+ All Categories
Home > Documents > Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file ·...

Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file ·...

Date post: 28-Mar-2018
Category:
Upload: hakiet
View: 216 times
Download: 2 times
Share this document with a friend
44
Clean Vehicles Consortium OUYANG Minggao (China Director, Tsinghua University) Huei Peng (US Director, University of Michigan) June 1, 2015 1
Transcript
Page 1: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

OUYANG Minggao (China Director, Tsinghua University)

Huei Peng (US Director, University of Michigan) 

June 1, 2015

1

Page 2: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumOutline

2

Summary of CVC 1.0

Final Year of CVC 1.0

Next Plan for CVC 2.0

Page 3: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

CERC Steering Committee Guidance

“Be Ambitious, Creative and Bold;

Broaden Participation Among Research Performers;

Strengthen Engagement with Existing Industrial Partners and Recruit New Partners;

Concentrate on Selective Areas with High Payoff;

Enhance Research Quality and Impact of Selected Projects;

Leverage Platforms and Resources of Others; and

Develop and Show Roadmaps that Will Achieve Public Benefits in Both Countries with Milestones to 2020.”

3

Page 4: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumCERC‐CVC Thrust Areas

4

1. Advanced Batteries System

2. Advanced Biofuels, Clean Combustion and APU

3. Vehicle Electrification

6. Energy Systems Analysis, Technology Roadmaps and Policies

5. Vehicle-Grid Integration

4. Lightweight Structures

Page 5: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

U.S. 

China

5

Academic & National Lab Partners

Consortium Overview

Page 6: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

U.S. 

China

6

Consortium Overview

Industrial Partners

Page 7: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumOrganization

Director:OUYANG Minggao

Director:Huei Peng

Deputy Director:Jun Ni 

Deputy Director:Qiu Xinping

Deputy       Director:Wang Hewu

7

Page 8: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumCVC‐Annual Tech. Meetings

8

Kick‐off meeting, Michigan, Jan 2011

1st annual meeting, Beijing, Oct 2011

2nd annual meeting, Michigan, Aug 20123rd annual meeting, Beijing, Aug 2013

4th annual meeting, Michigan, Aug 2014

5th annual meeting, Beijing, Aug.17‐18, 2015 (Upcoming) 

Page 9: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

US‐China Electric Vehicle and Battery Workshop

9

1st:Sept. 2009 in Beijing, China

2nd:Sept. 2010 in Chicago, USA

3rd:March 2011 in Beijing, China

4th:Aug. 2011 in Chicago, USA

5th:April 2012 in Hangzhou, China

6th:Aug. 2012 in Boston, USA

7th:April 2013 in Berkeley, USA

8th:Sept. 2013 in Chengdu, China

9th: Aug. 2014 in Seattle, USA

10th: March 2015 in Beijing, China

Page 10: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumTechnical Conference Calls 

Web‐meetings in 2012‐2015 (mostly by individual TA)

10

2013

Page 11: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumPersonnel Exchange

11

Name Status TA Date

Caihao Wang Ph.D. (UM) TA2 05/11‐06/11

Xiankun Huang Ph.D. (THU) TA1 07/11‐08/12

Xiaowu Zhang Ph.D. (UM) TA2 06/12‐06/12

Xuerei Ma Ph.D. (SJTU) TA2 12/12‐12/13

Mingxuan Zhang Ph.D. (THU) TA2 01/13‐02/13

Cong Hou Ph.D. (THU) TA2 06/13‐08/13

Yugong Luo Prof. (THU) TA5 08/13‐08/14

Xuning Feng Ph.D. (THU) TA3 12/13‐12/14

Tze‐You Song Ph.D. (THU) TA1 12/13‐12/14

Tanjin He Ph.D. (THU) TA2 01/14‐06/14

Lin‐Jun Song Prof. (BHU) TA6 06/13‐06/14

Yong Xia Prof. (THU) TA4

Han Hao Prof. (THU) TA6

Xiaobin Zhang Ph.D. (THU) TA6

Page 12: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumPerformance Metrics

• Joint conferences, workshops and symposia organized• 5 CERC‐CVC‐wide meetings, 10 EVI workshops• ~50 meetings per year (mostly by individual TA)

• Journal and conference papers published • >350 papers published or accepted, joint 20 papers 

• IP disclosures filed; US, China, and international patents issued

• 71 in China, 28 in US (20 from Chinese side)

• Number, frequency, duration of personnel exchanged/collocated among organizations

• ~ 100 short‐term visits, 30 long‐term (> 30 days) visits planned or executed

12

Page 13: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Thrust 1: Advanced Batteries System

Degradation: Combine modeling and advanced characterization to understand degradation mechanisms in Li‐ion batteries.

Modeling, Controls, and Implementation: To extend battery life, develop battery management systems with on‐board balancing technologies. 

New Chemistries: Advance Li‐air and Li‐sulfur chemistries towards commercial viability by revealing limiting phenomena and developing materials/architectures that overcome these obstacles.

Battery testing standards: Review protocols for battery testing & safety. 

Battery reuse & recycle: Explore pathways for reuse & recycling of batteries.

bioleaching

microbiological sulfate reduce reaction

air

Bioleaching bacteria

Electrode materials

microbiological metal reduce reaction  Ni

CoV

SnMn

Co4+

Mn2+

V2+Ni2+

13

Page 14: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Biofuels: Collaborative computational and experimental study of cellulosic biofuels produced using microbial synthesis.

APU Engines: Challenges and opportunities of range‐extender engines.

Integration of Powertrain and Aftertreatment: Holistic consideration of fuel property, combustion modes, after‐treatment systems, and hybrid powertrains.

Novel Thermoelectric Materials: Develop highly efficient TE materials with high figure of merit, and the synthesis methods.

-60

-40

-20

0

QOOH-5-18.3

TS14-15.2

TS15-4.0TS13

-8.7

-61.5

+ OH

-38.0

HO2 +

+ HO2

+ OH

+ OH

+ OH

+ OH

+ OH

-13.6

-14.2

TS6-4.6

-40.4-42.4

-47.0

TS111.6TS7

-9.5 TS3-7.4

TS2-3.2

QOOH-2-22.7

QOOH-1-18.1

TS4-16.0

TS10-10.4

QOOH-3-24.4ROO·

-37.9

TS5-20.7

QOOH-4-25.2

TS12-18.0En

ergy

(kca

l /m

ol)

ROO·-37.9

R + O2

-66.3

2,5-dimethyl-2-hexyl

TS8-9.2TS1

-7.4 TS9-15.7 QOOH

14

Thrust 2: Advanced Biofuels, Clean Combustion and APU

Page 15: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Thrust 3: Traction motor and control system

Components Design and Optimization:           Develop models for fast and accurate design and optimization of motors and power electronics.

Powertrain and Distributed Vehicle Control Networks: To study critical communication and control issues of electrified vehicles.

System Integration Technologies: Models, sizing and control for efficient hybrid vehicle powertrain development.

Data Drive Battery Modeling and Health Monitoring:   Model driven battery management systems.

15

Page 16: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Thrust 4: Lightweight and crash safe of EV

Manufacturing processes of lightweight body: Low‐cost, energy efficient, and high quality processes for bulk forming lightweight materials and joining dissimilar lightweight materials.

Design of EV with lightweight structure: Guidelines, tools, and methods for optimally integrating lightweight components into vehicle structures utilizing the developed forming and joining processes. 

Crash safety of lightweight EV: Experimental and computational methods for evaluating crashworthiness of components and assemblies made of lightweight materials.

16

Page 17: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Thrust 5: Vehicle‐Grid Integration

Vehicle‐Grid Interaction: Assess the impact of large‐scale deployment of PEVs on the grid and develop technology and policy  recommendations to accelerate EV deployment in the U.S. and China.

Vehicle‐Grid Integration: Develop control strategies and protocols for vehicle‐grid interactions.

Information Grid: Use of Intelligent Transportation Systems technology to optimize vehicle charging infrastructure and energy use.

17

Smart Charging Guiding System 

(SCGS) 

EV‐RES Coordination 

Charging infrastructure 

design

Page 18: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Life Cycle Analysis: Develop EV energy efficiency, carbon targets and evaluate life cycle performance of EV powertrain and lightweighting.

Mega Data sharing: Driving pattern information in Mega cities and worldwide EV data book. Utility Factors for PEVs.

Roadmap and Strategy: Identify optimal fuel mix strategies & constraints; recommendations for accelerating EV deployment.

Thrust 6: Energy and system analysis of EV

18

Page 19: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Highlight of Achievements Since July 2014

• Initiated research on solid electrolyte prototype and testing• Battery safety study based on shared test data• New synthesis process for thermal electric materials• Optimal control and energy management for PHEV • Charging mode control and impact on electric grid• Developed an efficient and exhaustive design process for power split hybrid vehicles—close collaboration with Ford and DENSO

• Wireless Charging demo with DENSO• Initiated modeling effort of connected and automated vehicle technologies

• Life Cycle Analysis of Buses

19

Page 20: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Battery safety study based on shared test data

0 2 4 6 8 10 120.7

0.75

0.8

0.85

0.9

0.95

1

Normalized IC Peak

Nor

mal

ized

Cap

acity

fitted correlation from single cellsingle cell3-cells7-cells

Module formation for capacity degradation test

Module model for Li-ion battery module

ICA for module capacity degradation diagnosis

20

Page 21: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

New synthesis process for thermal electric materials

• Apply Self‐Propagating High Temperature Synthesis (SHS) to thermoelectric materials, with a focus on skutterudites, Mg2Si, half‐Heusler alloys and Bi2Te3.

• Study uniformity of SHS‐synthesized materials using Scanning Thermoelectric Microscopy (SThEM).

• Construct and test the performance of a prototype thermoelectric module. 

• Seek industrial partners for large scale module development based on SHS fabricated thermoelectrics.

CoSb3

Figure of merit of SHS‐synthesized Cu2Se [Nature Commun. ]

A thermoelectric couple developed jointly by UM and WHUT using n‐type Mg2Si and p‐type Cu2Se with conversion efficiency of 7%SHS for skutterudites 21

Page 22: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

0 50 100 150 200 250 300 3500.2

0.4

0.6

0.8

1SOC Trajectories

Distance (km)

SOC

RADOC Solution of BeijingRADOC Solution of USRADOC Solution of LogisticsRADOC Solution of TaxiAECS for All

0 50 100 150 200 250 300 3500

0.2

0.4

0.6

0.8

1

1.2

1.4Utility Factor Curve

Distance (km)

Utili

ty F

acto

r

BeijingU.S.LogisticsTaxi

Range Distribution Beijing USCity‐

Delivery Cars

Taxi

AECS(L/100km) 2.24 3.37 3.74 4.41RADOC

(L/100km) 2.22 3.35 3.59 4.33FC decreasepercentage 0.72% 0.69% 4.07% 1.82%

1. Conventional all‐electric‐charge‐sustaining (AECS) strategies are good for maximum battery use;

2. Blended Strategies are beneficial for the fuel consumption of long‐range travels;

3. PHEV optimal energy management strategies should be adaptive to the different daily travel distances, and the average fuel consumption should be the optimal target.

SOC track of optimal strategies for different range distribution

UF curves for different range distribution

Research Outcomes:The Range Adaptive Optimal Control (RADOC) algorithm achieves balance between maximum electricity use (AECS) and high fuel economy.  The utility factor is used to represent average trip length distribution.  We studied the benefit for US and China trips.

Optimal Control and Energy Management for PHEV 

22

Page 23: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Electricity  load curves in Beijing (2011)

0 10 20 30 40 50 60 70 80 905000

6000

7000

8000

9000

10000

11000

12000

13000

14000北京 年按月日均 荷曲负 线2011

Time(*15min)

Load

(MW

)

JanFebMarAprMayJunJulAugSepOctNovDec

5 10 15 20 25 300.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5x 107 Load curves overlaid by EV free charging power in Beijing

( )Time h

()

Pow

erkW

Original summer loadOriginal winter loadSummer load plus 500 thousand EVsWinter load plus 500 thousand EVs

5 10 15 20 25 305

6

7

8

9

10

11

12

13x 106

Load curves overlaid by EV orderly charging power in metropolises in Beijing

( )Time h

()

Pow

erkW

Peak load

Original summer load

Original winter load

Summer load plus 500 thousand EVs

Winter load plus 500 thousand EVs

Charging mode and impact on electric grid

23

Page 24: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Modeling of Connected and Automated Vehicle Technologies

(collaboration between UM and Argonne National Lab)

24

Page 25: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumLife Cycle Analysis of Buses

LCA of Plug-in and Wireless Charging for Electric Buses (Ann Arbor)

25

Wireless charging system vs plug‐in charged system @ transit bus @ US grid• Battery size downsized to 27–44% 

• 0.3% less energy• 0.5% less life cycle GHG

The NEV buses has significant

environment benefits in reduced

CO2, PM2.5 and NOx

The Fast charging and Online

charging modes have significant

benefit in TCO

LCA of 6 electrification technologies/business-modes for city Buses (China)

Page 26: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumOutline

26

Summary of CERC 1.0

Final Year of CERC 1.0

Plan for CERC 2.0

Page 27: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Pathways to Implementation Projects

27

UM‐Siegel Demonstration of Solid‐State Batteries

UM‐PengA Systematic Design Procedure for Double Planetary Hybrid Vehicles

OSU‐Rizzoni Torque Security in an Electrified VehicleUM‐Ni Friction Stir Welding of Dissimilar Metals

UM‐MiA Wireless Magnetic‐Resonance Power Transmission System for EV Charging

UM‐KeoleianElectricity and material sourcing scenario analyses to guide vehicle technology strategies

One‐year additional funding with clearly defined “tech transfer target”All projects with identified industrial sponsors

Page 28: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumSolid State Batteries

• Higher energy density and potentially lower cost batteries

28

Weppner et al. (1999)

+) No organics to degrade+) Synthesized and fabricated in air+) Significant reduction in packaging+) Non-flammable+) Gets better with increasing temp

?) Interface integrity?) Kinetics/Power?) Thermomechanical stresses

Climate Change Committee (2012) Final Report prepared by Element Energy Limited, Cambridge, UK .

Page 29: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Double Planetary Gear Hybrid Trucks

29

Automated modeling, mode screening and identification

Drivability screening

A fast and near‐optimal control strategy – the PEARS+

Design candidates in a manageable space

*

1 1

2 2

out load

eng eng

mg mg

mg mg

TT

ATT

200 200 200205 205 205210 210 210215 215 215216 216 216220 220 220225 225 225230 230 230

230230

235 235 235

235

235

235

240

240

240

240

240

240 240 240

245

245

245

245

245

245

245 245 245

250

250

250

250

250250

250 250 250

275

275

275275

275 275 275

300

300

300300300

300 300 300

400 400400

400 400 400

500 500 500

500 500 500

600 600 600

600 600 600

700 700700

700 700 700800 800 800

800 800 800

Engine Speed (rpm)

Eng

ine

Torq

ue (N

m)

0 1000 2000 3000 4000 5000 6000

0

100

200

300

400

500

Page 30: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumTorque Security of EV

30

Page 31: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Electrically Assisted Friction Stir Welding

• Extend existing FSW to spot welding and work piece of different materials and thickness. 

31

Electrical brush

Tungsten Carbide FSW tool

Tungsten Carbide

Connected to motor

Steel sheet

Aluminum alloy

Page 32: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Wireless Power Transmission System for EV Charging

• Work with DENSO to build a 22kW double‐sided production‐feasible wireless charging system (eff ~ 93%), and to integrate the system into a production‐intent EV or HEV. 

• Demonstrate/validate functions of WPT and solutions to practical issues (communications, object detection, safety, misalignment, standards).

• Will develop IPs on capacitive power transfer and live object detection

32

Page 33: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Electricity and Material Sourcing Scenario Analysis

33

Regional Electricity Grid Emissions Model‐ The GHG emissions model will address: 

1 3 5 7 9 11 13 15 17 19 21

0

1

2

3

4

5

Load BIn

lbs C

O2/kw

h

Month‐Hour

0‐1 1‐2 2‐3 3‐4 4‐5

• Temporal variation• Future fuel prices• Generator retirements

and additions• Electricity imports and

exports

Grid Emissions Model then can be used to support algorithm for implementation decisions and roadmap

Page 34: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

PHEV Driving Behavior in a Mega City (Shanghai, 2014)

34

Based on 50 Qin PHEV vehicles (made by BYD) 333,000km, 10,000 trips, 7,500 days, 3,300 charging events

Data based battery performance model

Utility Factor vs. charging & driving behavior  

Trip length distribution

Trip time distribution

Trip start time

Charging location

Page 35: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles ConsortiumOutline

35

Summary of CERC 1.0

Final Year of CERC 1.0

Plan for CERC 2.0

Page 36: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

36

Director:OUYANG Minggao

Director:Don Hillebrand

Deputy Director:Michael Wang

[email protected]

Deputy Director:QiuXinping

Deputy Director:Wang Hewu

CERC-CVC 2.0: Organization

Deputy Director:Khal Amine

Page 37: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

CERC 2.0 CVC: Target, Thrust Areas & Milestones 2016‐2020

155

440

700

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

240

4805501000

2100

2400

Chinese vehicle po

pulatio

n, ene

rgy de

man

d an

d carbon

 emission

 (base case)

Source:TH

U(CE

RC‐CVC

,2012

37

U.S.-China Joint Announcement on Climate Change 2014 China intends to achieve the peaking of

CO2 emissions around 2030 and to make best efforts to peak early

The United States intends to achieve an economy-wide target of reducing its emissions by 26%-28% below its 2005 level in 2025

Chinese BAU scenario @ 2030:: Vehicle population

440million,tripled(2015) Transpt. Energy demands 480Mto, doubled CO2(LCA) 2.1 Billion tone, doubled

Pathways to limit CO2 emission: Electrification (higher efficient) Lower carbon power( more renewable) Higher CV market share(early

penetrated)

Background

Page 38: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Thrust areas (from CERC-CVC 1.0 to CERC-CVC 2.0)

Advanced Battery Materials and System Integration

Clean Combustion and APUVehicle Electrification Configuration and Optimization 

System Analysis and Roadmaps

Vehicle‐Grid and Infrastructure

Lightweight Structures

Energy Storage Systems

Advanced Vehicle Technologies

Connected Vehicle and Infrastructure

Systems Analysis and Policy Instruments

CERC-CVC 2.0: Targets, Contents and Milestones 2016-2020

CERC‐CVC 1.0 CERC‐CVC 2.0

38

Page 39: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

1. Energy Storage Systems 1.1 Advanced Battery Technologies 

Li‐S Battery: energy density reach 400wh/kg, battery lifetime 500 cycle

Solid Battery: energy density reach 300wh/kg, battery lifetime 2000 cycle

Zn‐Ion Battery:Low cost ($0.1/Wh), improved safety, eco‐friendly

CERC-CVC 2.0: Targets, Contents and Milestones 2016-2020

39

1.2 Safety and Durability 

Degradation of battery structure under cyclic thermo‐mechanical stress

Multi‐level safety mechanism based on materials, interface, cell, module and system

Initiation and propagation mechanisms of battery thermal runaway

1.3 Battery Management System

System dynamic modeling

Modeling‐based battery state evaluation methodology

Battery management systems

Page 40: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

CERC-CVC 2.0: Targets, Contents and Milestones 2016-2020

40

2. Advanced Vehicle Technologies  2.1 Clean Combustion/Alternate Fuels  Clean combustion technologies ICE electrification Thermal ‐mechanical ‐ electric coupling

2.2 Alternate powertrains  Distributed drive electric vehicle (passenger car) High efficient electric motor PHEV electric power split systems

2.3 Light Materials and Crash Safety  Light weight materials Structural durability of power batteries Crush safety

2.4 Heavy‐Duty Vehicle Technologies  Hybrid vehicle technologies Fuel‐cell vehicle technologies

Page 41: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

CERC-CVC 2.0: Targets, Contents and Milestones 2016-2020

41

3. Connected Vehicle and Infrastructure3.1 Connected and Automated Vehicle Develop a virtual environment to evaluate the impact of CAVs Quantify the energy and mobility impact of CAVs for multiple 

3.2 Testing and Evaluation  Data analysis of field operation test results Demonstration projects:  Collaborative research on the needs to control automated vehicles, data collection, experimental facilitiesTesting and evaluation of automated vehicles

3.3 Wireless Charging  Standards, safety and efficiency Low cost, high efficiency

3.4 Charging Infrastructure  Standards and inter‐operability Integration of power grid and information grid

Page 42: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

CERC-CVC 2.0: Targets, Contents and Milestones 2016-2020

42

4. System Analysis and Policy Instruments4.1 Technology Impacts Assessment  Battery performance degradation evaluation using fleet test data Travel behavior and optimized energy use Vehicle and battery driving cycle

4.2 Lifecycle Analysis  Energy and emission effects of connected and automated vehicles  Battery materials, battery packs, battery second use, and recycling/disposal Benchmark and Testing

4.3 EV Roadmap  EV business model development Incentive policy research (subsidies, tax exemptions, ZEV requirements, etc.)

Page 43: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

Li‐S Battery:>400Wh/kg,500 lifecycles

2016 2017 2018 2019 2020

Key Annual Milestone

TA3

TA2

TA4

TA1

CERC 2.0 CVC: Target, Contents & Milestone 2016-2020

Demonstrate energy saving benefit of connected and automated vehicles>20%

ZEV credit policy to accelerate NEV market 

adoption in China

NEV fleet travel behavior and optimized energy use

High Efficient Electric Motor

Build connected vehicle testing and evaluation platform

Energy storage and battery second use 

in smart grids 

Efficiency of hybrid engines > 

55%

Wireless charging eff. >95%,Cost < $50/kw

Solid Battery: > 300Wh/kg,2000 lifecycles

Zn‐Ion Battery Cost: $0.1/wh, 1kw/kg

BMS Industrialization

New Energy Heavy Duty Vehicle Technologies

Light Weight Materials 

Breakthrough in the safety and durability of Li‐NMC batteries

Page 44: Clean Vehicles Consortium - U.S.–China Clean Energy · PDF file · 2017-10-30Clean Vehicles Consortium ... Energy Systems Analysis, Technology Roadmaps and ... A Wireless Magnetic‐Resonance

Clean Vehicles Consortium

44

Thank you for your attention!


Recommended