+ All Categories
Home > Documents > Classical Solution bank

Classical Solution bank

Date post: 07-Jul-2018
Category:
Upload: sitychan
View: 224 times
Download: 0 times
Share this document with a friend

of 205

Transcript
  • 8/18/2019 Classical Solution bank

    1/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 18, 2007

    A particle is dropped into a hole drilled straight through the center

    of the earth. Neglecting rotational effects, show that the particle’s

    motion is simple harmonic. Compute the period and give an estimate

    in minutes. Compare your result with the period of a satellite orbiting

    near the surface of the earth.

    Figure 1: A particle dropped from  R⊕.

    Only the mass inside the shell of radius  r   contributes to the gravitationalforce. If we assume the Earth have uniform density, then the mass contributingto F g   is

        4

    3π r3

    =  M ⊕

        4

    3π R3⊕

    M    =  M ⊕

    R3⊕r3 (1)

    Thus, the force experienced by the particle  m  from mass  M   is

    F g   =  GmM 

    r2

    =  Gm

        r2

    M ⊕R3⊕

    r  3

    F g   = GM ⊕m

    R

    3

    ⊕   r   (2)

    =   k r

    1

  • 8/18/2019 Classical Solution bank

    2/205

    Jeff Kissel May 18, 2007 Classical Mechanics

    where the last step absorbs all the constants G, M ⊕, R⊕, and m into the constant“k,” which shows that Eq. 2 is linearly proportional to the radius. Similarly,Hooke’s force law for simple harmonic motion states that the force of a simpleharmonic oscillator is proportional to the displacement from the equilibrium po-sition. Since the center of the earth would be the particles equilibrium position,r   is the displacement, and thus by direct comparison, the particle obeys simple

    harmonic motion, with “spring constant” k .To compute the period  τ , we use what we know for a spring with resonant

    frequency ω  = 

    k/m,

    τ    =  1

    f   =

      2π

    ω  = 2π

     m

    k

    = 2π

         m

      R3

    GM ⊕    m

    τ    = 2π

       R3⊕GM ⊕

    τ 2

    =

      4π2R3⊕GM ⊕ (3)

    which is Kepler’s 3rd law for planetary motion (for a small particle), againindicating that motion is periodic.

    Finally, one can find an estimate of this period by using Earth’s gravitationalacceleration of a small particle at the surface, g  =

      GM ⊕R2⊕

    ≈ 9.8  m/s ≈ π2.

    τ 2 =  4π2R3⊕

    GM ⊕

    = 4    π2

    R⊕

      g

    τ 2 ≈   4R⊕   (4)

    = 4(6.4× 106 m) [s]

    τ 2 = 2.57× 107 s

    τ    = 5069 s   = 84 min   (5)

    which is approximately equivalent to a satellite in low-Earth orbit. (At 185  km,i.e. when low-Earth orbit becomes stable, the correct period is 88.19  min.)

    2

  • 8/18/2019 Classical Solution bank

    3/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    Two identical bodies of mass   m   are attached by identical springs of spring constant   k  as shown in the figure.

    Figure 1: A system of two masses attached by springs (A) in equilibrium, and(B) after some oscillation.

    a) Find the frequencies of free oscillation of this system.

    The first goal will be to set up the system’s characteristic equation,

    V− ω2T = 0 (1)where V  is the potential energy matrix,  T  is the kinetic energy matrix, and  ωare the desired eigenfrequencies (frequencies of free oscillation) of the system.The potential on the particles is the sum of each individual spring’s potentials,

    V    =  12

    kd21 + 12

    kd22 + 12

    kd23   (2)

    1

  • 8/18/2019 Classical Solution bank

    4/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    If we define the displacements between the masses in terms of generalized coor-dinates η ,

    d1  = (x1 − x(0)1   ) + (0) = η1d2  = (x2 − x(0)2   ) + (x(0)1   − x1) = η2 − η1

    d3  = (0) + (x(0)

    2   − x2) = −η2we can then write the potential as,

    V     =  1

    2k(η1)

    2 + 1

    2k(η2 − η1)2 + 1

    2k(−η2)2

    =  1

    2kη21  +

     1

    2k(η22 + η

    21 − η1η2 − η2η1) +

     1

    2kη22

    =  1

    2k

    2η22 + 2η21 − η1η2 − η2η1

      (3)

    which in the desired matrix form is,

    V

    ≡ 1

    2

      V  ijηiηj  =   2k   −k−k   2k   (4)The kinetic energy matrix is much easier to find because it is neatly diagonal:

    T   = 1

    2mv21 +

     1

    2mv21

    T ≡  12

      T ijηiηj  =

      m   0

    0   m

      (5)

    Once we’ve got these matrices, we want to find the eigenfrequencies,   ω   of the charateristic equation

    V− ω2T = 0 (6)Notice however, that Eq. 4 and Eq. 5 are symmetric, 2 × 2 matrices, so wecan use some trickery and write them as multiples of the identity matrix or theSU(2) spinor matrices:

    V   = 2k  I − k  σ̂xT   =   m  I

    Now we can just diagonalize Eq. 6 instead of the usual determinant method,since we know the eigenvalues of  I  are {1,1}, and for any  σ̂i  are {1,-1}. I’ll alsouse the fact that a diagonalized  σ̂x  is just  σ̂z

    0 =   V− ω2T= 2k  I − k  σ̂x −mω2 I

    D−1 (mω2 I)D   =   D−1 (2k  I− k  σ̂x)Dω2 (D−1ID) =   2k

    m  (D−1ID)−   k

    m(D−1σ̂xD)

    2

  • 8/18/2019 Classical Solution bank

    5/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    ω2 I   =  2k

    m  I−   k

    m  σ̂z   (7)

    ω2

      1 00 1

      =

      2k

    m

      1 00 1

    −   k

    m

      1 00   −1

    ω2 =  2k ± k

    m  (8)

    So the eigen frequencies for this two mass system are

    ω1  =

     k

    m  or   ω =

     3k

    m  (9)

    We’ll need the eigenvectors for part (b), so we’ll find them now. A bigadvantage to using this SU(2) group argument is that since Eq. 7 only involesI  and  σ̂z, we know immediately that the two (normalized) eigenvectors for thesystem are the (normalized) eigenvectors of those two matrices,

    for I   ⇒   û1  =   1√ 2

      11

      (10)

    for σ̂z   ⇒   û2  =  1√ 2

      1−1

      (11)

    where û1   corresponds to when the two masses are sloshing back and forth inphase with each other, and û1  is when they oscillate out of phase, i.e. if  M 1   ismoving to the left,  M 2  is moving to the right, or vice versa.

    b)   M 1   is displaced from its position by a small distance   A1   to theright while  M 2   is not moved from its position. If the two masses arereleased with zero velocity, what is the subsequent motion of   M 2?

    With the (very safe) assumption that the system is periodic in time, we knowfrom Fourier’s theorem that the positions of each particle as a function of timemay be written as a sum of sines and cosines, whose phase is the eigenfrequen-

    cies. So,

    x1(t) =   A sin ω1   t + B cos ω1   t + C  sin ω2   t + D cos ω2   t   (12)

    x2(t) =   E sin ω1   t + F  cos ω1   t + G sin ω2   t + H  cos ω2   t   (13)

    However, we can narrow this down at least a little because of the eigenvectors.

    ω1 =

     k

    m  ⇒   û1 =   1√ 2

      11

      ⇒   A   =   E, B   =   F 

    ω2  =

     3k

    m  ⇒   û2  =   1√ 2

      1−1

      ⇒   C   = −G, D   = −H 

    which means Eqs. 12 and 13 (and there derivatives) simplify a lil’ bit to

    x1(t) =   A sin ω1t + B cos ω1t + C  sin ω2t + D cos ω2t

    3

  • 8/18/2019 Classical Solution bank

    6/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    →  ẋ1(t) =   Aω1   cos ω1t−Bω1   sin ω1t + Cω2   cos ω2t−Dω2   sin ω2tx2(t) =   A sin ω1t + B cos ω1t− C  sin ω2t−D cos ω2t

    →  ẋ2(t) =   Aω1   cos ω1t−Bω1   sin ω1t− Cω2   cos ω2t + Dω2   sin ω2t

    Remember the problem statement said “M 1  is diplaced by a small distanceA1   [at   t   = 0]?” That means the initial conditions (where   t  = 0, so the sineterms are zero, and cosine terms are one) are

    x1(0) =   A1   =   B + D

    x2(0) = 0 =   B −D⇒   B   =   D   =   1

    2  A1

    ẋ1(0) = 0 =   A + C √ 

    3

    ẋ2(0) = 0 =   A− C √ 

    3

    ⇒   A   =   C    = 0

    So then holy moly with extra cannoli, the positions of  M 1  and M 2  at a funcionof time are

    x1(t) =  1

    2  A1 cos

     k

    m  t

    +

     1

    2  A1 cos

     3k

    m  t

      (14)

    x2(t) =  1

    2  A1 cos

     k

    m  t

    −  1

    2  A1 cos

     k

    m  t

      (15)

    4

  • 8/18/2019 Classical Solution bank

    7/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 18, 2007

    Exam Iteration Question Number Notes/ChangesSpring 2006 X –

    Fall 2006 X –Spring 2007 #3 Added to bank.

    A planet is in circular motion about a much more massive star. The

    star undergoes an explosion where three percent of its mass is ejected

    far away, equally in all directions. Find the eccentricity of the new

    orbit for the planet.

    Initially the planet is in a circular Keplerian orbit, where we know severalthings. The force and potential are

    F    =  GM m

    r2  , V    =   −

    GM m

    r  (1)

    For any circular orbit, the radius is given by

    F    =   mac

    GM     m

    r  2c=      m

      v2t

        rc For circular orbits, ṙ   = 0

    ⇒   v2t   =     ṙ2 + r2 θ̇2 =   r2c

     θ̇2

    GM 

    rc=   θ̇2r2c

    r3c   =  GM 

    θ̇2

    rc   =

    GM 

    θ̇2

    1/3(2)

    Also, from Eq 3.57 on p94 of Goldstein, any mass  m  orbiting a  r−2 central

    1

  • 8/18/2019 Classical Solution bank

    8/205

    Jeff Kissel May 18, 2007 Classical Mechanics

    force will have eccentricity,

    e   =

     1 +

     2Eℓ2

    mk2  (3)

    with  E  as the total energy,  ℓ =  mr2 θ̇  as the angular momentum, and  k  is this

    case as  GM m. Since the orbit is circular, the eccentricity is zero, so the initialtotal energy is

    0 =

     1 +

     2Eℓ2

    mk2

    0 = 1 + 2Eℓ2

    mk2

    −1 =  2Eℓ2

    mk2

    E    =   −mk2

    2ℓ2  (4)

    And finally, the total energy can also be written as the sum of the kinetic

    an potential energies,

    E    =  1

    2  m    ṙ2

    c  +  r2

    c θ̇2−

    GM m

    rc

    =  1

    2  m

    GM 

    θ̇

    2/3θ̇ −

    GM mGM θ̇

    1/3=

      1

    2  m

    GM  θ̇2/3

    −m

    GM  θ̇2/3

    =

    1

    2 − 1

    m

    GM  θ̇2/3

    E    =   −1

    2  mGM  θ̇2/3 (5)

    Phew! Now,   just   after the explosion, the star is at the same radius,   rc.However the star has a new mass,   M ′ = (1 − λ)M   where I’ve denoted   λ   asthe percentage of mass loss. The only portion of the energy that is effects isthe potential, in which   k′ = (1 − λ)k. The angular momentum  ℓ   =   mr2c

     θ̇   isindependent of  M ′. So, the new energy is

    E    =  1

    2  mr2c

     θ̇2 −GM ′m

    rc

    =  1

    2  m

    GM 

    θ̇

    2/3θ̇ −

    G ((1 − λ)M ) m

    GM θ̇

    1/3

    =   12

      m

    GM  θ̇2/3

    − (1 − λ)   m

    GM  θ̇2/3

    2

  • 8/18/2019 Classical Solution bank

    9/205

    Jeff Kissel May 18, 2007 Classical Mechanics

    =

    1

    2 − (1− λ)

    m

    GM  θ̇2/3

    E    = (−1

    2 +  λ)  m

    GM  θ̇

    2/3(6)

    The ratio of initial energy to final energy is then,

    E ′

    E   =

    (−12

     +  λ)              m

    GM  θ̇

    2/3−

    1

    2               m

    GM  θ̇

    2/3E ′

    E   =   −2

    1

    2 +  λ

    E ′ = (1 − 2λ)   E    (7)

    This in turn affects the eccentricity, which means Eq. 3 becomes,

    e′ =

     1 +

     2E ′ℓ2

    mk′2

    1 +   2(1− 2λ)  Eℓ2

    m ((1 − λ)  k)2

    =

     1 +

     (1 − 2λ)

    (1 − λ)22ℓ2

    mk2  E 

    Eq. 4:  E   =   −

    mk2

    2ℓ2

    =

     1 −

    (1 − 2λ)

    (1 − λ)2      2ℓ2

    mk2        mk2

    2ℓ

    e′ =

     1 −

    1 − 2λ

    (1 − λ)2  (8)

    For  λ = 0.03, the new eccentricity is

    e′ = 0.030928 (9)

    3

  • 8/18/2019 Classical Solution bank

    10/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A homogeneous cube each edge of which has a length   ℓ, is initiallyin a position of unstable equilibrium with one edge in contact witha horizontal plane. The cube is then given a small displacement andallowed to fall. Find the angular velocity of the cube when one facestrikes the plane if:

    a) the edge cannot slip on the plane (friction).

    b) sliding can occur (no friction).

    Figure 1: A cube falling with friction holding one corner stationary, and thesame cube sliding on the corner without friction.

    For both scenarios we can use a conservation of energy arguement to solvefor the angular velocity.

    a) The initial kinetic energy,  T i  is zero, because the the cube is in (unstable)equilibrium. The potential we can say is simply that of a point mass at thecube’s center of mass, a height  h  above the ground,

    E i   =      0T i + V  i   =   mgh

    1

  • 8/18/2019 Classical Solution bank

    11/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    V  i   =  1√ 

    2mgℓ   (1)

    In this case, the edge that is stationary acts as a pivot around which thecube will rotate. Thus, the kinetic energy of the cube while in motion is onlyrotational. We can use the parallel axis theorem to find the moment of iner-

    tia rotating about an edge of the cube, noting that the moment of inertia forspinning along the center of mass,   I CoM    =  1

    6 mℓ2, and the displacement,  d   is

    h =   1√ 2  ℓ ;

    I ||   =   I CoM  +  md2 =

      1

    6 mℓ2 + mh2

    =  1

    6 mℓ2 + m

      ℓ√ 

    2

    2

    =   mℓ2

    1

    6 +

     1

    2

      =

      2

    3 mℓ2 (2)

    The final kinetic energy as the cube hits the plane is then

    T f    =   12  I ||  ω2f 

    =  1

    2

    2

    3 mℓ2

    ω2f 

    =  1

    3 mℓ2ω2f    (3)

    The final potential is as a point mass at a height,   12  ℓ

    V  f   = 1

    2 mgℓ   (4)

    So conservation of energy dictates that

    V  i   =   T f  +  V  f 1√ 

    2mgℓ   =

      1

    3 mℓ2ω2f  +

     1

    2 mgℓ

    1√ 

    2g   =

      1

    3  ℓω2f  +

     1

    2  g

    1

    3  ℓω2f    =   g

      1√ 

    2−

    1

    2

    ωf    =

     3g

    2ℓ

    √ 2 − 1

      (5)

    2

  • 8/18/2019 Classical Solution bank

    12/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    b) In this case, the kinetic energy will be slightly different. Now, because theplane is frictionless, the cube rotates about its center of mass, which is moving(only) in the direction of gravity. The position and velocity of the center of mass become

    rCoM    =   yCoM 

    =   h sinφ +  π

    4

    vCoM    = ẏCoM 

    =   h cosφ +

     π

    4

     φ̇

    =  ωℓ√ 

    2cos

    φ +

     π

    4

    taking  φ̇ to be  ω .Though the initial kinetic energy is still zero, the final kinetic energy changes

    to

    T f    =  1

    2

     mv2f  + 1

    2

      I CoM ω2

    =  1

    2 m

    ωf ℓ√ 

    2

    2cos2

        

    0φf  +

     π

    4

    +

     1

    2

    1

    6 mℓ2

    ω2f 

    =  1

    4 mℓ2ω2f 

    1

    2

    +

      1

    12 mℓ2ω2f 

    =  5

    24 mℓ2ω2f    (6)

    Notice that the initial and final potential energies will remain the same,because the cube starts in the same position as in case a), and ends in the sameorientation, just displaced by   1

    2  ℓ.

    So, using Eq. 1 and 4, the conservation of energy equation is

    V  i   =   T f  +  V  f 1√ 

    2mgℓ   =

      5

    24 mℓ2ω2f  +

     1

    2 mgℓ

    5

    24  ℓω2f    =   g

      1√ 

    2−

    1

    2

    ω2f    =  24g

    5ℓ

    √ 2 − 1

    2

    ωf    =

     12g

    5ℓ

    √ 2 − 1

      (7)

    3

  • 8/18/2019 Classical Solution bank

    13/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A chain of linear density (µ   [g/cm]) is hanging vertically above atable. Its lowest point is at a height   h  above the table. The chain isreleased and allowed to fall. Calculate the force exerted on the tableby the chain when a length  x  of chain has fallen onto the surface.

    Figure 1: A chain suspended a height h  above the table at t0, and then x amountfallen onto the table after time  t

    The force exerted on the table will be equivalent to the sum of the gravita-tional (from whatever part of the chain has already landed on the table) andimpulse (from the part of the chain that has just hit the table) forces. Thegravitational force from the amount of mass   m   =   µx  already on the table is

    simply F g   =   mg   =   µxg   (1)

    1

  • 8/18/2019 Classical Solution bank

    14/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    During a time interval  dt, the mass of the rope equal to  µ(v dt) is hitting thetable. The change in momentum imparted onto the table is then

    dp   =   dm v

    = [µ(v dt)]  v

    =   µv2 dt   (2)

    The impulse force is then

    F impulse   =  dp

    dt  =   µv2 (3)

    However we would like to know how velocity   v   is related to   x(t). Some onedimensional kinematics should shed light on the matter:

    v2 − v2i   = 2a∆x

    ⇒ v2 = 2g(x + h) (4)

    So Eq. 3 becomes

    F impulse   =   µv2

    = 2µg(x + h) (5)Finally, the total force of the table from the falling chain is

    F    =   F g +  F impulse

    =   µxg + 2µ(x + h)g

    = 3µxg + 2µhg

    =   µg(3x + 2h) (6)

    which is equivalent to the weight of the length 3x of the rope, plus the correctionfor the initial height.

    2

  • 8/18/2019 Classical Solution bank

    15/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A thin circular ring of radius  R  and mass  m   is constrained to rotateabout a horizontal axis passing through two points on the circumfer-ence. The perpendicular distance from the axis to the center of thering is  h.

    Figure 1: A thin hoop confined to swing from an off-diameter axis of rotation.

    a) Find a Lagrangian for this object.

    Looking at the hoop from the side few, it’s apparent that this system is akinto a simple rigid pendulum of length  h. Since we know the pendulum’s bob (i.e.the hoop’s center of mass) is confined the plane of the page (or in and out of the page for the front view) a convenient generalized coordinate for this systemis the angle  φ  as seen in Figure 1. The kinetic energy of the hoop is then

    T    =  1

    2I  φ̇2

    =  1

    2 mR2 + mh2

     φ̇2

    =   12 m

    R2 + h2

     φ̇2 (1)

    1

  • 8/18/2019 Classical Solution bank

    16/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    where the moment of inertia  I  was found using the parallel axis thereom,

    I ||   =   I CoM  + md2 (2)

    noting that  d   is the distance from the center of mass to the parallel axis, andI CoM  =

      1

    2mr2 for a thin hoop.

    The potential energy will be similar a simple pendulum:

    V     =   mg · r

    =   −mgh cosφ   (3)

    So using Eq. 1 and 3 the Lagrangian for a thin hoop hung from an off diameteraxis of rotation is then

    L   ≡   T   − V  

    =  1

    2 m

    R2 + h2

     φ̇2 + mgh cosφ   (4)

    b) Find the period of small oscillations about this axis.

    Retrieving the equation of motion from the usual Lagrangian formalism will

    yield the frequency of small oscillations  ω , from which we can find the period.

    d

    dt

    ∂L

    ∂  φ̇

    ∂L

    ∂φ  ≡ 0

    d

    dt

    mR2 + h2

     φ̇

    + mgh sinφ = 0

        mR2 + h2

    φ̈   =   −    mgh sinφ

    φ̈   =   −gh

    R2 + h2  sinφ   (5)

    From here, we make the approximation that sinφ ≈ φ so that Eq. 5 becomesa simplified 2nd order differential equation of the form ẍ = −φ̇2x, whose general

    solution is  x(t) =  x0 cos ( φ̇t) in which  φ̇  is the frequency. Hence,

    φ̈   ≈ −gh

    R2 + h2  φ

    ⇒ φ(t) =   φ0 cos

       gh

    R2 + h2  t

      (6)

    The period of small oscillations is the time it takes Eq. 6 to repeat the initialconditions at   t  = 0, such that cos ( φ̇τ   − 2π) = cos (0). From this we arrive atthe familiar expression for the period of a pendulum as expected:

    τ    =  2π

    φ̇(7)

    = 2π

      ghR2 + h2

    − 12(8)

    2

  • 8/18/2019 Classical Solution bank

    17/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    Hoop! There it is!

    c) For what value of  h   is the period minimum?

    We wish to minimize   τ   with respect to  h, i.e. set the derivative of Eq. 8equal to zero,

    ∂τ ∂h

      =      2π  (gh)−1

    2 (R2 + h2)1

    2

    0 =   −1

    2  (gh)−

    3

    2 (g) (R2 + h2)1

    2 + 1

    2  (gh)

    1

    2 (R2 + h2)−1

    2 (2h)

    =  −g  (R2 + h2)

    1

    2

    2 (gh)3

    2

    +  2h

    2 (gh)1

    2   (R2 + h2)1

    2

    =  −g  (R2 + h2)

    1

    2 (R2 + h2)1

    2 + 2h  (gh)

                    

      2 (gh)

    3

    2 (R2 + h2)1

    2

    =   −g(R2 + h2) + 2gh2

    =   −gR2 − gh2 + 2gh2

    =   g  (h2

    − R2)

    R2 =   h2

    ⇒   h   =   ±R   (9)

    Only the non-trivial, positive value for   h   is physical, so the shortest periodwould result if the axis of rotation which has a distance

    h =  R   (10)

    from the center of mass of the hoop.Sanity check: if one wants to minimize the hoop’s period, Eq. 7 says that

    one could maximize the frequency. The axis at which the hoop won’t oscillateat all is zero is through center, and an axis with the maximum frequency is thatwhich has the longest “pendulum arm,” i.e. at the edge of the hoop, or h   =   R.

    3

  • 8/18/2019 Classical Solution bank

    18/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 18, 2007

    An object is dropped from a tower of height  h. The tower is locatedat the equator of the Earth. The rotational speed of the earth is  Ω.

    Figure 1: Da Erf. Note that +êx  points North, and +êy   points West, so    Ω =Ω êx.

    (a) If the Earth is treated as perfectly round and uniform and theacceleration due to gravity on a non-rotating earth is   g, what is theacceleration of gravity at the tower?

    With Earth rotating, we must not only consider the acceleration due togravity, but the centripetal and Coriolis acceleration. At the top of the tower,agrav  =  −g   êz, the radial vector is  r  = +h  êz, and the velocity is  v  =  −vr   êz.The effective acceleration (in the rotating frame) felt at the tower is then givenas

    aeff    =   agrav + acentrifugal + aCoriolis

    =   agrav −  Ω×  Ω × r − 2 Ω ×v

    = (−gêz) − (Ωêx) × (Ωêx) × (hêz) − 2(Ωêx) × (−vrêz)

    =   −g  êz − hΩ2 (êx × êx × êz) − 2Ωvr   (êx ×−êz)

    1

  • 8/18/2019 Classical Solution bank

    19/205

    Jeff Kissel May 18, 2007 Classical Mechanics

    =   −g  êz − hΩ2 (êx ×−êy) − 2Ωvr(−êy)

    =   −g  êz − hΩ2 (−êz) + 2Ωvrêy

    aeff    = 2Ωvr   êy − (g − hΩ2) êz   (1)

    Yet, at the top of the tower, we assume the object to have no radial velocity,vr  = 0. Thus, the effective acceleration is

    geff    =   −(g − hΩ2) êz   (2)

    (b) Even though it is released from rest, this object will not landdirectly below the point from which it was dropped. Calculate theamount and direction (N, E, S, W, or elsewhere) of the horizontaldeflection of the object. You may assume the deflection is small.

    The Coriolis effect is the only term that will have an effect in the horizontal(êy, East or West) direction, so pulling the first term from Eq. 1 if   vr   is nowgeff   t,

    F Coriolis   =   m aCoriolis

    = 2mΩvr

      êy

    = 2mΩ(−(g − hΩ2)  t) êy

    m  ÿ   =   −2mΩ(g − hΩ2)  t

    ÿ   =   −2Ω(g − hΩ2)  t

    ⇒   ẏ   =   −2Ω(g − hΩ2)

    1

    2  t2

    ⇒   y   =   −2Ω(g − hΩ2)

    1

    6  t3

    y   =   −Ω

    3 (g − hΩ2)  t3 (3)

    This quantity  y   is the horizontal deflect, get we can be more explicit. The

    time spent falling   t   can be found from the free-fall kinematics of a particlereleased from rest:

    ∆y   =      v0   t −1

    2geff   t

    2⇒   h   =

      1

    2  (g − hΩ2)  t2

    ⇒   t2 =  2h

    (g − hΩ2)  ⇒   t   =

      2h

    (g − hΩ2)

    1/2(4)

    which means the deflection becomes

    y   =   −Ω

    3 (g − hΩ2)

      2h

    (g − hΩ2)

    3/2

    y   =   −Ω (2h)3/2

    3(g − hΩ2)1/2  (5)

    The direction of this displacement is in the  −êy  direction, or to the East.

    2

  • 8/18/2019 Classical Solution bank

    20/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    Consider a pendulum consisting of a uniform disk of radius,  R  andmass,  m  suspended from a massless rod that allows it to swing in theplane of the disk.

    Figure 1: A circular disk, rotating in its plane on an axis a distance,  d   awayfrom the center of mass.

    (a) Using the parallel axis theorem, or calculating it directly, findthe moment of inertia   I   for the pendulum about an axis a distance

    d(0 < d < R)   from the center of the disk

    The moment of inertia through the center of a disk of radius  R  and mass  mis

    I CoM  = 1

    2mR2 (1)

    Using the parallel axis theorem, which states that the moment of inertia arounda point parallel to the center of mass a distance  d  away is

    I d  =  I CoM  +  md2 (2)

    So, using Eq. 1 the moment of inertia displaced by |r| = d  is

    I d   =  1

    2mR2 + md2

    I d   =   12

      m (R2 + 2d2) (3)

    1

  • 8/18/2019 Classical Solution bank

    21/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    (b) Find the gravitational torque on the pendulum when displacedby and angle   φ.

    From the definition of rotational torque from a given force:

    τ    =   r ×   F g=

      |r

    | | F 

    |  sin φ

    = (d)(−mg) sin φ=   −mgd sin φ   (4)

    (c) Find the equation of motion for small oscillations and give the fre-quency ω . Further, find the value of  d  corresponding to the maximumfrequency for fixed   R  and   m.

    If we note that  τ   =  I α, then we know the equation of motion immediatelyfrom Eq. 4(using the small angle approximation that sin φ =  φ),

    I dα   =   −mgd φα   =   −mgd

    I dφ

    (5)

    which is a 2nd order differential equation of the form  φ̈ = −ω2φ from which wecan pull out  ω . Subbing in Eq. 3,

    ω2 =  2    mgd

        m (R2 + 2d2)

    ω   =

      2gd

    R2 + 2d2

    2(6)

    To find the value of  d   for which  ω   is maximized, we shall differentiate withrespect to  d  and set to zero,

    dωdd   =   ddd

    (2gd)(R2 + 2d2)

    −1

    0 =  1

    2

      2gd

    R2 + 2d2

    − 12

    2g  (R2 + 2d2)−1 − (2gd)(R2 + 2d2)−2(4d)

    0 =  1

    2

    R2 + 2d2

    2gd

    12

      2g

    R2 + 2d2 −   8gd

    2

    (R2 + 2d2)2

    0 =      1

    2

    R2 + 2d2

        2gd

    12

    2g(R2 + 2d2) − 8gd      

          (R2 + 2d2)2

    0 =

    R2 + 2d2 12

    2gR2 + 4gd2 − 8gd2

    0 = R2 + 2d21

    2 (    2g(R2

    −2d2))

    0 =

    R2 + 2d2 12

    R2 − 2d2

    2

  • 8/18/2019 Classical Solution bank

    22/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    R2 + 2d2 = 0   R2 − 2d2 = 0d =

      iR√ 2

    d = ±   R√ 2

    (7)

    But we know the left set is unphysical and −  R√ 2

     is equivalent to   R√ 2

    , so

    dmax =   R√ 2

    (8)

    3

  • 8/18/2019 Classical Solution bank

    23/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A heavy particle of mass  m   is placed close to the top of a frictionless

    vertical hoop with radius  R  and allowed to slide down the hoop. Find

    the angle at which the particle falls off.

    We know the point at which the particle falls off the hoop is when the normalforce  N  acting on the particle goes to zero. So, we need an expression for  N .

    Figure 1: Ball of mass  m  on a hoop with radius  R.

    Before the particle begins to move, it has only potential energy  V  i. At theinstant it leaves the hoop, it has both potential  V  f  and kinetic  T f   energies. Theparticle is allowed to slide, so there assumed to be no friction and therefore norolling, thus we need no worry about the moment of inertial of the ball. Theenergy conservation equation is then

    E i   =   E f 

    V  i   =   T f  +  V  f 

    mgR   =  1

    2mv2 + mgR cos θ   (1)

    However, Eq. 1 does not contain the normal force  N , which we need. It can be

    found by assuming the hoop is circular, so that the normal force acting on the

    1

  • 8/18/2019 Classical Solution bank

    24/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    particle is just its centripetal acceleration subtracted from its weight, or

    N    =   mg cos θ −mac

    =   mg cos θ −mv2

    R  (2)

    Multiplying this by  1

    2R  will yield a more useful equation for the kinetic energy,

    1

    2R → (N    =   mg cos θ −mac)

    1

    2RN    =

      1

    2mgR cos θ −

    1

    2mv2

    1

    2mv2 =

      1

    2mgR cos θ −

    1

    2RN    (3)

    which we can now plug into the conservation equation (Eq. 1) to arrive atexplicit equation for  N ,

    mgR   =  1

    2mgR cos θ −

    1

    2RN  +  mgR cos θ

    12

    RN    =   32

    mgR cos θ −mgR

    N    = 3mg cos θ − 2mg   (4)

    Since we’ve established that the particle falls off the hoop when  N  = 0, Eq. 4becomes,

    0 =   mg(3 cos θ − 2)

    = 3 cos θ − 2

    cos θ   =  2

    3  (5)

    So the angle at which a heavy particle of mass  M   slides off a circular hoop or

    radius R  isθ ≈ 48.2◦ (6)

    2

  • 8/18/2019 Classical Solution bank

    25/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A solid sphere of radius  R   and mass   M   rolls without slipping down a

    rough inclined plane of angle   θ.

    Figure 1: A sphere rolling down a rough ramp.

    Take the coefficient of static friction to be   µ   and calculate the lin-

    ear acceleration of the sphere down the plane, assuming that it rolls

    without slipping.

    In this problem, we can use conservation of energy between the top andbottom of the ramp. At the top of the ramp, the ball begins rolling from restand thus has no initial kinetic energy. This means the initial energy is

    E i   =      0

    T i + V  i

    =   mCoM    g x   sin θ   (1)

    1

  • 8/18/2019 Classical Solution bank

    26/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    where the origin is set at the top of the ramp.The final energy has only kinetic terms, and is a sum of the motion of the

    center of mass, and the rotation of the sphere,

    E f    =   T f  +     0

    V  f 

    =   12

      mCoM    v2 + 12

      I CoM    ω2 (2)

    Setting Eqs. 1 and 2 equal to each other, plugging in for the moment of inertia of a sphere,  I CoM  =

      25

      mCoM    R2 and noting that  v  = ẋ, and  ω  =   ẋ

    R,

    E i   =   E f 

          mCoM    g x   sin θ   =  5

    10       mCoM   ẋ

    2 + 1

    2

    2

    5       mCoM      R

    2

     ẋ

      R

    2

    ẋ2 =  10

    7  g x   sin θ

    dx

    dt  =   ξx

    1

    2 (3)

    where I’ve defined a constant  ξ  = 

    107

      g   sin θ. At this point we integrate both

    sides to find  x  as a function of time, which we can then differentiate twice withrespect to time to get the acceleration, ẍ =  aCoM ,

    x−

    1

    2   dxξ

      =   dt

    2x1

    2

    ξ  =   t

    x   =  1

    4  ξ 2 t2 ⇒   ẋ   =   12   ξ 

    2 t   ⇒   ẍ   =  1

    2  ξ 2

    ẍ   =   12

     107   g   sin θ

    2

    aCoM    =  7

    5   g   sin θ   (4)

    Calculate the maximum value of  θ   for which the sphere will not slip.

    The sphere will begin to slip once the  x-component of the weight becomesgreater than the maximum frictional force providable by µ. The angle at which

    this occurs,  θc  can be found by setting the normal force,  F (x̂)g   equal to the force

    of friction  F f  = µN ,

    mg sin θc   =   µN 

        mg sin θc   =   µ    mg cos θc

    µ   =  sin θc

    cos θc= tan θc

    ⇒ θc   = tan−1

    (µ) (5)

    2

  • 8/18/2019 Classical Solution bank

    27/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A rocket is filled with fuel and is initially at rest. It starts moving by

    burning fuel and expelling gases with the velocity  u, constant relative

    to the rocket. Determine the speed of the rocket at the moment when

    its kinetic energy is largest.

    Figure 1: A free rocket traveling in an inertial frame, without the force of gravity.

    At some time   t   the rocket, traveling at a velocity  v, has some mass  m. Aninfinitesimal time   dt   later, the rocket has lost a mass   dm, and gained a speeddv. At this time, an infinitessimal amount of fuel,  dm′ is ejected at a velocityu  with respect to the rocket. In an inertial frame however, that fuel’s velocityis  v − u. Thus, using conservation of momentum, we can get an expression forthe mass of the rocket as a function of time,

     procket   =   procket + pfuel

    1

  • 8/18/2019 Classical Solution bank

    28/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    m v   = (m − dm)(v + dv) + dm′(v − u)

    m v   =   m v + m dv − v dm′ − du dv + v dm′ − u dm′

    m dv   =   u dm′ − du dv   (1)

    From here, we note that to first order, the term  du dv  is extremely small, so itis dropped, leaving

    1

    u  dv   =

      1

    m  dm′ (2)

    Noting that   dm′ =  −dm  and integrating both sides give us an express forthe mass of the rocket as a function of time:   v

    0

    1

    u  dv′ =   −

       mm0

    1

    m  dm

    v

    u  = ln

     m

    m0

    m   =   m0e−

     v

    u (3)

    Plugging into the expression of the rocket’s kinetic energy,

    T    =   12

      mv2 =  1

    2  m0v

    2 e−v

    u (4)

    which we then maximize with respect to  v  to find the largest speed  vmax,

    ∂T 

    ∂v  =

      ∂ 

    ∂v

    1

    2  m0v

    2 e− v

    u

    0 =   m0v e−

     v

    u−

     1

    2  m0v

    2  1

    u  e−

    v

    u

              

    m0v e−

    v

    u =  v

    2u          

    m0v e−

    v

    u

    vmax   = 2u   (5)

    Thus, the kinetic energy is maximum when the velocity of the rocket is twicethat of the ejected fuel.

    2

  • 8/18/2019 Classical Solution bank

    29/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 19, 2007

    Exam Iteration Question Number Notes/ChangesSpring 2006 #12 –

    Fall 2006 #12 –Spring 2007 #12 Added damping.

    A small lead ball of mass  m   is attached to one end of a vertical spring

    with the spring constant   k. The other end of the spring oscillates up

    and down with amplitude  A   and frequency   ω. Determine the motion

    of the ball after a long period of time. You may assume that the

    ball is subject to a small amount of damping, with the damping force

    being given by   F   = −γv .

    Figure 1: A driven harmonic oscillator sitting in a viscous damping fluid.

    Hopefully, one can assume that all motion is in the ŷ  direction.

    1

  • 8/18/2019 Classical Solution bank

    30/205

    Jeff Kissel May 19, 2007 Classical Mechanics

    The kinetic energy of the system is

    T    =  1

    2  mẏ2 (1)

    and the potential, as long as we define the origin to be at the equilibrium pointsuch that the displacement ∆y  ≡ y − ye =  y, is as follows,

    V     =  1

    2  ky2 + mgy   (2)

    This makes the Lagrangian

    L   ≡   T  − V  

    L   =  1

    2  mẏ2 −

     1

    2  ky2 −mgy   (3)

    We can use the form of the Euler-Lagrange equations which has forces notderivable from a potential,  Q, to determine the equation of motion. The forcesnot derivable from potential are the driving and damping forces,

    F o

      =   A   cos(ωt) (4)

    F d   =   −γ  ẏ   (5)

    So, the equation of motion is

    d

    dt

    ∂L

    ∂  ẏ

     ∂L

    ∂y  =   Qi

    d

    dt (mẏ)− (−ky −mg) =   A   cos(ωt)− γ  ẏ

    mÿ + ky  + mg   =   A   cos(ωt)− γ  ẏ

    mÿ + γ  ẏ + ky   =   A   cos(ωt)−mg

    ÿ +  γ 

    m ẏ +

      k

    m  y   =

      A

    m  cos(ωt)− g

    Let  β    =   γ m

    , ω20   =  km

    ,   and  B   =   Am

    ÿ + β  ẏ + ω20   y   =   B   cos(ωt)− g

    Let  x   =   −   gω20

    + y   ⇒   y   =   x +   gω20

    ẋ   = ẏẍ   = ÿ

    ẍ + β  ẋ + ω20

    x +

      g

    ω20

      =   B cos (ωt) + g

    ẍ + β  ẋ + ω20x +  g   =   B cos (ωt) +  g

    ẍ + β  ẋ + ω20x   =   B cos (ωt) (6)

    Yes folks, it’s the driven harmonic oscillator with damping. Your favoritedifferential equation to solve.

    2

  • 8/18/2019 Classical Solution bank

    31/205

    Jeff Kissel May 19, 2007 Classical Mechanics

    We’ll start with the homogeneous solution.

    0 = ẍH  +  β  ẋH  +  ω20xH 

    The characteristic equation:

    0 =   am2± + bm± + c

    ⇒   0 = (1)m2± + (β )m± + (ω20)

    has roots

    m   =   p± iq 

    with p   =   −  b

    2  and  q    =

     c −

     b2

    4

    ⇒   p   =   − β 

    2  and  q    =

     ω20 −

     β 2

    4

    Such that the general solution is

    e pt (C  cos (q t) + D sin(q t))

    xH (t) =   e−

    1

    2βt

    C  cos

     ω20  −

     β 2

    4  t

     + D cos

     ω20 −

     β 2

    4  t

      (7)

    For the inhomogeneous solution, we can generalize the equation making itcomplex,

    ̈xI  +  β ̇xI  +  ω20xI    =   Be−iωtand then take the real part at the end. This way we can assume a complexexponential solution,

     xI  =

     G ei(ωt), which knocks out the differentiation because

    xI    = G e−iωt   ̇xI    =   − iω G e−iωt   ̈xI    =   − ω2 G e−iωt (8)which means all we have to do is find the complex constant G,

    Be−iωt =   −ω2 G e−iωt +−iωβ  G e−iωt + ω20 G e−iωtB   =   −ω2 G +−iωβ  G + ω20 GB   =   G (ω20  − ω2)− iωβ G   =   B

    (ω20  − ω2)− iωβ 

    =  B

    (ω20  − ω2)− iωβ 

    (ω20  − ω

    2) + iωβ 

    (ω20  − ω2) + iωβ 

    G   =   B(ω20  − ω2) + iBωβ 

    ((ω20  − ω2) + ω2β 2)

      (9)

    3

  • 8/18/2019 Classical Solution bank

    32/205

    Jeff Kissel May 19, 2007 Classical Mechanics

    So the inhomogeneous solution is

    xI (t) =   B(ω20  − ω2)((ω20  − ω

    2) + ω2β 2)  e−iωt +

      Bωβ 

    ((ω20  − ω2) + ω2β 2)

      ie−iωt

    ⇒   xI (t) =   ℜe

      B(ω20 − ω

    2)

    ((ω20  − ω2) + ω2β 2)

      e−iωt +  Bωβ 

    ((ω20  − ω2) + ω2β 2)

      ie−iωt

      ℜe e−iωt   = cos (ωt)ℜe

    ie−iωt

      = sin (ωt)

    xI (t) =

      B(ω20  − ω2)

    ((ω20  − ω2) + ω2β 2)

     cos (ωt) +  Bωβ 

    ((ω20  − ω2) + ω2β 2)

     sin (ωt) (10)

    Yeah. The complete solution for  x(t) is

    x(t) =   e−1

    2βt

    C  cos

     ω20  −

     β 2

    4  t

     + D cos

     ω20 −

     β 2

    4  t

    +  B(ω20  − ω

    2)

    ((ω20  − ω2) + ω2β 2)

     cos (ωt) +  Bωβ 

    ((ω20  − ω2) + ω2β 2)

     sin (ωt)

    (11)

    Oh but wait, we have to plug back in for  y(t) =  x(t) +   gω20

    ,

    y(t) =   e−

    1

    2βt

    C  cos

     ω20 −

     β 2

    4  t

     + D cos

     ω20  −

     β 2

    4  t

    +  B(ω20 − ω

    2)

    ((ω20  − ω2) + ω2β 2)

     cos (ωt) +  Bωβ 

    ((ω20  − ω2) + ω2β 2)

     sin (ωt)−  g

    ω20

    And remember:  β    =  γ 

    m, ω20   =

      k

    m,   and  B   =

      A

    m

    y(t) =   e−

    γt

    2m

    C  cos

      k

    m −

      γ 2

    4m2  t

     + D cos

      k

    m −

      γ 2

    4m2  t

    +  A(k −mω2)

    (k −mω2)2 + ω2γ 2 cos(ωt) +

      Aωγ 

    (k −mω2)2 + ω2γ 2 sin(ωt)−

     mg

    k

    (12)

    Which is the position as a function of time, where   C   and   D   are constantsdetermined by initial conditions.

    OK so what happens after a long time? The exponential damping in thehomogeneous term kills off all resonances that would be found from ω0, and thespring just oscillates according to the inhomogeneous equation. In other words,the spring just sloshes along with the driving frequency, according to

    limt→∞

    y(t) =  A(k −mω2)

    (k −mω2)2 + ω2γ 2 cos(ωt) +

      Aωγ 

    (k −mω2)2 + ω2γ 2 sin(ωt)−

     mg

    k

    (13)

    4

  • 8/18/2019 Classical Solution bank

    33/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 17, 2007

    Exam Iteration Question Number Notes/ChangesSpring 2006 #13 –

    Fall 2006 #13 –Spring 2007 #13 Last sentence changed

    In movie cameras and projectors film speed is  24  frames/sec. Yousee on the screen a car that moves without skidding, and know that

    the real-life diameter of its wheels is   1  m. The wheels on the screenmake   3   turns/sec. What is the speed of the car, assuming it is notmoving in excess of  200  mi/hr?

    Figure 1: A wheel that appears to rotate one eighth of its circumference.

    In one frame, it appears to the viewer that the wheel has turned and angularvelocity

    ω   =

    3   [turns]    [sec]

    24   [frames]

        [sec]

    =  1

    8

    turns

    frame   (1)

    1

  • 8/18/2019 Classical Solution bank

    34/205

    Jeff Kissel May 17, 2007 Classical Mechanics

    However, appearances can be deceiving. To the viewer, “measuring” the po-sition of the wheel discretely, the wheel has turned only 1/8 of its circumference.The car could be moving much faster, such that the wheel makes any integernumber   N   of   extra   turns before reaching the final 1/8 (for example, N=1 inFigure 1. The angular velocity should then technically be

    ω   =

    N  +  18

      turnsframe

      (2)

    Finally, to find the (linear) speed  v, we must convert Eq. 2 into the correctunits,

    ω   =

    N  +

     1

    8

         

        [turns]

            [frame]

      ×   24       

        [frames]

    [sec]  ×   2π

      [radians]

            [turn]

    ω   = 48π

    N  +

     1

    8

      rads/s   (3)

    and then convert angular to linear speed, noting that the wheel has a 1   mdiameter , and thus a 0.5 m  radius.

    v   =   ω r

    =

    48π

    N  +

     1

    8

      rads/s

      (0.5 m)

    = 24π

    N  +

     1

    8

      m/s   (4)

    Thus for  N   = 0,   v   = 3π m/s   ≈  6.7  mi/hr, and  N   = 1,   v   = 27π m/s   ≈189.7 mi/hr. (1 m/s  = 2.23693629 mi/hr).

    Though this problem may seem pretty lame, it brings up an important con-cepts in signal processing: digital sampling of analog signals, which may resultin “aliasing.” Check out the Wikipedia article on it!

    2

  • 8/18/2019 Classical Solution bank

    35/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    A ball of mass m collides with another ball, of mass  M  = am, initiallyat rest. The collision is elastic and central, i.e. the initial velocity of the ball is along the line connecting the centers of the two objects.

    Figure 1: Two balls collide with mass ratio  a.

    (a) Determine how the energy lost by the moving ball depends onthe mass ratio   a, and find the value of   a  for which the energy loss islargest. Describe what happens at that value of the mass ratio.

    We can solve this problem using conservation of energy and momentum.The problem does not mention any potential, so we can find the velocity of thesecond ball in terms of the first starting with kinetic energy conservation.

    E i   =   E f 

          1

    2mv2i   +  

          

    01

    2M ui

    2 =      1

    2mv2f  +

          1

    2M u2f 

        m v2

    i   =      m v2

    f  +  a    m u2

    v2i   =   v2

    f  +  au2

    f    (1)

    We can now bring in conservation of momentum to knock out one of theunknowns,

     pi   =   pf 

    mvi +      M ui   =   mvf  +  M uf 

    1

  • 8/18/2019 Classical Solution bank

    36/205

    Jeff Kissel October 11, 2006 Classical Mechanics

        m vi   =      m vf  +  a    muf 

    vf    =   vi − auf    (2)

    Now, pluggind Eq. 1 into Eq. 2,

    v2i   = (vi − auf )2 + au2f 

        v2

    i   =     v2

    i   + a2

    u2

    f − 2aviuf  +  av2

    0 =   a (a + 1)  u  2

    f − 2   a vi     uf 

    −(a + 1)uf    =   −2  vi

    uf  =  2vi(a + 1)

      (3)

    Finally, the kinetic energy lost by the first ball is just that that is gained bythe second,

    ∆E    =  1

    2M u2

    =  1

    2  am

      2via + 1

    2

    ∆E    =  2amv2i

    (a + 1)2  (4)

    To find the value for which the energy lost is largest, we can just maximizewith respect to  a,

    ∂ ∆E 

    ∂a  =

      ∂ 

    ∂a

    2mv2i   a (a + 1)

    −2

    0 = 2mv2i   (a + 1)−2− 4mv2i   a  (a + 1)

    −3

          2mv2i

    1

    (a + 1)2  =

      2a

    (a + 1)3       2mv2i

    (a + 1)  3 = 2a        

    (a + 1)2

    a + 1 = 2aa = 1 (5)

    So, the change in energy is the greatest when the balls have the same exactmass: the first ball’s kinetic energy is split evenly between them during thecollision such that  vf   and  uf   are equal, but in opposite direcetions.

    (b) Investigate the limiting cases of heavy and light balls and com-ment on your result.

    In the limiting case that   a  ≪   1, the first ball will be much more massivethan the second. In this case, the first ball will lose virtually none of its energy,but because the second ball is so less massive, it will propel off with  uf  = 2vi.

    lima→0

    ∆E    =   2amv2

    i

    (  a + 1)2

      = 2M v2i

    2

  • 8/18/2019 Classical Solution bank

    37/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    lima→0

    vf    =   vi −    auf    =   vi

    lima→0

    uf    =  2vi(  a + 1)

      = 2vi

    In the case where  a ≫ 1, the energy imparted onto the second ball will beneglegible. In addition, since so little velocity is transferred to the second ball,

    the first will be forced in the opposite direction with a final velocity equal to itsinitial.

    lima→∞

    ∆E    =  2amv2i(      

    ∞a + 1)2

      = 0

    lima→∞

    vf    =   vi −  2  avi      

      (a + 1)   =   −vi

    lima→∞

    uf    =  −2vi(      

    ∞a + 1)

    = 0

    3

  • 8/18/2019 Classical Solution bank

    38/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    Two particles of mass  m  and  m + 2  move in circular orbit around eachother under the influence of gravity. The period of the motion is   T .

    They are suddenly stopped and then released, after which they fall

    towards each other. If the objects are treated as mass points, find

    the time they collide in terms of   T .

    Figure 1: (Left) Two masses orbiting about each other suddenly stopped, as atwo body problem. (Right) The same system reduced to a one-body problem

    using the reduced mass  µ.

    As noted in the picture, the problem can be simplified to a one body problemusing the reduced mass,

    µ   =  m1m2

    m1 + m2

    =  m2 + 2m

    2m + 2

    µ   =  1

    2

    m + 2

    (1 + m−1)  (1)

    Now a one body problem, we can find the Lagrangian of this more simple system,

    V     =   − kr

    1

  • 8/18/2019 Classical Solution bank

    39/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    T    =  1

    2  µṙ2 +

     1

    2  µ r2 θ̇2

    L   =   T  − V  

    L   =  1

    2  µ (ṙ2 + r2 θ̇2) +

     k

    r  (2)

    where I’ve defined the gravitational constant of the system  k =  Gm1m2. Fromhere we crank the usual Lagrangian formalism,

    d

    dt

    ∂L

    ∂ ṙ

    − ∂L

    ∂r  = 0

    d

    dt (µṙ) − (µrθ̇ − k

    r2) = 0

    µr̈ − µrθ̇ +   kr2

      = 0 (3)

    d

    dt

    ∂L

    ∂  θ̇

    − ∂L

    ∂θ  = 0

    d

    dtµr2 θ̇− (0) = 0

    µr2θ̈   = 0

    θ̈   = 0 (4)

    It appears as though the sooner will be a little more useful than the latter,so let’s roll with it. We know for circular motion, not only is Eq. 4 true, butr̈  = 0 is also true. Using this fact, we can distill Eq. 3 a bit to get a familiarlaw from my buddy Kepler:

        µr̈ − µrθ̇ +  k

    r2  = 0

    k

    r2  =   µrθ̇

    r3 =   kµθ̇2

    (θ̇   =   ω   =   2πT 

      )

    r3 =  kT 2

    4π2µ  (5)

    Now that we’ve naively re-derived Kepler’s 3rd, let’s stop the masses. TakingEq. 5 as our starting radius, r3

    0, we know stop the angular motion of the masses,

    i.e. set   ˙theta, so the Eq. 3 instead becomes

    0 =   µr̈ −    µrθ̇ +  k

    r2

    r̈   =   − kµr2

    ( r̈   =   ∂ ṙ∂t

      =   ∂r∂t

    ∂ ṙ∂r

      = ṙ   ∂ ṙ∂r

      )

    2

  • 8/18/2019 Classical Solution bank

    40/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    ṙ dṙ   =   − kµr2

      dr

    1

    2 ṙ2 =

      k

    µr + C 

    ṙ2 =  2k

    µr + 2C 

    We can use the initial condition that at  r  =  r0, ṙ  = 0, so that  C  = −   kµr0 , andfinally we can solve for the linear merger time,

    ṙ   =

     2k

    µr − 2k

    µr0

    dr   =

    2k

    µ

    1

    r − 1

    r0

    12

    dt

    dt   =  dr

    2kµ

    1

    r −   1

    r01

    2

    t   =

     µ2k

    12   0r0

    1r − 1

    r0

    − 12

    dr   (6)

    which is a horribly disgusting integral, that can be solved analytically using afew “u  substitutions,” (let  u  =   1

    r, and then  u  =  u0 sec

    2 θ) but I’ll happily justleave it as Eq. 6. Numerically evaluated this turns out to be

    t ≈ T 8√ 

    2(7)

    3

  • 8/18/2019 Classical Solution bank

    41/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    Three points masses of identical mass are located at (a,   0,   0), (0, a,   2a)and (0,   2a, a). Find the moment of inertia tensor around the origin,the principal moments of inertia, and a set of principal axes.

    Figure 1: A system of three identical masses.

    The moment of inertia tensor for a discrete mass system is given by

    I =  I jk  =i

    mi

    δ jkr2

    i   − (xjxk)i

      (1)

    So for

    r1  =  a  x̂ r2

    1 = a2

    r2  =  a  ŷ + 2a  ẑ r2

    2  = a2 + 4a2 = 5a2

    r3  = 2a  ŷ + a  ẑ r2

    3 = 4a2 + a2 = 5a2

    1

  • 8/18/2019 Classical Solution bank

    42/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    the diagonal elements of  I  are

    I 11   =i

    mi

    r2i   − xixi)

    =   m(r21  − x1x1) + m(r2

    2  − x2x2) + m(r2

    3 − x3x3)

    =   m(a2 − a2) + m(5a2 − 0) + m(5a2 − 0)

    = 10ma2 (2)

    I 22   =i

    mi

    r2i   − yiyi)

    =   m(r21 − y1y1) + m(r

    2

    2 − y2y2) + m(r

    2

    3− y3y3)

    =   m(a2 − 0) + m(5a2 − a2) + m(5a2 − 4a2)

    = 6ma2 (3)

    I 33   =i

    mi

    r2i   − zizi)

    =   m(r21  − z1z1) + m(r2

    2  − z2z2) + m(r2

    3  − z3z3)

    =   m(a2 − 0) + m(5a2 − 4a2) + m(5a2 − a2)

    = 6ma2

    (4)

    And the off-diagonal elements are

    I 12  =  I 21   =i

    mi(−xiyi)

    =   m(−x1y1) + m(−x2y2) + m(−x3y3)

    =   m(0) + m(0) + m(0)

    = 0 (5)

    I 13  =  I 31   =i

    mi(−xizi)

    =   m(−x1z1) + m(−x2z2) + m(−x3z3)

    =   m(0) + m(0) + m(0)

    = 0 (6)

    I 23  =  I 32   =i

    mi(−yizi)

    =   m(−y1z1) + m(−y2z2) + m(−y3z3)

    =   m(0) − m(2a2) − m(2a2)

    =   −4ma2 (7)

    So the moment of inertia tensor for this system is

    I =

    10ma2 0 0

    0 6ma2 −4ma2

    0   −4ma2 6ma2

      (8)

    2

  • 8/18/2019 Classical Solution bank

    43/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    The principle moments of inertia and principle axes are the eigenvalues andeigenvectors (respectively) of the moment of inertia tensor. So to find eigenval-ues, we find the characteristic equation of  I

    det

    I − λ

     1

      =

    10ma2 − λ   0 00 6ma2 − λ   −4ma2

    0  −

    4ma2

    6ma2−

    λ

    0 = (10ma2 − λ)

    (6ma2 − λ)(6ma2 − λ) − (−4ma2)2− 0 + 0

    = (10ma2 − λ)

    36m2a4 − 12λma2 + λ2 − 16m2a4

    = (10ma2 − λ)

    λ2 − 12λma2 + 20m2a4

    = (10ma2 − λ)(10ma2 − λ)(2ma2 − λ)

    ⇒   λ1  = 10ma2 λ2 = 10ma

    2 λ3  = 2ma2 (9)

    so there is a two-fold degeneracy in the moments of inertia which means thesystem is akin to a symmetrical top. To find the eigenvectors (principle axes),we demand that the principle moments of inertia obey the eigenvalue equation(I − λ

     1) · x = 0. So for  λ1  =  λ2  = 10ma

    2,

    0 0 00   −4ma2 −4ma20   −4ma2 −4ma2

    · xy

    z

      = 00

    0

    −4ma2 y − 4ma2 z   = 0

    ⇒   y   =   − z

    so, picking the simplest eigenvectors, the principle axes for  λ1  &  λ2  are

    χ1  =

    0−1

    1

      and   χ2  =

    10

    0

      (10)

    And for  λ3  = 2ma2,

    8ma2 0 0

    0 4ma2 −4ma2

    0   −4ma2 4ma2

    · xy

    z

      = 00

    0

    8ma2 x   = 0

    4ma2 y − 4ma2 z   = 0

    −4ma2 y + 4ma2 z   = 0

    ⇒   x   = 0, y   =   z

    and again picking the simplest eigenvector, the principle axis for  λ3   is

    χ3  =

    01

    1

      (11)

    3

  • 8/18/2019 Classical Solution bank

    44/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 11, 2006

    Consider a double pendulum consisting of a mass   m   suspended ona massless rod of length   ℓ, to which is attached by a pivot anotheridentical rod with an identical mass  m  attached at the end, as shownin the Figure 1.

    Figure 1: A double pendulum, with identical masses and string lengths.

    Using the angles   θ1   and   θ2   as generalized coordinates,

    a) Find a Lagrangian for the system.

    Using θ1  and  θ2  as generalized coordinates, the position (r1, r2) and velocity(v1, v2) vectors become

    r1   = (ℓ sin θ1) x̂ + (ℓ cos θ1) ŷ   (1)

    v1   =   ̇r1   = ℓθ̇1 cos θ1 x̂− ℓθ̇1 sin θ1 ŷ   (2)r2   = (ℓ sin θ1 + ℓ sin θ2) x̂ + (ℓ cos θ1 + ℓ cos θ2) ŷ

    1

  • 8/18/2019 Classical Solution bank

    45/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    =   ℓ (sin θ1 + sin θ2) x̂ + ℓ (cos θ1 + cos θ2) ŷ   (3)

     v2   =   ̇r2   =

    ℓθ̇1 cos θ1 + ℓθ̇2 cos θ2

    x̂−

    ℓθ̇1 sin θ1 + ℓθ̇2 sin θ2

    =   ℓ

    θ̇1 cos θ1 +  θ̇2 cos θ2

    x̂− ℓ

    θ̇1 sin θ1 +  θ̇2 sin θ2

    ŷ   (4)

    In the kinetic energy term of the Lagrangian, we’ll need the squares of thevelocities, which are

    v21   =    v1 ·    v1   =

    ℓθ̇1 cos θ1

    2+

    ℓθ̇1 sin θ1

    2=   ℓ2 θ̇2

    1

    cos2 θ1 + sin

    2 θ1

    =   ℓ2 θ̇21   (5)

    v22

      =    v2 ·    v2   =

    ℓθ̇1 cos θ1 + ℓθ̇2 cos θ22

    +

    ℓθ̇1 sin θ1 + ℓθ̇2 sin θ22

    =   ℓ2 θ̇21 cos2 θ1 + ℓ

    2 θ̇22 cos2 θ2 + 2ℓ

    2 θ̇1 θ̇2 cos θ1 cos θ2

    +  ℓ2 θ̇21

     sin2 θ1 + ℓ2 θ̇2

    2 sin2 θ2 + 2ℓ

    2 θ̇1 θ̇2 sin θ1 sin θ2

    =   ℓ2 θ̇21 cos2 θ1 + sin

    2 θ1 + ℓ2 θ̇22 cos

    2 θ2 + sin2 θ2

    + 2ℓ2 θ̇1 θ̇2 (cos θ1 cos θ2 + sin θ1 sin θ2)=   ℓ2 θ̇2

    1 + ℓ2 θ̇2

    2 + 2ℓ2 θ̇1 θ̇2 cos (θ2 − θ1) (6)

    Finally, noting that g = −g  ŷ  and  m1 =  m2  =  m  we can combine the resultsof Eqs. 1, 3, 5, and 6 to find the kinetic and potential energies:

    T    =  1

    2mv2

    1 +

     1

    2mv2

    1

    =  1

    2  mℓ2 θ̇2

    1 +

     1

    2  m

    ℓ2 θ̇2

    1 +  ℓ2 θ̇2

    2 + 2ℓ2 θ̇1 θ̇2 cos (θ2 − θ1)

    =   mℓ2 θ̇2

    1 +

     1

    2  mℓ2 θ̇2

    2 +  mℓ2 θ̇1 θ̇2 cos (θ2 − θ1) (7)

    V     =   mg · r1 + mg · r2

    =   −mgℓ cos θ1 −mgℓ (cos θ1 + cos θ2)

    =   −2mgℓ cos θ1 −mgℓ cos θ2   (8)

    which we combine to form a Lagrangian for a double pendulum with identicalmasses and string lengths:

    L   ≡   T  − V  

    =   mℓ2 θ̇21 + 1

    2mℓ2 θ̇22 +  mℓ

    2 θ̇1 θ̇2 cos (θ2 − θ1) + 2mgℓ cos θ1 + mgℓ cos θ2

    =  1

    2mℓ2

    2θ̇21 +

     θ̇22 + 2θ̇1 θ̇2 cos (θ2 − θ1)

    +   mgℓ (2cos θ1 + cos θ2) (9)

    2

  • 8/18/2019 Classical Solution bank

    46/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    b) Find an approximate Lagrangian that is appropriate for small oscil-lations and obtain from it the equations of motions when θ1  &  θ2   ≪   1.

    For small oscillations, we can approximate cos x  ≈   1 −   12

    x2 + O(x4), and

    drop those terms which are of higher order than quadratic in  θi  and  θ̇i  so that

    Eq. 9 is

    L   ≈   mℓ2 θ̇21

     + 1

    2mℓ2 θ̇2

    2 + mℓ2 θ̇1 θ̇2

    1−

     1

    2      

        (θ2 − θ1)2

    + 2mgℓ

    1−

     1

    2θ21

    + mgℓ

    1−

     1

    2θ22

    where what is canceled above will turn out to be quartic in   θi   and  θ̇i   so it isdropped. Simplified, the approximate Lagrangian is then

    L   ≈   mℓ2 θ̇21 + 1

    2mℓ2 θ̇22 +  mℓ

    2 θ̇1 θ̇2 + 2mgℓ −mgℓθ2

    1 + mgℓ − 1

    2mgℓθ22

    ≈  1

    2

    mℓ2 2θ̇21 +  θ̇22 + 2θ̇1 θ̇2−  12

    mgℓ 2θ21 + θ22 + 3mgℓ   (10)

    c) Assuming that each angle varies as  θ1,2 =  A1,2  eiωt, find the frequen-

    cies for small oscillations.

    Performing the usual Lagrange processes using Eq. 10 to find the equationsof motion, we can then use these to solve for the frequencies of small oscillations.In general, Lagrange’s equations of motion are defined by

    d

    dt

    ∂L

    ∂  q̇ i

      ∂L

    ∂q i= 0 (11)

    where q i are the generalized coordinates of the system, and q̇ i are their respective

    time derivatives.So the equations of motion for  θ1  and  θ2  are

    ∂L

    ∂  θ̇1= 2mℓ2 θ̇1 + mℓ

    2 θ̇2∂L

    ∂θ1= −2mgℓ θ1

    ⇒   2mℓ2θ̈1 + mℓ2θ̈2   + 2mgℓ θ1   = 0

    2θ̈1 + θ̈2

      + 2gθ1   = 0 (12)

    ∂L

    ∂  θ̇2= mℓ2 θ̇2 + mℓ

    2 θ̇1∂L

    ∂θ2= −mgℓ θ2

    ⇒   mℓ2θ̈2 + mℓ2θ̈1   +   mgℓ θ2   = 0

    ℓθ̈1 + θ̈2   +   g θ2   = 0 (13)

    3

  • 8/18/2019 Classical Solution bank

    47/205

    Jeff Kissel October 11, 2006 Classical Mechanics

    If we assume  θj  = Aj   eiωt, then θ̈j  → −ω

    2θj , and the equations of motion yieldfour oscillation frequencies:

    ℓ−2ω2θ1 − ω

    2θ2

      + 2g θ1   = 0

    −ω2ℓ

    2A1   

      eiωt + A2     eiωt

      + 2gA1   

      eiωt = 0

    ω

    2

    ℓ (2A1 + A2) = 2gA1

    ω2 =  2gA1ℓ(2A1 + A2)

    ω±   =   ±

       2gA1

    ℓ(2A1 + A2)  (14)

    ℓ−ω′2θ1 − ω

    ′2θ2

      +   g θ2   = 0

    −ω′2ℓ

    A1       

    eiω′t + A2   

        eiω

    ′t

      +   gA2       

    eiω′t = 0

    ω′2ℓ (A1 + A2) =   gA2

    ω′2 =  gA2

    ℓ(A1 + A2)

    ω′±   =   ±

       gA2

    ℓ(A1 + A2)  (15)

    So ’der you go.

    4

  • 8/18/2019 Classical Solution bank

    48/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 22, 2006

    A particle of mass   m. at rest initially, slides without friction on awedge of angle  θ   and and mass  M   that can move without friction ona smooth horizontal surface.

    Figure 1: A mass m   slides in the +x̂  direction down a frictionless wedge  M ,which can slide across a frictionless plane in the x̂   direction. Note, this picturedoes not represent the actual motion; realistically  Ẋ   is in the   −x̂   direction aswill be shown later.

    a) What is the Hamiltonian?

    First we must find the Lagrangian (L =  T   − V  ), to determine whether it isexplicitly independent of time. If this is so, then the Hamiltonian is simply thetotal energy (H  = T  +  V  ).

    We can define a coordinate system where the origin is the top of the wedgeat some initial time as in Figure 1, such that the position vector for the topcorner of the wedge at time,  t  will be

     R =  X  x̂ + (0) ŷ   (1)

    and particle’s position vector will be

    r   =    R + (x  x̂ + y  ŷ)

    r   = (X  +  ℓ cos θ) x̂ + (ℓ sin θ) ŷ   (2)

    1

  • 8/18/2019 Classical Solution bank

    49/205

    Jeff Kissel October 22, 2006 Classical Mechanics

    where ℓ is the distance the mass has traveled down the ramp. While the particleis on the ramp, it is constrained to move along  ℓ, or

    tan θ   =  ∆y

    ∆xsin θ

    cos θ

      =  y − Y 

    x − X (x − X )sin θ   = (y − (0)) cos θ

    f   : (x − X )sin θ   −   y cos θ = 0 (3)

    which is an equation of constraint related to the normal force.The kinetic energy of the system is that of two free particles, since there is

    no friction:

    T  = 1

    2  m(ẋ2 + ẏ2) +

     1

    2  M  Ẋ 2 (4)

    The only potential in the system is gravitational, with g =  g  ŷ. We can ignorethe potential on the wedge because it is constant, so the system’s potential is

     just the gravitational potential of the particle,

    V g   ≡ − mg   ·   r

    V    =   −mgy   (5)

    The Lagrangian is then potential subtracted from the kinetic energy,

    L   ≡   T   − V 

    =  1

    2  m(ẋ2 + ẏ2) +

     1

    2  M  Ẋ 2 + mgy

    L   =  1

    2  mẋ2 +

     1

    2  mẏ2 +

     1

    2  M  Ẋ 2 + mgy   (6)

    which does not explicitly depend on time, so the Hamiltonian is the sum of thekinetic and potential energies,

    H  = 1

    2  mẋ2 +

     1

    2  mẏ2 +

     1

    2  M  Ẋ 2 − mgy   (7)

    b) Derive the equation of motion from the Lagrangian.

    With Lagrange multipliers, The Euler-Lagrange equation in general is

    d

    dt

    ∂L

    ∂  q̇ i

    ∂L

    ∂q i= λ

      ∂f 

    ∂q i+ µ

      ∂f 

    ∂  q̇ i(8)

    yet the second term on the right-hand side is zero because Eq. 3 is not a functionof any q̇ i. From Eq. 8, the equations of motion for each coordinate are,

    ddt

     (mẋ) =   λ (sin θ)

    2

  • 8/18/2019 Classical Solution bank

    50/205

    Jeff Kissel October 22, 2006 Classical Mechanics

    mẍ   =   λ sin θ   (9)

    d

    dt (mẏ) − mg   =   λ (− cos θ)

    mÿ − mg   =   −λ cos θ   (10)

    d

    dt

    m  Ẋ 

      =   λ (− sin θ)

    m Ẍ    =   −λ sin θ   (11)

    Immediately, if we add Eq. 11 to Eq. 9, we see why Figure 1 has the directionof motion for the wedge incorrect,

    mẍ + M  Ẍ    = 0

    ẍ   =   −M 

    mẌ    (12)

    Also, this tells us that the x̂  position of the system’s center of mass stays sta-tionary because the only external force on the system is gravity, which is in the

    ŷ  direction. We’ve assumed that the particle’s initial position is at the origin,but if we also assume that the initial velocity of the center of mass is also zerothen from Eq. 12,

    ∂ 

    ∂t

    ∂x

    ∂t  =   −

    m

    ∂ 

    ∂t

    ∂X 

    ∂t∂x

    ∂t  ∂t   =   −

    m

    ∂X 

    ∂t  ∂t

       x0

    ∂x   =   −M 

    m

       X0

    ∂X 

    x   =   −M 

    m  X    or   X   =   −

    m

    M   x   (13)

    giving us an equation relating   X   in terms of   x. We can use the equation of constraint (Eq. 3) to get  y  in terms of  x,

    (x − X )sin θ   =   y cos θ

    (x +  m

    M  x)sin θ   =   y cos θ

    y   =   x(1 +  m

    M  ) tan θ   (14)

    from which only  y  and  x  are a function of time, so

    ẏ   = ẋ(1 +  m

    M  ) tan θ

    ÿ   = ẍ(1 +  m

    M  ) tan θ   (15)

    3

  • 8/18/2019 Classical Solution bank

    51/205

    Jeff Kissel October 22, 2006 Classical Mechanics

    OK, OK, let’s finally get the equations of motion. Starting with Eq. 9,

    mẍ   =   λ sin θEq. 10:   mÿ − mg   = −λ cos θ   ⇒   λ   =   −

    m(ÿ − g)

    cos θ

    mẍ   =   m(g − ÿ)tan θ   (16)

    Eq. 15: ÿ   = ẍ(1 +   mM 

     ) tan θ

    mẍ   =   mg tan θ − mẍ(1 +  m

    M  ) tan2 θ

    mẍ + mẍ tan2 θ + mẍ  m

    M   tan2 θ   =   mg tan2 θ

        m(1 + tan2 θ +

      m

    M   tan2 θ)ẍ   =      mg tan θ

    (cos2 θ

    cos2 θ +

     sin2 θ

    cos2 θ +

      m

    sin2 θ

    cos2 θ)ẍ   =   g

     sin θ

    cos θ

    (    

            

      1cos2 θ + sin2 θ) + (m/M )sin2 θ

    ẍ   =   g sin θ cos θ

    ẍ   =

      g sin θ cos θ

    1 + (m/M )sin2 θ

    ẍ   =   g  M  sin θ cos θ

    M  +  m sin2 θ(17)

    Since the acceleration in the x̂ direction is a constant in time,  ax Eq. 17 hasthe usual 1-D kinematic solution,

    x(t) =   x0 + v0,xt + 1

    2axt

    2

    set x0   → 0,   and   v0,x   → 0

    x(t) =  1

    2  g

     M  sin θ cos θ

    M  +  m sin2 θ

      t2 (18)

    For the ŷ  equation of motion, we plug Eq. 17 back into Eq. 15,

    ÿ   = ẍ(1 +  m

    M  ) tan θ

    =   g

        M  sin θ    

      cos θ

    M  +  m sin2 θ

      1

        M  (M  +  m)

    sin θ

          cos θ

    ÿ   =   g  (M  +  m)sin2 θ

    M  +  m sin2 θ(19)

    which is also constant, so with the same initial conditions (y0   → 0, y0,y   → 0)we get a similar free-fall equation,

    y  =  12   g

    (M  +  m)sin

    2

    θM  +  m sin2 θ

      t2 (20)

    4

  • 8/18/2019 Classical Solution bank

    52/205

    Jeff Kissel October 22, 2006 Classical Mechanics

    Finally we get the solution for  X  plugging Eq. 17 into Eq. 12,

    Ẍ    =   −m

    M  ẍ

    =   −m

        M   g      M  sin θ cos θ

    M  +  m sin2 θ

    Ẍ    =   −g   m sin θ cos θM  +  m sin2 θ

     X 0   → 0,   and   v0,X   → 0

    ⇒   X    =   −1

    2g

     m sin θ cos θ

    M  +  m sin2 θ

      t2 (21)

    One could also solve for the normal force  λ  via Eq. 9, but the problem doesnot ask for it, so it is left as an exercise to the reader. (Ew. I feel so dirty sayingthat.)

    c) What are the constants of motion?

    To find the constants of motion, i.e. conserved quantities, we need to express

    the Lagrangian (Eq. 6), in terms of   independent   coordinates. We can use theconstraint equation (Eq. 3) to solve for  X ,

    (x   −   X )sin θ − y cos θ   = 0

    x   −   X  −y

    tan θ  = 0

    X    =   x −y

    tan θ

    ⇒  Ẋ    = ẋ −ẏ

    tan θ

    ⇒   L   =  1

    2  mẋ2 +

     1

    2  mẏ2 +

     1

    2  M  Ẋ 2 + mgy

    L   =  1

    2

      mẋ2 + 1

    2

      mẏ2 + 1

    2

      M ẋ −ẏ

    tan θ2

    + mgy   (22)

    Because this Lagrangian is explicitly independent of  x, then the   ∂L∂x

      term inthe Euler-Lagrange equation will be zero. Thus, the canonical momentum inthe x̂  direction is a conserved quantity.

     px   =  ∂L

    ∂  ẋ

    =   mẋ + M 

    ẋ −

    tan θ

    (1)

     px   = (m + M )ẋ −M  ẏ

    tan θ  (23)

    General Rule: If the Lagrangian is independent of any generalized coordi-

    nate, that coordinate is “cyclic,” and therefore it’s respective canonical momen-tum ( pi   ≡ ∂L/∂  q̇ i) is conserved.

    5

  • 8/18/2019 Classical Solution bank

    53/205

    Jeff Kissel October 22, 2006 Classical Mechanics

    Also, the Lagrangian does not explicitly depend on time, so as previouslystated, the total energy is conserved (which is why we could write the Hamilto-nian as the sum of kinetic and potential energies).

    d) Describe the motion of the system.

    Figure 2: An alternate view of the particle-wedge system at times   t  = 1, 2, 3and 4.

    Since friction is not involved in the system, the x̂ coordinate of the center of mass between the two objects will remain stationary as has been shown in part

    b. The ŷ coordinate will accelerate as though in slow free-fall (a la Eq. 20), untilthe particle reaches the surface on which the wedge slides. From then on, it willsimply travel according to Eq. 18. Thus, (as in Figure 2) from a reference pointfollowing the center of mass, the wedge and particle will fly apart from eachother. If  M   ≫ m, it will not move much ( Ẍ   ≈ 0), and the system approximatesthat of a mass sliding down a fixed incline.

    6

  • 8/18/2019 Classical Solution bank

    54/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    October 26, 2006

    A uniform rod slides with its ends inside a smooth (frictionless) verti-cal circle of radius a. The rod of uniform density and mass m  subtendsan angle of  120◦ at the center of the circle.

    Figure 1: A rod, with length  L  (which is the length of a chord subtending 120◦)is restricted to slide inside a frictionless circular pipe.

    (a) Compute the center of mass moment of inertia of the rod  I CoM   interms of  m  and  a  (not the length of the rod).

    In most general terms, the moment of inertia tensor is calculated as

    I CoM    =

       ρ(r)(δ ijr

    2 − xixj) d3r   (1)

    However, we assume the rod is only has one dimension so we need onlyintegrate along dℓ instead of  d3r; there are no off-diagonal terms (i.e.  xixj  = 0);and the rod has constant density, so  ρ(r) = m/L, which means Eq. 1 becomesconsiderable less intimidating,

    I CoM    =   mL

       +L/2−L/2

    ℓ2 dℓ   = 2  mL

       L/20

    ℓ2 dℓ

    1

  • 8/18/2019 Classical Solution bank

    55/205

    Jeff Kissel October 26, 2006 Classical Mechanics

    = 2 m

    L

    ℓ3

    3

    L/20

    = 2 m

    L

    1

    3

    L

    2

    3

    =  2

    24 m

     L3

    L

    I CoM    =  1

    12

     mL2 (2)

    Finally, because we know angle which the rod subtends is 120◦, it forms anisosceles triangle whose sides are  a  :  a  :  L, and interior angles are 120 : 30 : 30,which means  L/2 = a   cos (30◦), or  L =

    √ 3  a. Thus, in terms of  m  and  a, the

    center of mass moment of inertia is

    I CoM    =  1

    4 ma2 (3)

    (b) Obtain the potential energy, the kinetic energy, and the La-grangian  L(θ(t),  θ̇(t);m,a,g)   for this system, where  θ(t)   the dynamicalvariable, is the instantaneous angular position relative to its equilib-rium position and  m,a,  and  g  are constant parameters of the system.

    As the question implies later, once we have the center of mass moment of inertia, we can treat the rod like a pendulum, as long as we displace  I CoM   tothe center of the circle, a distance  d  =  a   sin(30◦). So, following the parallelaxis theorem,

    I d   =   I CoM  +  md2

    =  1

    4 ma2 + m(a   sin (30◦))2

    =  1

    4 ma2 + m

    1

    2  a

    2

    =  1

    4 ma2 +

     1

    4 ma2

    I d   =  1

    2

     ma2 (4)

    Now the kinetic energy T   is only rotational, the potential  V   is only gravita-tional since there is no friction, and the Lagrangian is  L  =  T  − V  ,

    T    =  1

    2I d θ̇

    2

    =  1

    2

    1

    2 ma2

     θ̇2

    T    =  1

    4ma2θ̇2 (5)

    V    =   mga cos θ   (6)

    L   =   14ma2 θ̇2 − mga cos θ   (7)

    2

  • 8/18/2019 Classical Solution bank

    56/205

    Jeff Kissel October 26, 2006 Classical Mechanics

    (c) Compare the dynamics of this system with that of a simple pendu-lum with mass  M  and length  L  (exactly, without any approximationssuch as the small oscillation approximation). Compare the parame-ters  L  and  M   to  a  and  m.

    With out making any approximations (I promise!) we can find the equa-

    tion of motion, and compare those to that of a simple pendulum. Let’s getLagrangimiphysical!

    d

    dt

    ∂L

    ∂  θ̇

      − ∂L

    ∂θ  = 0

    d

    dt

    1

    2ma2 θ̇

      +   mga sin θ   = 0

    1

    2    ma  

    2θ̈   =   −    mg  a sin θ

    θ̈   = 2g

    a sin θ   (8)

    which is indeed comparable to a simple pendulum’s equation of motion whichis different only by the factor of 2 if  L

     → a  and  M 

     → m. For a pendulum of 

    length L, and mass  M ,

    T    =  1

    2ML2θ̇2 V    =   MgL cos θ

    L   =  1

    2ML2θ̇2 − MgL cosθ

    d

    dt

    ∂L

    ∂  θ̇

      − ∂L

    ∂θ  = 0

    d

    dt

    ML2 θ̇

      +   MgL sinθ   = 0

        ML  2θ̈   =   −    Mg  L sin θθ̈   =

      g

    L

     sin θ   (9)

    (c) Find the frequency of small oscillations of the system.

    Oh, NOW it’s OK to make approximations, huh? Fine. Gosh.

    In using the small angle approximation, sinθ  ≈   θ, which means Eq. 8becomes a second-order differential equation of the form ẍ  = −ω2x  which hasthe general solution   x(t) =   x0 cos (ωt), where   ω   is the frequency (small) of oscillation(s).

    θ̈   ≈ − 2ga  θ

    ⇒  ω   =  2g

    a  (10)

    3

  • 8/18/2019 Classical Solution bank

    57/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 18, 2007

    Exam Iteration Question Number Notes/ChangesSpring 2006 X –

    Fall 2006 X –Spring 2007 #22 Added to bank.

    A mass  m   is attached to a spring of spring constant   k  that can slidevertically on a pole without friction, and moves along a frictionless

    inclined plane as shown in Fig 1. After an initial displacement along

    the plane, the mass is released. Find an expression for the   x   and   yposition of the mass as a function of time. The initial displacement

    of the mass is  x0. You may assume that the object never slides down

    the ramp so far that it strikes the floor.

    Figure 1: A box of undisclosed materials oscillating on a ramp.

    If one sets up the coordinates as in Fig 1, where the equilibrium is at theorigin, then two important simplifications occur:

    1)  y   =   ax + b   →   y   =   ax   (1)

    2) ∆x   =   x− xe   →   ∆x =  x   (2)

    With these simplifications, the kinetic energy is

    T    =   12 mẋ2 + ẏ2

      (3)

    1

  • 8/18/2019 Classical Solution bank

    58/205

    Jeff Kissel May 18, 2007 Classical Mechanics

    and the potential energy is the sum of that from the spring and that fromgravity,

    V     =  1

    2  k∆x2 + mgy

    (Because of Eq. 2, ∆x   =   x)

    V     =   12  kx2 + mgy   (4)

    Making the Lagrangian for the system in terms of  x  and  y ,

    L   =   T − V  

    =  1

    2 mẋ2 + ẏ2

    1

    2  kx2 + mgy

    L   =  1

    2 mẋ2 +

     1

    2 mẏ2 −

    1

    2  kx2 −mgy   (5)

    However, there is a fixed relationship between  x  and  y , namely the Eq. 1, so

    y   =   ax   →   ẏ   =   aẋ   (6)

    which makes Eq. 5 a function only of  x  and ẋ,

    L   =  1

    2 mẋ2 +

     1

    2 m(aẋ)2 −

    1

    2  kx2 −mg(ax)

    =  1

    2 mẋ2 +

     1

    2 ma2ẋ2 −

    1

    2  kx2 −mgax

    L   =  1

    2 m(1 + a2)ẋ2 −

    1

    2  kx2 −mgax   (7)

    Using the Euler-Lagrange equation, we can then find an expression for  x(t),

    0 =  d

    dt ∂L

    ∂  ẋ−∂L

    ∂x

    =  d

    dt

    m(1 + a2)ẋ

    − (−kx−mga)

    0 =   m(1 + a2)ẍ + kx + mga

    ẍ   =   −k

    m(1 + a2)  x−

    ga

    m(1 + a2)

    Let  ω2 =  k

    m(1 + a2),   and  R   =   −

    ga

    m(1 + a2)

    ẍ   =   −ω2 + R

    Let  x′ =   −ω2x + Rẋ′ =   −ω2ẋẍ′ =   −ω2ẍ

    ẍ′

    −ω2  =   −ω2

    x

    −R−ω2

    + R

    2

  • 8/18/2019 Classical Solution bank

    59/205

    Jeff Kissel May 18, 2007 Classical Mechanics

    ẍ′

    −ω2  =   x′

    ẍ′ =   −ω2x′

    ⇒ x′(t) =   A cos(ωt) (8)

    Where the last step we know comes from the typical harmonic oscillator solution,

    with A as some constant. Plugging back in for x, and using the initial conditionsthat  x(0) = x0,

    −ω2x(t) + R   =   A cos(ωt)

    x(t) =   −A

    ω2  cos(ωt)−

    R

    ω2 x0   =   x(0) =   − Aω2 (1)−   Rω2x0 +   Rω2   =   − Aω2

    A   =   −ω2x0 −R

    =   −(−ω2x0 −R)

    ω2  cos(ωt)−

    R

    ω2

    =x0

     +

      R

    ω2

      cos(ωt)−

    R

    ω2R

    ω2  =   −

    ga

    m(1 + a2)

    m(1 + a2)

    k

      =   −

    ga

    k

    ω   =

       k

    m(1 + a2)

    x(t) =x0 −

    ga

    k

    cos

       k

    m(1 + a2)  t

    + ga

    k  (9)

    and using Eq. 1, we can get  y(t),

    y(t) =   ax(t)

    y(t) =   ax0 −

    ga

    k

    cos

       k

    m(1 + a2)  t

    + ga

    k  (10)

    3

  • 8/18/2019 Classical Solution bank

    60/205

    Classical Mechanics Review

    (Louisiana State University Qualifier Exam)

    Jeff Kissel

    May 17, 2007

    Exam Iteration Question Number Notes/ChangesSpring 2006 X –

    Fall 2006 X –Spring 2007 #22 –

    An astronaut is on the surface of a spherical asteroid of radius  r  andmean density similar to that of the earth. On the earth this astronautcan jump about a height  h  of  0.5  m. If he jumps on this asteroid, hecan permanently leave the surface.

    (a) Taking the radius of the earth as  6.4×106 m, find the largest radiusthe asteroid can have.

    With the initial velocity on earth v⊕, the astronaut jumps a height  h. If hecan leave the asteroid with this same velocity, we can treat  v⊕  as the escapeveloctiy for the asteroid vesc. We can determine his velocity on Earth from 1-Dkinematics (using the usual trick that his final velocity on the way down is equalto his initial velocity on the the way up),

    v2f  −    

    0v2i   = 2a∆x

    v2⊕   = 2g⊕h

    v⊕   = 

    2g⊕h

    The escape velocity on the asteroid occurs when the astronaut’s total kineticenergy equals the potential felt from the asteroid, i.e. his total energy is zero,

    E    =  1

    2  mav

    2−

    GM AmarA

    0 =  1

    2  mav

    2

    esc −GM Ama

    rA

    12     mav

    2

    esc   =   GM A    ma

    rA

    1

  • 8/18/2019 Classical Solution bank

    61/205

    Jeff Kissel May 17, 2007 Classical Mechanics

    v2esc   =  2GM A

    rA

    vesc   =

     2GM A

    rA

    ρA   =

      M AV  A

      M A   =   ρAV AM A   =  4π

    3  r3AρA

    =

     2G

    rA

    3  r3AρA

    =   rA

     2G

      4πρA3

      ρA   =   ρ⊕ρA   =

      M ⊕4π

    3  R3⊕

    =   rA

     

    2G      4π

    3

      M ⊕

        4π3

      R3⊕

    vesc   =   rA

     2GM ⊕

    R3⊕g⊕   ≡

    GM 

    R2⊕

    , v


Recommended