+ All Categories
Home > Documents > Class 7 - Constitutive Relations

Class 7 - Constitutive Relations

Date post: 14-Apr-2018
Category:
Upload: verbicar
View: 217 times
Download: 0 times
Share this document with a friend

of 23

Transcript
  • 7/27/2019 Class 7 - Constitutive Relations

    1/23

    AOE 5104 Class 7

    Online presentations for next class:

    Kinematics 1

    Homework 3 Class next Tuesday will be given by Dr.

    Aurelien Borgoltz

    daVinci (Aaron Marcus, Justin Ratcliff)

  • 7/27/2019 Class 7 - Constitutive Relations

    2/23

    Claude-Louis Navier

    (February 10, 1785 in Dijon - August 21, 1836 in Paris)

  • 7/27/2019 Class 7 - Constitutive Relations

    3/23

    Pump flow

    VisEng L td

    http://www.viseng.com/consult/flowvis.html

    http://www.viseng.com/index.htmlhttp://www.viseng.com/consult/flowvis.htmlhttp://www.viseng.com/consult/flowvis.htmlhttp://www.viseng.com/index.html
  • 7/27/2019 Class 7 - Constitutive Relations

    4/23

    Equations for Changes Seen From

    a Lagrangian Perspective

    0=dDt

    D

    R

    S

    zyx

    SRR

    dS).(+).(+).(+dSp-d=dDt

    DknjninnfV

    dST).k(+dS.++p-+d.=d)2

    V+(e

    Dt

    D

    SS

    zyx

    R

    2

    R

    nVknjninnfV ).().().(

    Differential Form (for a particle)

    Integral Form (for a system)

    V.

    Dt

    D

    kjifV

    ).().().( zyxpDt

    D

    ).().().().().(.)(

    2

    21

    TkwvupDt

    VeDzyx

    VVf

  • 7/27/2019 Class 7 - Constitutive Relations

    5/23

    O

    Pump flow

    VisEng L td

    http://www.viseng.com/consult/flowvis.html

    http://www.viseng.com/index.htmlhttp://www.viseng.com/consult/flowvis.htmlhttp://www.viseng.com/consult/flowvis.htmlhttp://www.viseng.com/index.html
  • 7/27/2019 Class 7 - Constitutive Relations

    6/23

    Conversion from Lagrangian to

    Eulerian rate of change - Derivative

    x

    y

    z(x(t),y(t),z(t),t)

    .Vt

    zw

    yv

    xu

    tt

    z

    zt

    y

    yt

    x

    xt

    t part

    Time Derivative Convective Derivative

    .V

    tDt

    D

    The Substantial Derivative

  • 7/27/2019 Class 7 - Constitutive Relations

    7/23

    Conversion from Lagrangian to

    Eulerian rate of change - Integral

    x

    y

    z

    The Reynolds

    Transport

    Theorem

    SR

    R

    R

    R

    R

    RRRsys

    dSdt

    dt

    dt

    ddDt

    D

    Dt

    Ddd

    Dt

    D

    Dt

    dDd

    Dt

    D=d

    t

    nV

    V

    VV

    V

    .

    ).(

    ..

    .

    .V

    tDt

    D

    Volume R

    Surface S

    Apply

    Divergence

    Theorem

    SRR

    dSdt

    =dDt

    DnV.

  • 7/27/2019 Class 7 - Constitutive Relations

    8/23

    Equations for Changes Seen From

    a Lagrangian Perspective

    0=dDt

    D

    R

    S

    zyx

    SRR

    dS).(+).(+).(+dSp-d=dDt

    DknjninnfV

    dST).k(+dS.++p-+d.=d)2

    V+(e

    Dt

    D

    SS

    zyx

    R

    2

    R

    nVknjninnfV ).().().(

    Differential Form (for a particle)

    Integral Form (for a system)

    V.

    Dt

    D

    kjifV

    ).().().( zyxp

    Dt

    D

    ).().().().().(.)(

    2

    21

    TkwvupDt

    VeDzyx

    VVf

    parttDt

    D

    SRR

    dSdt

    =dDt

    DnV.

    .V

    tDt

    D

  • 7/27/2019 Class 7 - Constitutive Relations

    9/23

    Equations for Changes Seen From

    an Eulerian Perspective

    Differential Form (for a fixed point in space)

    Integral Form (for a fixed control volume)0=dSd

    t SR

    nV.

    S

    zyx

    SRR

    dS).(+).(+).(+dSp-d=dSdt

    knjninnfnVVV

    ).(

    dST).k(+dS.++p-+d.=dSV+ed)t

    V+e

    SS

    zyx

    RS

    22

    R

    nVknjninnfVnV ).().().(.)()(

    212

    1

    V.

    Dt

    D

    kjifV

    ).().().( zyxp

    Dt

    D

    ).().().().().(.)(

    2

    21

    TkwvupDt

    VeDzyx

    VVf

    .V

    tDt

    D

  • 7/27/2019 Class 7 - Constitutive Relations

    10/23

    Equivalence of Integral and

    Differential Forms

    0=dSdt

    SR

    nV.

    d=dS RS VnV ..

    0.

    d

    tRV

    0.

    V

    t0..

    VV

    t

    V.

    Dt

    D

    Cons. of mass

    (Integral form)

    Divergence

    Theorem

    Conservation of

    mass for any

    volume R

    Then we get or

    Cons. of mass

    (Differential form)

  • 7/27/2019 Class 7 - Constitutive Relations

    11/23

  • 7/27/2019 Class 7 - Constitutive Relations

    12/23

    Constitutive Relations - Closing

    the Equations of Motion

    Could we solve, in principle, the equationswe have derived for a particular flow?

  • 7/27/2019 Class 7 - Constitutive Relations

    13/23

    Equations for Changes Seen From

    an Eulerian Perspective

    Differential Form (for a fixed point in space)

    Integral Form (for a fixed control volume)0=dSd

    t SR

    nV.

    S

    zyx

    SRR

    dS).(+).(+).(+dSp-d=dSdt

    knjninnfnVVV

    ).(

    dST).k(+dS.++p-+d.=dSV+ed)t

    V+e

    SS

    zyx

    RS

    22

    R

    nVknjninnfVnV ).().().(.)()(

    212

    1

    V.

    Dt

    D

    kjifV

    ).().().( zyxp

    Dt

    D

    ).().().().().(.)(

    2

    21

    TkwvupDt

    VeDzyx

    VVf

    .V

    tDt

    D

  • 7/27/2019 Class 7 - Constitutive Relations

    14/23

    Constitutive Relations

    Equations of motion

    5 eqns: Mass (1), Momentum (3), Energy (1)

    13 unknowns: p, , u, v, w, T, 6 , e

    Need 8 more equations!

    Information about the fluid is needed

    Constitutive relations Thermodynamics: p, , T, e

    Viscous stress relations

    p = p(,T) and

    e = e(,T)

    Newtonian fluid

  • 7/27/2019 Class 7 - Constitutive Relations

    15/23

    Newtonian (Isotropic) Fluid

    Viscous Stress is Linearly Proportional to Strain Rate Relationship is isotropic (the same in all directions)

    ij

    zzzyzx

    yxyyyx

    xzxyxx

    Stress, is a tensor

    and so has some basic properties when we rotate the coordinate system used

    to represent it like

    Principal axes axis directions for

    which all off shear stressesare zero

    Tensor invariants combinations

    of elements that dont

    change with the axis directions

    zz

    yy

    xx

    00

    00

    00

    )(

    )(

    )(3

    1

    3

    1

    3

    1

    CubictDeterminanIII

    QuadraticII

    LinearI

    i j jiijjjii

    i ii

    But what is strain rate (or rate of deformation?)

    (Symmetric so yx= xy,

    yz= zx, xz= zx)

  • 7/27/2019 Class 7 - Constitutive Relations

    16/23

    Distortion of a Particle in a Flow

    M>1, accelerating,

    expanding flow

    Total change

    = rotation

    + dilation

    + shear deformation

    Physical ly

    Rate of

    deformation

    orstrain

    rate

    Cauchy Stokes

    Decomposition

  • 7/27/2019 Class 7 - Constitutive Relations

    17/23

    Distortion of a Particle in a Flow

    rrrV

    rr

    VV

    d

    z

    v

    y

    w

    x

    w

    z

    u

    z

    v

    y

    w

    y

    u

    x

    v

    x

    w

    z

    u

    y

    u

    x

    v

    d

    z

    w

    y

    vx

    u

    d

    z

    v

    y

    w

    x

    w

    z

    u

    z

    v

    y

    w

    y

    u

    x

    v

    x

    w

    z

    u

    y

    u

    x

    v

    d

    dd

    d

    dz

    dy

    dx

    z

    w

    y

    w

    x

    w

    z

    v

    y

    v

    x

    v

    z

    u

    y

    u

    x

    u

    dw

    dv

    du

    d

    0

    0

    0

    00

    00

    00

    0

    0

    0

    21

    21

    21

    21

    21

    21

    21

    21

    21

    21

    21

    21

    V+dV

    V

    Deformation isrepresented by

    dVtime so rate of

    deformation is

    given by dV

    Total

    change= rotation + dilation + shear deformation

    Mathematical ly

    Rate of deformation orstrain rate

  • 7/27/2019 Class 7 - Constitutive Relations

    18/23

    Newtonian (Isotropic) Fluid

    z

    w

    z

    v

    y

    w

    x

    w

    z

    u

    z

    v

    y

    w

    y

    v

    y

    u

    x

    v

    xw

    zu

    yu

    xv

    xu

    toalproportion

    LLYISOTROPICAzzzyzx

    yxyyyx

    xzxyxx

    21

    21

    21

    21

    21

    21

    z

    w

    y

    vx

    u

    toalproportion

    LLYISOTROPICAzz

    yy

    xx

    00

    00

    00

    00

    00

    00

    V.22

    x

    u

    z

    w

    y

    v

    x

    u

    x

    uxx

    So

    So Each stress= Const.Corresponding strain+ Const. F irst invariant of

    comp. rate component strain rate tensor

    Or And likewise for

    y andz.

  • 7/27/2019 Class 7 - Constitutive Relations

    19/23

    Stokes Hypothesis

    Stokes hypothesized that the total normal

    viscous stress xx+yy+zz should be zero, so

    that they cant behave like an extra pressure

    (i.e. he wanted to simplify things so that the

    total pressure felt anywhere in the flow wouldbe the same as the pressure used in the

    thermodynamic relations).

    This implies =- and remains controversial

    With this, and in general (non-principal) axes,

    we finally have

    y

    u

    x

    v

    x

    u

    xy

    xx

    V.232 and likewise foryyand zz

    and likewise foryzand xz

    V.22

    x

    u

    z

    w

    y

    v

    x

    u

    x

    uxx

  • 7/27/2019 Class 7 - Constitutive Relations

    20/23

    The Equations of MotionDifferential Form (for a fixed volume element)

    V.

    Dt

    D

    ).(2)()(f

    )().(2)(f

    )()().(2f

    31

    31

    31

    V

    V

    V

    z

    w

    zy

    w

    z

    v

    yx

    w

    z

    u

    xz

    p

    Dt

    Dw

    y

    w

    z

    v

    zy

    v

    yy

    u

    x

    v

    xy

    p

    Dt

    Dv

    xw

    zu

    zyu

    xv

    yxu

    xxp

    DtDu

    z

    y

    x

    ).(2)()()().(2)(

    )()().(2).()(.)(

    31

    31

    31

    2

    21

    VV

    VVVf

    z

    ww

    y

    w

    z

    vv

    x

    w

    z

    uu

    zy

    w

    z

    vw

    y

    vv

    y

    u

    x

    vu

    y

    x

    w

    z

    uw

    y

    u

    x

    vv

    x

    uu

    xTkp

    Dt

    VeD

    The Continuity equation

    The Navier Stokes equations

    The Viscous Flow Energy Equation

    These form a closed set when two

    thermodynamic relations are

    specified

  • 7/27/2019 Class 7 - Constitutive Relations

    21/23

    Leonhard Euler

    1707-1783

  • 7/27/2019 Class 7 - Constitutive Relations

    22/23

    Assumptions made / Info encodedAssumption/Law Mass NS VFEE

    Conservation of massConservation of momentum

    Conservation of energy

    ContinuumNewtonian fluid

    Isotropic viscosity

    Stokes Hypothesis

    Fouriers Law of Heat conduction

    No heat addition except by

    conduction

  • 7/27/2019 Class 7 - Constitutive Relations

    23/23

    Summary

    Conservations laws

    Lagrangian and Eulerian perspectives

    Equations of motion dervied from a Lagrangian

    perspective The Substantial Derivative and the Reynolds

    Transport Theorem connect Lagrangian withEulerian

    Constitutive Relations provide information aboutthe fluid material

    Assumptions


Recommended