+ All Categories
Home > Documents > class d amplifier using ADS

class d amplifier using ADS

Date post: 03-Jun-2018
Category:
Upload: tomdarel
View: 246 times
Download: 5 times
Share this document with a friend

of 19

Transcript
  • 8/13/2019 class d amplifier using ADS

    1/19

    Class D Power amplifier-----using ADS

    Song lin @utk June30

  • 8/13/2019 class d amplifier using ADS

    2/19

    Outline

    Why select Class D?

    Compare different device

    Simple Class D architectureLoad-pull to give out Zout

    Matching and simulation results of ideal

    narrow band Class D PABroad band matching

  • 8/13/2019 class d amplifier using ADS

    3/19

    Why Class D?

    Class D PA works in the switching mode, with asquare wave voltage and a half wave rectified sinewave of current.

    In its ideal switching mode,

    when Vds0, Ids=0;

    when Ids0,Vds=0.

    Class D PA can achieve very high frequency close to100%. Although it is very nonlinear, we still can usethe LINC technique to kill the IMD product.

  • 8/13/2019 class d amplifier using ADS

    4/19

    Two kinds of Class D PA

  • 8/13/2019 class d amplifier using ADS

    5/19

    Compare the device(I)

    For high frequency, ----- the higher the better

    For high on/off switching speed,----- the shorterthe better

    For high efficiency, the on-resistance of a switchingdevice must be as low as possible to minimize the

    power dissipation in the switches during the positivehalf cycle.----- Rsis the smaller the better.

    For high Power output, ----- BV(beake down voltage)

    the higher the better

    For high Gain, ----- the bigger the betterFor power dissipate,----- the small the better

    maxf

    m

    g

    sdt

    dsI

  • 8/13/2019 class d amplifier using ADS

    6/19

    Compare the device(II)

    Conclusion:

    Also for the wide band application, we should chose thecomponent whose Zout and Zin has very little varietyin some frequency range.

    I suggest to use the MRF282SR1.-----N-channelEnhancement-Mode Lateral MOSFETs

  • 8/13/2019 class d amplifier using ADS

    7/19

    Basic Class D PA architecture

  • 8/13/2019 class d amplifier using ADS

    8/19

    Load Pull to give out Zout

  • 8/13/2019 class d amplifier using ADS

    9/19

    Narrow band input and output matchingand simulation results

    0.5 1.0 1.5 2.00.0 2.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    -1.5

    1.5

    time, nsec

    ts(vin),V

    0.5 1.0 1.5 2.00.0 2.5

    -4

    -2

    0

    2

    4

    -6

    6

    time, nsec

    ts(voad),V

    0.5 1.0 1.5 2.00.0 2.5

    0

    2

    4

    6

    8

    -2

    10

    time, nsec

    ts(vds1),V

    ts(ID_

    FET1.i

    ),A

    0.5 1.0 1.5 2.00.0 2.5

    0

    2

    4

    6

    8

    -2

    10

    time, nsec

    ts(vds2),V

    ts(ID_

    FET2.i

    ),A

  • 8/13/2019 class d amplifier using ADS

    10/19

    Wide band matching using coaxial

    freq30.00MHz80.00MHz

    130.0MHz180.0MHz230.0MHz280.0MHz330.0MHz380.0MHz430.0MHz480.0MHz530.0MHz580.0MHz600.0MHz

    Zin112.879 + j1.50811.948 - j1.362

    10.330 - j1.8469.075 - j1.3208.380 - j0.3818.217 + j0.6128.497 + j1.4069.052 + j1.7669.545 + j1.5369.520 + j0.8578.775 + j0.2397.597 + j0.1177.105 + j0.224

    A conventional design allows the coaxial

    transformer to transform the impedance

    to obtain a match the low end of the

    band, then add additional low-pass

    matching sections to lower the

    impedance at the upper band edge.

  • 8/13/2019 class d amplifier using ADS

    11/19

    Using the MRF282S to simulate narrowband VMCD @300MHz

  • 8/13/2019 class d amplifier using ADS

    12/19

    Push_pull structure

  • 8/13/2019 class d amplifier using ADS

    13/19

    Narrow band matching (input, output)

  • 8/13/2019 class d amplifier using ADS

    14/19

    Narrow band simulation results

    PAE78.833

    Pdel_Watts36.194

    Pdc45.112

    Pdel_Watts/Pdc0.802

    EqnPdel_dBm = 10*log10(Pdel_Watts)+30

    EqnPavs_Watts=10**((28-30)/10)

    Eqn Pdel_Watts=real(0.5*vout[1]*conj(Iload.i[1]))

    Eqn PAE=100*(Pdel_Watts-Pavs_Watts)/Pdc

    Eqn Is_h=exists("real(Is_high.i[0])")

    Eqn Is_l=exists("real(Is_low.i[0])")

    Eqn Vs_l=exists("real(Vs_low[0])")

    Eqn Vs_h=exists("real(Vs_high[0])")

    EqnPdc=Is_h*Vs_h +Is_l*Vs_l +1e-20

    DC Power CalculationsThe exists() function checks to be surethe corresponding piece of data is inthe dataset. If it is not, then thefunction returns 0.

    Power Delivered and Power-AddedEfficiency Calculations

    Pavs is the available source power, set onthe schematic, and passed into the datasetusing the Harmonic Balance controller.

    1 2 3 4 5 60 7

    0

    10

    20

    30

    40

    -10

    50

    0

    1

    2

    3

    -1

    4

    time, nsec

    ts(vds1),V

    ts(ID_FET1.i),A

    1 2 3 4 5 60 7

    0

    10

    20

    30

    40

    -10

    50

    0

    1

    2

    3

    -1

    4

    time, nsec

    ts(vds2),V

    ts(ID_FET2.i),A

  • 8/13/2019 class d amplifier using ADS

    15/19

    Final schematic

  • 8/13/2019 class d amplifier using ADS

    16/19

    Final simulation results(1)

    RFfreq

    0.010000.030340.050690.071030.091380.111720.132070.152410.172760.193100.213450.233790.254140.274480.294830.315170.335520.355860.376210.396550.41690

    0.437240.457590.477930.498280.518620.538970.55931

    eta

    3.1847719.1714926.6900733.8735738.0597340.5522152.8991561.1628863.5857865.0909069.3704071.5722474.1238973.8164771.2833972.0263276.8916476.9276375.8578578.1925980.02783

    79.8680479.4126580.3053782.4331183.1881381.6628280.91020

    Pdc

    35.4236145.4257641.5319253.3718950.6750747.0099957.2424362.9260059.0168954.7549153.1365150.5148049.1444248.2410145.8544644.4901444.8106745.9219547.1437148.2536347.38484

    47.1146546.8049145.7738043.7890841.5784240.0780339.06156

    Pdel_Watts

    1.128168.70879

    11.0849018.0789619.2867919.0635930.2807638.4873537.5263535.6404736.8610136.1545736.4277635.6098132.6866132.0446134.4556635.3266735.7622137.7307737.92106

    37.6295537.1690236.7588236.0967034.5883132.7288531.60478

    PAE

    -10.963638.13838

    14.6225524.4831028.1695229.8909244.1436353.1981755.0935155.9376259.9383361.6506463.9256463.4272360.3534360.7611965.7070866.0137465.2268067.8060869.45087

    69.2304368.7046469.3561570.9876271.1341169.1575368.07950

    Gain

    -6.476232.399603.447305.571705.852555.801997.811618.853138.743328.519408.665658.581638.614348.515728.143748.057608.372668.481098.534318.767028.78887

    8.755358.701868.653668.574718.389328.149327.99753

  • 8/13/2019 class d amplifier using ADS

    17/19

    Final simulation results(2)

    1 2 3 4 5 60 7

    0

    20

    40

    -20

    60

    -3

    -2

    -1

    0

    1

    -4

    2

    time, nsec

    ts(vd1),V

    ts(I_ds

    .i),A

    eta

    73.76255

    Pdc

    42.70324

    Pdel_Watts

    31.49900

    PAE

    62.02603

    Gain

    7.98301

  • 8/13/2019 class d amplifier using ADS

    18/19

    The problem remain:

    1. The Class D PA need a resonator tank to pull out the

    fundamental signal, to filter out the third time signal, soI decide to divide the band into 3 parts, one from 30 to

    88 MHz; 88MHz to 200MHz; 200MHz to 500MHz. We

    can separate the signals by filter bank.

    2. For the real device, the Rs isnt very small, so theefficiency cant be so high. Because of the , the Vds

    and some overlap with Ids, it also kill some efficiency.

    3. To achieve better performance at low frequency band, I

    have to increase the Vgg.4. ADS is very hard to converge when simulation.

    dst

  • 8/13/2019 class d amplifier using ADS

    19/19

    Thank you!!!


Recommended