∫ π‘π‘œπ‘‘π‘₯ 𝑑π‘₯ = π‘™π‘œπ‘”|𝑠𝑖𝑛π‘₯| + 𝑐

10) ∫ 𝑠𝑒𝑐2π‘₯ 𝑑π‘₯ = π‘‘π‘Žπ‘›π‘₯ + 𝑐

11) ∫ π‘π‘œπ‘ π‘’π‘2π‘₯ 𝑑π‘₯ = βˆ’π‘π‘œπ‘‘π‘₯ + 𝑐

12) ∫ 𝑠𝑒𝑐π‘₯. π‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯ = 𝑠𝑒𝑐π‘₯ + 𝑐

13) ∫ π‘π‘œπ‘ π‘’π‘π‘₯. π‘π‘œπ‘‘π‘₯ 𝑑π‘₯ = βˆ’π‘π‘œπ‘ π‘’π‘π‘₯ + 𝑐

14) ∫1

√1βˆ’π‘₯2𝑑π‘₯ = sinβˆ’1 π‘₯ + 𝑐 π‘œπ‘Ÿ βˆ’ cosβˆ’1 π‘₯ + 𝑐

15) ∫1

1+π‘₯2 𝑑π‘₯ = tanβˆ’1 π‘₯ + 𝑐 π‘œπ‘Ÿ βˆ’ cotβˆ’1 π‘₯ + 𝑐

16) ∫1

π‘₯√π‘₯2βˆ’1𝑑π‘₯ = secβˆ’1 π‘₯ + 𝑐 π‘œπ‘Ÿ βˆ’ cosecβˆ’1 π‘₯ + 𝑐

17) ∫ 𝑒π‘₯ 𝑑π‘₯ = 𝑒π‘₯ + 𝑐

18) ∫1

π‘₯𝑑π‘₯ = π‘™π‘œπ‘”|π‘₯| + 𝑐

19) βˆ«π‘Žπ‘₯ 𝑑π‘₯ = π‘Žπ‘₯π‘™π‘œπ‘”π‘Ž + 𝑐

Page 17: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 17

20) ∫1

π‘₯2βˆ’π‘Ž2𝑑π‘₯ =

1

2π‘Žπ‘™π‘œπ‘” |

π‘₯βˆ’π‘Ž

π‘₯+π‘Ž| + 𝑐

21) ∫1

π‘Ž2βˆ’π‘₯2 𝑑π‘₯ =1

2π‘Žπ‘™π‘œπ‘” |

π‘Ž+π‘₯

π‘Žβˆ’π‘₯| + 𝑐

22) ∫1

π‘₯2+π‘Ž2𝑑π‘₯ =

1

π‘Žtanβˆ’1 π‘₯

π‘Ž+ 𝑐

23) ∫1

√π‘₯2βˆ’π‘Ž2𝑑π‘₯ = π‘™π‘œπ‘”|π‘₯ + √π‘₯2 βˆ’ π‘Ž2| + 𝑐

24) ∫1

√π‘₯2+π‘Ž2𝑑π‘₯ = π‘™π‘œπ‘”|π‘₯ + √π‘₯2 + π‘Ž2| 𝑑π‘₯ = +𝑐

25) ∫1

βˆšπ‘Ž2βˆ’π‘₯2𝑑π‘₯ = sinβˆ’1 π‘₯

π‘Ž+ 𝑐

26) ∫√π‘₯2 βˆ’ π‘Ž2 𝑑π‘₯ =π‘₯

2√π‘₯2 βˆ’ π‘Ž2 βˆ’

π‘Ž2

2π‘™π‘œπ‘”|π‘₯ + √π‘₯2 βˆ’ π‘Ž2| + 𝑐

27) ∫√π‘₯2 + π‘Ž2 𝑑π‘₯ =π‘₯

2√π‘₯2 + π‘Ž2 +

π‘Ž2

2π‘™π‘œπ‘”|π‘₯ + √π‘₯2 + π‘Ž2| + 𝑐

28) βˆ«βˆšπ‘Ž2 βˆ’ π‘₯2 𝑑π‘₯ =π‘₯

2βˆšπ‘Ž2 βˆ’ π‘₯2 +

π‘Ž2

2sinβˆ’1 π‘₯

π‘Ž+𝑐

29) ∫ 𝑒π‘₯[𝑓(π‘₯) + 𝑓′(π‘₯)] 𝑑π‘₯ = 𝑒π‘₯𝑓(π‘₯) + 𝑐

30) βˆ«π‘’. 𝑣 𝑑π‘₯ = 𝑒 ∫ 𝑣𝑑π‘₯ βˆ’ ∫[𝑒′ ∫ 𝑣𝑑π‘₯] 𝑑π‘₯ + 𝑐,π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒 = 𝑒(π‘₯) π‘Žπ‘›π‘‘ 𝑣 = 𝑣(π‘₯)

31) ∫[𝑓(π‘₯) Β± 𝑔(π‘₯)]𝑑π‘₯ = βˆ«π‘“(π‘₯)𝑑π‘₯ Β± βˆ«π‘”(π‘₯)𝑑π‘₯

32) βˆ«π‘˜. 𝑓(π‘₯)𝑑π‘₯ = π‘˜ βˆ«π‘“(π‘₯)𝑑π‘₯,π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜ 𝑖𝑠 π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘.

Note: Let antiderivative of 𝑓(π‘₯) = 𝐹(π‘₯)

i.e. βˆ«π‘“(π‘₯)𝑑π‘₯ = 𝐹(π‘₯) + 𝑐, then

βˆ«π‘“(π‘Žπ‘₯ + 𝑏)𝑑π‘₯ =1

π‘ŽπΉ(π‘Žπ‘₯ + 𝑏) + 𝑐

Partial fractions

The rational function 𝑃(π‘₯)

𝑄(π‘₯) is said to be proper if the degree of 𝑄(π‘₯) is

less than the degree of 𝑃(π‘₯)

Partial fractions can be used only if the integrand is proper rational

function

S.No Form of rational function Form of Partial fraction

1 1

(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏)

𝐴

π‘₯ βˆ’ π‘Ž+

𝑏

π‘₯ βˆ’ 𝑏

Page 18: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 18

2 𝑝π‘₯ + π‘ž

(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏)

𝐴

π‘₯ βˆ’ π‘Ž+

𝑏

π‘₯ βˆ’ 𝑏

3 1

(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏)(π‘₯ βˆ’ 𝑐)

𝐴

π‘₯ βˆ’ π‘Ž+

𝑏

π‘₯ βˆ’ 𝑏+

1

π‘₯ βˆ’ 𝑐

4 𝑝π‘₯ + π‘ž

(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏)(π‘₯ βˆ’ 𝑐)

𝐴

π‘₯ βˆ’ π‘Ž+

𝑏

π‘₯ βˆ’ 𝑏+

1

π‘₯ βˆ’ 𝑐

5 𝑝π‘₯2 + π‘žπ‘₯ + π‘Ÿ

(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏)(π‘₯ βˆ’ 𝑐)

𝐴

π‘₯ βˆ’ π‘Ž+

𝑏

π‘₯ βˆ’ 𝑏+

1

π‘₯ βˆ’ 𝑐

6 1

(π‘₯ βˆ’ π‘Ž)2(π‘₯ βˆ’ 𝑏)

𝐴

π‘₯ βˆ’ π‘Ž+

𝐡

(π‘₯ βˆ’ π‘Ž)2+

𝐢

π‘₯ βˆ’ 𝑏

7 𝑝π‘₯ + π‘ž

(π‘₯ βˆ’ π‘Ž)2(π‘₯ βˆ’ 𝑏)

𝐴

π‘₯ βˆ’ π‘Ž+

𝐡

(π‘₯ βˆ’ π‘Ž)2+

𝐢

π‘₯ βˆ’ 𝑏

8 𝑝π‘₯2 + π‘žπ‘₯ + π‘Ÿ

(π‘₯ βˆ’ π‘Ž)2(π‘₯ βˆ’ 𝑏)

𝐴

π‘₯ βˆ’ π‘Ž+

𝐡

(π‘₯ βˆ’ π‘Ž)2+

𝐢

π‘₯ βˆ’ 𝑏

9

𝑝π‘₯2 + π‘žπ‘₯ + π‘Ÿ

(π‘₯ βˆ’ π‘Ž)(π‘₯2 + 𝑏π‘₯ + 𝑐)

where π‘₯2 + 𝑏π‘₯ + 𝑐 cannot

be factorized further

𝐴

π‘₯ βˆ’ π‘Ž+

𝐡π‘₯ + 𝐢

π‘₯2 + 𝑏π‘₯ + 𝑐

Integral of the type

πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ

π‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ ,

πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ

βˆšπ‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ ,πΏπ‘–π‘›π‘’π‘Žπ‘Ÿβˆšπ‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘

πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ = 𝐴𝑑

𝑑π‘₯(π‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘) + 𝐡

DEFINITE INTEGRALS

Definite integralas the limit of a sum

βˆ«π‘“(π‘₯)

𝑏

π‘Ž

𝑑π‘₯ = limβ„Žβ†’0

β„Ž. [𝑓(π‘Ž) + 𝑓(π‘Ž + β„Ž) + 𝑓(π‘Ž + 2β„Ž) + β‹―+ 𝑓(π‘Ž + (𝑛 βˆ’ 1)β„Ž]

π‘€β„Žπ‘’π‘Ÿπ‘’ β„Ž =𝑏 βˆ’ π‘Ž

𝑛 β‡’ π‘›β„Ž = 𝑏 βˆ’ π‘Ž

Properties Of Definite Integrals

1) ∫ 𝑓(π‘₯)𝑑π‘₯π‘Ž

π‘Ž= 0

Page 19: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 19

2) ∫ 𝑓(π‘₯)𝑏

π‘Žπ‘‘π‘₯ = ∫ 𝑓(𝑑)

𝑏

π‘Žπ‘‘π‘‘

3) ∫ 𝑓(π‘₯)𝑏

π‘Žπ‘‘π‘₯ = βˆ’βˆ« 𝑓(π‘₯)𝑑π‘₯

π‘Ž

𝑏

4) ∫ 𝑓(π‘₯)𝑏

π‘Žπ‘‘π‘₯ = ∫ 𝑓(π‘₯)𝑑π‘₯

𝑐

π‘Ž+ ∫ 𝑓(π‘₯)𝑑π‘₯,π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž < 𝑐 < 𝑏

𝑏

𝑐

5) ∫ 𝑓(π‘₯)𝑏

π‘Žπ‘‘π‘₯ = ∫ 𝑓(π‘Ž + 𝑏 βˆ’ π‘₯)

𝑏

π‘Žπ‘‘π‘₯

6) ∫ 𝑓(π‘₯)𝑑π‘₯π‘Ž

0= ∫ 𝑓(π‘Ž βˆ’ π‘₯)𝑑π‘₯

π‘Ž

0

7) ∫ 𝑓(π‘₯)2π‘Ž

0𝑑π‘₯ = ∫ 𝑓(π‘₯)𝑑π‘₯

π‘Ž

0+ ∫ 𝑓(2π‘Ž βˆ’ π‘₯)𝑑π‘₯

π‘Ž

0

8) ∫ 𝑓(π‘₯)𝑑π‘₯2π‘Ž

0= {

∫ 𝑓(π‘₯)𝑑π‘₯ , 𝑖𝑓 𝑓(2π‘Ž βˆ’ π‘₯) = 𝑓(π‘₯)π‘Ž

0

0 , 𝑖𝑓 𝑓(2π‘Ž βˆ’ π‘₯) = βˆ’π‘“(π‘₯)

9) ∫ 𝑓(π‘₯)π‘Ž

βˆ’π‘Žπ‘‘π‘₯ = {

2∫ 𝑓(π‘₯)π‘Ž

0𝑑π‘₯ , 𝑖𝑓 𝑓(π‘₯)𝑖𝑠 𝑒𝑣𝑒𝑛. 𝑖. 𝑒 𝑓(βˆ’π‘₯) = 𝑓(π‘₯)

0 , 𝑖𝑓 𝑓(π‘₯)𝑖𝑠 π‘œπ‘‘π‘‘. 𝑖. 𝑒 𝑓(βˆ’π‘₯) = βˆ’π‘“(π‘₯)

APPLICATION OF INTEGRALS

CURVE – LINE

β€’ CIRCLE – LINE

β€’ PARABOLA – LINE

β€’ ELLIPSE - LINE

CURVE – CURVE

β€’ PARABOLA – PARABOLA

β€’ PARABOLA – CIRCLE

β€’ CIRCLE -CIRCLE

AREA OF TRIANGLE

β€’ CO-ORDINATES OF VERTICES ARE GIVEN

β€’ EQUATIONS OF SIDES ARE GIVEN

Page 20: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 20

STEPS

DRAW THE DIAGRAM

MAKE A SHADED REGION

FIND INTERSECTION POINTS

IDENTIFY THE LIMITS

WRITE THE INTEGRAL(S) FOR THE REGION

EVALUATE THE INTEGRAL

THE VALUE SHOULD BE POSITIVE

1) π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ β„Žπ‘Žπ‘‘π‘’π‘‘ π‘Ÿπ‘’π‘”π‘–π‘œπ‘› = ∫ 𝑓(π‘₯)𝑑π‘₯𝑏

π‘Ž

Page 21: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 21

DIFFERENTIAL EQUATIONS

Methods of solving First Order and First Degree Differential Equations

Differential Equations with Variables seperables

Homogeneous differential equations

Linear differential equations.

Differential Equations with Variables separables

β€’ Let the differential equation be 𝑑𝑦

𝑑π‘₯=

𝑓(π‘₯)

𝑔(𝑦)

then 𝑔(𝑦)𝑑𝑦 = 𝑓(π‘₯)𝑑π‘₯

then integrate on both sides βˆ«π‘”(𝑦)𝑑𝑦 = βˆ«π‘“(π‘₯)𝑑π‘₯

β€’ Let the differential equation be 𝑑𝑦

𝑑π‘₯=

𝑔(𝑦)

𝑓(π‘₯)

then 𝑑𝑦

𝑔(𝑦)=

𝑑π‘₯

𝑓(π‘₯)

then integrate on both sides βˆ«π‘‘π‘¦

𝑔(𝑦)= ∫

𝑑π‘₯

𝑓(π‘₯)

β€’ Let the differential equation be 𝑑𝑦

𝑑π‘₯= 𝑓(π‘₯). 𝑔(𝑦)

then 𝑑𝑦

𝑔(𝑦)= 𝑓(π‘₯)𝑑π‘₯

then integrate on both sides βˆ«π‘‘π‘¦

𝑔(𝑦)= βˆ«π‘“(π‘₯)𝑑π‘₯

Homogeneous differential equations

A function 𝐹(π‘₯, 𝑦) is said to be homogeneous function of degree n if

𝐹(πœ†π‘₯, πœ†π‘¦) = πœ†π‘›πΉ(π‘₯, 𝑦)

A differential equation of the form 𝑑𝑦

𝑑π‘₯= 𝐹(π‘₯, 𝑦) is saidto be homogeneous if F(x,y)

is a homogeneous function of degree zero

i.e. if 𝐹(πœ†π‘₯, πœ†π‘¦) = πœ†0𝐹(π‘₯, 𝑦)

Steps to solve the homogeneous differential equation of the type: π’…π’š

𝒅𝒙= 𝒇(

π’š

𝒙)

Let 𝑦 = 𝑣π‘₯

𝑑𝑦

𝑑π‘₯= 𝑣 + π‘₯

𝑑𝑣

𝑑π‘₯

Substitute 𝑦 = 𝑣π‘₯ and 𝑑𝑦

𝑑π‘₯= 𝑣 + π‘₯

𝑑𝑣

𝑑π‘₯ in

𝑑𝑦

𝑑π‘₯= 𝑓(

𝑦

π‘₯)

Then use variables and separables in terms of 𝑦 and 𝑣 only

Steps to solve the homogeneous differential equation of the type: 𝒅𝒙

π’…π’š= 𝒇(

𝒙

π’š)

Let π‘₯ = 𝑣𝑦

Page 22: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 22

𝑑π‘₯

𝑑𝑦= 𝑣 + 𝑦

𝑑𝑣

𝑑𝑦

Substitute π‘₯ = 𝑣𝑦 and 𝑑π‘₯

𝑑𝑦= 𝑣 + 𝑦

𝑑𝑣

𝑑𝑦 in

𝑑π‘₯

𝑑𝑦= 𝑓(

π‘₯

𝑦)

Then use variables and separables in terms of π‘₯ and 𝑣 only

Linear differential equation

Steps to solve the Linear differential equation of the type: π’…π’š

𝒅𝒙+ 𝑷(𝒙)π’š = 𝑸(𝒙)

𝑑𝑦

𝑑π‘₯+ 𝑃(π‘₯)𝑦 = 𝑄(π‘₯)

πΌπ‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘› πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ (𝐼𝐹) = π‘’βˆ«π‘(π‘₯)𝑑π‘₯

π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› 𝑖𝑠 𝑦. (𝐼𝐹) = ∫(𝐼𝐹). 𝑄(π‘₯)𝑑π‘₯

Steps to solve the Linear differential equation of the type: 𝒅𝒙

π’…π’š+ 𝑷(π’š)𝒙 = 𝑸(π’š)

𝑑π‘₯

𝑑𝑦+ 𝑃(𝑦)π‘₯ = 𝑄(𝑦)

πΌπ‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘› πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ (𝐼𝐹) = π‘’βˆ«π‘(𝑦)𝑑𝑦

π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘₯. (𝐼𝐹) = ∫(𝐼𝐹). 𝑄(𝑦)𝑑𝑦

VECTORS

Position vector of the point 𝐴(π‘Ž , 𝑏 , 𝑐 ) is 𝑂𝐴 = π‘₯𝑖 + 𝑦𝑗 + 𝑧��

𝐴𝐡 = 𝑂𝐡 βˆ’ 𝑂𝐴

Let π‘Ž = π‘₯𝑖 + 𝑦𝑗 + 𝑧�� then |π‘Ž | = √π‘₯2 + 𝑦2 + 𝑧2

Unit vector of π‘Ž =π‘Ž

|π‘Ž | , is denoted by οΏ½οΏ½

Let π‘Ž = π‘Žπ‘– + 𝑏𝑗 + 𝑐�� is said to be a unit vector if |π‘Ž | = 1

Projection of π‘Ž π‘œπ‘› οΏ½οΏ½ =π‘Ž . οΏ½οΏ½

|οΏ½οΏ½ |

THREE DIMENSIONAL GEOMETRY

Direction cosines of a line are the cosines of the angles made by the line with the

positive directions of the coordinate axes.

Let a line making the angles with π‘₯, 𝑦, 𝑧 axis are 𝛼, 𝛽, 𝛾 repectively.

Direction cosines are 𝑙 = π‘π‘œπ‘ π›Ό,π‘š = π‘π‘œπ‘ π›½, 𝑛 = π‘π‘œπ‘ π›Ύ

If 𝑙, π‘š, 𝑛 are the direction cosines of a line, then l2 + m2 +n2 = 1.

Direction ratios of a line joining two points 𝑃(π‘₯1, 𝑦1, 𝑧1) π‘Žπ‘›π‘‘ 𝑄(π‘₯2, 𝑦2, 𝑧2) are

π‘Ž = π‘₯2 βˆ’ π‘₯1, 𝑏 = 𝑦2 βˆ’ 𝑦1, π‘Ž = 𝑦2 βˆ’ 𝑦1

Page 23: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 23

If 𝑙, π‘š, 𝑛 are the direction cosines and π‘Ž, 𝑏, 𝑐 are the direction ratios of a line then

𝑙 = Β±π‘Ž

βˆšπ‘Ž2+𝑏2+𝑐2, π‘š = Β±

𝑏

βˆšπ‘Ž2+𝑏2+𝑐2, 𝑛 = Β±

𝑐

βˆšπ‘Ž2+𝑏2+𝑐2

Direction cosines of a line joining two points

𝑃(π‘₯1, 𝑦1, 𝑧1) π‘Žπ‘›π‘‘ 𝑄(π‘₯2, 𝑦2, 𝑧2) π‘Žπ‘Ÿπ‘’ π‘₯2βˆ’π‘₯1

𝑃𝑄,𝑦2βˆ’π‘¦1

𝑃𝑄,𝑧2βˆ’π‘§1

𝑃𝑄

where PQ= √(π‘₯2 βˆ’ π‘₯1)2 + (𝑦2 βˆ’ 𝑦1)2 + (𝑧2 βˆ’ 𝑧1)2

Direction ratios of a line are the numbers which are proportional to the direction

cosines of a line.

Skew lines are lines in space which are neither parallel nor intersecting. They lie in

different planes.

Angle between skew lines is the angle between two intersecting lines drawn from any

point (preferably through the origin) parallel to each of the skew lines.

If 𝑙1, π‘š1, 𝑛1 π‘Žπ‘›π‘‘ 𝑙2, π‘š2, 𝑛2 are the direction cosines of two lines; and πœƒ is the acute angle

between the two lines; then π‘π‘œπ‘ πœƒ|𝑙1𝑙2 + π‘š1π‘š2 + 𝑛1𝑛2|

If π‘Ž1, 𝑏1, 𝑐1π‘Žπ‘›π‘‘ π‘Ž2, 𝑏2, 𝑐2 are the direction ratios of two lines and πœƒ is the acute angle

between the two lines; then π‘π‘œπ‘ πœƒ = |π‘Ž1π‘Ž2+𝑏1𝑏2+𝑐1𝑐2

βˆšπ‘Ž12+𝑏1

2+𝑐12βˆšπ‘Ž2

2+𝑏22+𝑐2

2|

Vector equation of a line that passes through the given point whose position vector is π‘Ž

and parallel to a given vectorοΏ½οΏ½ 𝑖𝑠 π‘Ÿ = π‘Ž + πœ†οΏ½οΏ½ .

Equation of a line through a point (π‘₯1, 𝑦1, 𝑧1) and having direction cosines 𝑙, π‘š, 𝑛 is π‘₯βˆ’π‘₯1

𝑙=

π‘¦βˆ’π‘¦1

π‘š=

π‘§βˆ’π‘§1

𝑛

The vector equation of a line which passes through two points whose position vectors

are π‘Ž π‘Žπ‘›π‘‘ οΏ½οΏ½ 𝑖𝑠 π‘Ÿ = π‘Ž + πœ†(οΏ½οΏ½ βˆ’ π‘Ž )

Cartesian equation of a line that passes through two points

(π‘₯1, 𝑦1, 𝑧1) π‘Žπ‘›π‘‘ (π‘₯2, 𝑦2, 𝑧2) 𝑖𝑠 π‘₯βˆ’π‘₯1

π‘₯2βˆ’π‘₯1=

π‘¦βˆ’π‘¦1

𝑦2βˆ’π‘¦1=

π‘§βˆ’π‘§1

𝑧2βˆ’π‘§1 .

If πœƒ is the acute angle between π‘Ÿ = π‘Ž1 + πœ†π‘1 π‘Žπ‘›π‘‘ π‘Ÿ = π‘Ž2 + πœ†π‘2

, π‘‘β„Žπ‘’π‘› π‘π‘œπ‘ πœƒ = |𝑏1 .𝑏2

|𝑏1 ||𝑏2 ||

If π‘₯βˆ’π‘₯1

𝑙1=

π‘¦βˆ’π‘¦1

π‘š1=

π‘§βˆ’π‘§1

𝑛1π‘Žπ‘›π‘‘

π‘₯βˆ’π‘₯2

𝑙2=

π‘¦βˆ’π‘¦2

π‘š2=

π‘§βˆ’π‘§2

𝑛2 are the equations of two lines, then the

acute angle between the two lines is given by π‘π‘œπ‘ πœƒ = |𝑙1𝑙2 + π‘š1π‘š2 + 𝑛1𝑛2|.

Shortest distance between two skew lines is the line segment perpendicular to both the

lines.

Shortest distance between π‘Ÿ = π‘Ž1 + πœ†π‘1 π‘Žπ‘›π‘‘ π‘Ÿ = π‘Ž2 + πœ‡π‘2

𝑖𝑠 |(𝑏1 ×𝑏2 ).(π‘Ž2 βˆ’π‘Ž1 )

|𝑏1 ×𝑏2 ||

Shortest distance between the lines: π‘₯βˆ’π‘₯1

π‘Ž1=

π‘¦βˆ’π‘¦1

𝑏1=

π‘§βˆ’π‘§1

𝑐1 π‘Žπ‘›π‘‘

π‘₯βˆ’π‘₯2

π‘Ž2=

π‘¦βˆ’π‘¦2

𝑏2=

π‘§βˆ’π‘§2

𝑐2 𝑖𝑠

|

π‘₯2βˆ’π‘₯1 𝑦2βˆ’π‘¦1 𝑧2βˆ’π‘§1π‘Ž1 𝑏1 𝑐1π‘Ž2 𝑏2 𝑐2

|

√(𝑏1𝑐2βˆ’π‘2𝑐1)2+(𝑐1π‘Ž2βˆ’π‘2π‘Ž1)2+(π‘Ž1𝑏2βˆ’π‘Ž2𝑏1)2

Distance between parallel lines π‘Ÿ = π‘Ž1 + πœ†οΏ½οΏ½ π‘Žπ‘›π‘‘ π‘Ÿ = π‘Ž2 + πœ‡οΏ½οΏ½ 𝑖𝑠 |οΏ½οΏ½ Γ—(π‘Ž2 βˆ’π‘Ž1 )

|οΏ½οΏ½ ||

Page 24: CLASS 12 - D SREENIVASULU...CLASS 12 : CBSE MATHEMATICS RELATIONS AND FUNCTIONS TYPES OF RELATIONS: EMPTY RELATION: A relation in a set is called empty relation, if no element of is

D.SREENIVASULU, M.Sc.,M.Phil.,B.Ed. PGT(MATHEMATICS), KENDRIYA VIDYALAYA. Page 24

In the vector form, equation of a plane which is at a distance 𝑝 from the origin, and οΏ½οΏ½ is

the unit vector normal to the plane through the origin is π‘Ÿ . οΏ½οΏ½ = 𝑝.

Equation of a plane which is at a distance of 𝑑 from the origin and the direction cosines

of the normal to the plane as 𝑙, π‘š, 𝑛 𝑖𝑠 𝑙π‘₯ + π‘šπ‘¦ + 𝑛𝑧 = 𝑑.

The equation of a plane through a point whose position vector is π‘Ž and perpendicular to

the vector οΏ½οΏ½ 𝑖𝑠 (π‘Ÿ βˆ’ π‘Ž ). οΏ½οΏ½ = 0.

Equation of a plane perpendicular to a given line with direction ratios A,B,C and passing

through a given point (π‘₯1,𝑦1, 𝑧1) 𝑖𝑠 𝐴(π‘₯ βˆ’ π‘₯1) + 𝐡(𝑦 βˆ’ 𝑦1) + 𝐢(𝑧 βˆ’ 𝑧1) = 0

Equation of a plane passing through three non collinear points

(π‘₯1, 𝑦1, 𝑧1), (π‘₯2, 𝑦2, 𝑧2)π‘Žπ‘›π‘‘ (π‘₯3, 𝑦3, 𝑧3) 𝑖𝑠 |

π‘₯ βˆ’ π‘₯1 𝑦 βˆ’ 𝑦1 𝑧 βˆ’ 𝑧1

π‘₯2 βˆ’ π‘₯1 𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1

π‘₯3 βˆ’ π‘₯1 𝑦3 βˆ’ 𝑦1 𝑧3 βˆ’ 𝑧1

| = 0

Vector equation of a plane that contains three non collinear points having position

vectors π‘Ž , οΏ½οΏ½ π‘Žπ‘›π‘‘ 𝑐 𝑖𝑠 (π‘Ÿ βˆ’ π‘Ž ). [(οΏ½οΏ½ βˆ’ π‘Ž ) Γ— (𝑐 βˆ’ π‘Ž )] = 0

Equation of a plane that cuts the coordinates axes at

(π‘Ž, 0,0), (0, 𝑏, 0) π‘Žπ‘›π‘‘ (0,0, 𝑐) 𝑖𝑠 π‘₯

π‘Ž+

𝑦

𝑏+

𝑧

𝑐= 1

Vector equation of a plane that passes through the intersection of planes

π‘Ÿ . 𝑛1 = 𝑑1 π‘Žπ‘›π‘‘ π‘Ÿ . 𝑛2 = 𝑑2 𝑖𝑠 π‘Ÿ . (𝑛1 + πœ†π‘›2 ) = 𝑑1 + πœ†π‘‘2, π‘€β„Žπ‘’π‘Ÿπ‘’ πœ†is any nonzero

constant.

Vector equation of a plane that passes through the intersection of two given planes

𝐴1π‘₯ + 𝐡1𝑦 + 𝐢1𝑧 + 𝐷1 = 0 π‘Žπ‘›π‘‘ 𝐴2π‘₯ + 𝐡2𝑦 + 𝐢2𝑧 + 𝐷2 = 0 𝑖𝑠

(𝐴1π‘₯ + 𝐡1𝑦 + 𝐢1𝑧 + 𝐷1) + πœ†(𝐴2π‘₯ + 𝐡2𝑦 + 𝐢2𝑧 + 𝐷2) = 0

Two planes π‘Ÿ = π‘Ž1 + πœ†π‘1 π‘Žπ‘›π‘‘ π‘Ÿ = π‘Ž2 + πœ‡π‘2

are coplanar if (π‘Ž2 βˆ’ π‘Ž1 ). (𝑏1 Γ— 𝑏2

) = 0

Two planes π‘Ž1π‘₯ + 𝑏1𝑦 + 𝑐1𝑧 + 𝑑1 = 0 π‘Žπ‘›π‘‘ π‘Ž2π‘₯ + 𝑏2𝑦 + 𝑐2𝑧 + 𝑑2 = 0 are coplanar if

|

π‘₯2 βˆ’ π‘₯1 𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1

π‘Ž1 𝑏1 𝑐1

π‘Ž2 𝑏2 𝑐2

| = 0.

In the vector form, if πœƒ is the angle between the two planes,

π‘Ÿ . 𝑛1 = 𝑑1 π‘Žπ‘›π‘‘ π‘Ÿ . 𝑛2 = 𝑑2, π‘‘β„Žπ‘’π‘› πœƒ = π‘π‘œπ‘ βˆ’1 |οΏ½οΏ½ 1.𝑛2 |

|𝑛1 ||𝑛2 |.

The angle πœ™ between the line π‘Ÿ = π‘Ž + πœ†οΏ½οΏ½ and the plane π‘Ÿ . οΏ½οΏ½ = 𝑑 𝑖𝑠 sin πœ™ = |οΏ½οΏ½ .οΏ½οΏ½

|οΏ½οΏ½ ||οΏ½οΏ½||

The angle πœƒ between the planes 𝐴1π‘₯ + 𝐡1𝑦 + 𝐢1𝑧 + 𝐷1 = 0 π‘Žπ‘›π‘‘ 𝐴2π‘₯ + 𝐡2𝑦 + 𝐢2𝑧 +

𝐷2 = 0 is given by cos πœƒ = ||𝐴1𝐴2+𝐡1𝐡2+𝐢1𝐢2

√𝐴12+𝐡1

2+𝐢12√𝐴2

2+𝐡22+𝐢2

2

||

The distance of a point whose position vector is π‘Ž from the plane π‘Ÿ . οΏ½οΏ½ = 𝑑 𝑖𝑠 |𝑑 βˆ’ π‘Ž . οΏ½οΏ½|

The distance from a point (π‘₯1, 𝑦1, 𝑧1) to the plane 𝐴π‘₯ + 𝐡𝑦 + 𝐢𝑧 + 𝐷 =

0 𝑖𝑠 |𝐴π‘₯1+𝐡𝑦1+𝐢𝑧1+𝐷

√𝐴2+𝐡2+𝐢2|


Recommended