+ All Categories
Home > Documents > CLIC Main Beam Generation Complex

CLIC Main Beam Generation Complex

Date post: 05-Jan-2016
Category:
Upload: dacia
View: 33 times
Download: 0 times
Share this document with a friend
Description:
CLIC Main Beam Generation Complex. Louis Rinolfi. for the CLIC Injector collaboration. General CLIC layout for 3 TeV. Drive Beam Generation. Main Beam Generation. CLIC Main Beam parameters. At the entrance of the Main Linac for e - and e +. CLIC Main Beam generation. - PowerPoint PPT Presentation
54
C L I C C L I C 20 th November 2009 CLIC meeting L. Rinolfi CLIC Main Beam Generation Complex Louis Rinolfi for the CLIC Injector collaboration
Transcript
Page 1: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CLIC Main Beam Generation Complex

Louis Rinolfi

for the CLIC Injector collaboration

Page 2: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

General CLIC layout for 3 TeV

Drive Beam Generation

Main Beam Generation

Page 3: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

NLC

(1 TeV)

CLIC 2009

(3 TeV)

CLIC 2009

(0.5 TeV)

ILC RDR

(0.5 TeV)

ILC SB2009

(0.5 TeV)

E GeV 8 9 9 15 15

N 109 7.5 4 7 20 20

nb - 190 312 354 2625 1312

tb ns 1.4 0.5 0.5 369 740

tpulse ns 266 156 177 968925 484462

x,y nm, nm 3300,30 600, 10 2300, 10 8400, 24 8400, 24

z m 90-140 43 - 45 72 300 300

E 0.68 1.5 2 1.5 1.5

frep Hz 120 50 50 5 5

P kW 219 90 180 630 315

CLIC Main Beam parameters

At the entrance of the Main Linac for e- and e+

Page 4: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CLIC Main Beams generation: 4 studies are ongoing to produce e+/e- with the requested parameters at the entrance of the Pre-Damping Ring (PDR):

1) Baseline configuration:

3 TeV (c.m.) - polarized electrons (5x109 e-/bunch) and unpolarized positrons (7.6x109 e+/bunch). Pulse of 156 ns long with 312 bunches

CLIC Main Beam generation

2) Double charge configuration:

500 GeV (c.m.) - polarized electrons (10x109 e-/bunch) and unpolarized positrons (15.2x109 e+/bunch) with same pulse length as above

3) Polarized positron configuration:

3 TeV (c.m.) - polarized e- and e+ with same parameters as for the baseline

4) Low energy configuration (< 3 TeV):

4.1) Polarized e- and unpolarized e+ with the highest repetition frequency 4.2) Polarized e- and unpolarized e+ with half the baseline charge but 800 bunches

Page 5: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Thermionic e- gun Laser

DC gunPolarized e-

Pre-injector e- Linac 200 MeV

e-/Target

Pre-injector e+ Linac

200 MeV

Primary e- Beam Linac

5 GeV

Inje

ctor

Lin

ac

2.66

GeV

e+ DR

e+ PDRB

oost

er L

inac

6.

14 G

eV

4 GHz

e+ BC1 e- BC1

e+ BC2 e- BC2e+ Main Linac e- Main Linac

2 GHz

e- DR

e- PDR

2 GHz 2 GHz 2 GHz

4 GHz 4 GHz

12 GHz 12 GHz

9 GeV48 km

2.86 GeV 2.86 GeV

e

Target

AMD

2.86 GeV 2.86 GeV

3 TeV

Base line configuration

2009

CLIC Main Beam Injector ComplexIP

polarized e-unpolarized e+

SR

12 GHz, 100 MV/m, 21 km 12 GHz, 100 MV/m, 21 km

IP = Interaction Point

SR= Spin Rotator

BC = Bunch Compressor

DR= Damping Ring

PDR= Pre-Damping Ring

AMD= Adiabatic Matching Device

SR

Page 6: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

LaserDC gunPolarized e-

Pre-injector Linac for e-

200 MeV

Pre-injector Linac for e+

200 MeV

Inje

ctor

Lin

ac

2.66

GeV

e+ DR

e+ PDRB

oost

er L

inac

6.

14 G

eV

4 GHz

e+ BC1 e- BC1

e+ BC2 e- BC2e+ Main Linac e- Main Linac

2 GHz

e- DR

e- PDR

2 GHz 2 GHz

4 GHz 4 GHz

12 GHz 12 GHz

9 GeV48 km

2.86 GeV 2.86 GeV

e

Target

AMD

2.86 GeV 2.86 GeV

3 TeV

Compton based configuration

CLIC Main Beam Injector ComplexIP

polarized e-polarized e+

Spin rotator

12 GHz, 100 MV/m, 21 km 12 GHz, 100 MV/m, 21 km

Drive e- Beam Linac 1 GeV

Compton ring

2 GHz

Stacking cavityYA

G L

aser

RF gun

Spi

n ro

tato

r

Page 7: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

LaserDC gunPolarized e-

Inje

ctor

Lin

ac

2.66

GeV

e+ DR

e+ PDRB

oost

er L

inac

6.

14 G

eV

4 GHz

e+ BC1 e- BC1

e+ BC2 e- BC2e+ Main Linac e- Main Linac

2 GHz

e- DR

e- PDR

2 GHz 2 GHz 2 GHz

4 GHz 4 GHz

12 GHz 12 GHz

9 GeV48 km

2.86 GeV 2.86 GeV

ee

Target

AMD

2.86 GeV 2.86 GeV

CLIC Main Beam Injector ComplexIP

polarized e-polarized e+

Spin rotator

3 TeV

Undulator based configuration

Spi

n ro

tato

r

Auxiliary source

3.5 km12 GHz, 100 MV/m, 21 km

Thermionic e- gun

Primary e- Beam Linac

200 MeV

Pre-injector e+ Linac

200 MeV

Pre-injector e- Linac 200 MeV

Page 8: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Polarized electrons

Page 9: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CLIC e- beam time structure for 3 TeV

20 ms Repetition Rate (50 Hz)

156 ns, 312 micro-bunches

0.5 ns

1.999 GHz

(I/I) bunch to bunch ≤ 1% (I/I) pulse to pulse ≤ 0.2 %

Page 10: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Parameters ILC (RDR) CLIC (0.5 TeV) CLIC (3 TeV)

Electrons/microbunch 3x1010 1x1010 0.6x1010

Charge / microbunch 4.8 nC 1.6 nC 1 nC

Number of microbunches 2625 354 312

Total charge per pulse 79x1012 3.5x1012 1.9x1012

Width of Microbunch 1 ns ~ 0.1 ns ~ 0.1 ns

Time between microbunches 360 ns 0.5002 ns 0.5002 ns

Width of Macropulse ~ 1 ms 177 ns 156 ns

Macropulse repetition rate 5 Hz 50 Hz 50 Hz

Charge per macropulse 12600 nC 566 nC 300 nC

Average current from gun 63 A 28 A 15 A

Average current in macropulse

0.013 3.2 1.9

Peak current of microbunch 4.8 A 16 A 9.6 A

Current density (1 cm radius)

1.5 A/cm2 5 A/cm2 3 A/cm2

Polarization >80% >80% >80%

Polarized e- sources parameters

Page 11: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

DC gun high voltage: why to increase?

1) Reduce space-charge-induced emittance growth

2) Maintain smaller transverse beam dimensions and short bunch length

Other possible positive impacts which remains to be demonstrated:

a) Surface charge limit issues are reduced

b) Longer life time

But the big issue:

Field emission => HV breakdown => photocathode damages => destruction

Currently DC gun: Vgun 100 kV and Ggun 5 MV/m

Page 12: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Superlattice GaAs: Layers of GaAs on GaAsP

No strain relaxationQE ~ 1%Pol ~ 85%@ 780 nm

100

nm

14 pairs

Photocathodes

First successful superlattice by KEK/Nagoya group.

T. Omori et al, Phys Rev Lett 67 (1991) pp3294-3297.Large band-gap photocathode gave a high current. First

GaAs-GaAsP photocathode with superlattice structure, strain, modulation doping by KEK/Nagoya group.

T. Nakanishi at al, NIM, A455, pp.109-112 (2000)

Developments at JLAB.

“Lifetime Measurements of High Polarization Strained Superlattice Gallium Arsenide at Beam Current > 1 mA Using a New 100 kV Load Lock Photogun”, J. Grames et al., Particle Accelerator Conference, Albuquerque, NM, June 25-29, 2007

Developments at SLAC.

“Systematic study of polarized electron emission from strained GaAs/GaAs superlattice photocathodes” T. Maruyama et al., Applied Physics Letter, Vol 85, N 13, 2004

Page 13: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

EL hc

q

Q

QE

EL(J ) 1.24 10 6 Q(nC)

(nm)QE

Pulsed laser parameters for e- source

Parameters Units CLIC500 GeV

CLIC3 TeV

Micropulse repetition frequency (fp) MHz 2000 2000

Micropulse length (tp) ns 0.1 0.1

Micropulse laser energy on cathode (EB =EL / ) J 1.4x10-6 0.9x10-6

Micropulse peak power (Pp = EB / tp) W 14 000 9 000

Macropulse laser energy on cathode (Em = EBx nb)

J 496x10-6 280x10-6

Macropulse peak power (Pm = Em / TB) W 2800 1800

Macropulse average power (Pa = Em x FB) W 0.024 0.014

Repetition frequency (FB) Hz 50 50

≈ 775 - 780 nm (Laser wavelength)

QE ≈ 0.2 %

≈ 90%

Page 14: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Parameters Units CLIC500 GeV

CLIC3 TeV

Laser energy on photocathode (EL) J 129x10-6 70x10-6

Laser energy based on bunching efficiency (EB = EL/)

J 183x10-6 100x10-6

Peak power (Pp = EB / TB) W 1038 648

Average power (Pa = EB x FB) W 0.009 0.005

Repetition frequency (FB) Hz 50 50

cw laser parameters for e- source

EL hc

q

Q

QE

EL(J ) 1.24 10 6 Q(nC)

(nm)QE

≈ 775 - 780 nm for GaAs photocathodes

QE ≈ 0.7 % (SLAC experiment)

≈ 70% for the bunching system

Page 15: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Polarized e- produced at SLAC

The total charge produced is a:

factor 3 above the CLIC requirement for 0.5 TeV

factor 5 above the CLIC requirements for 3 TeV

The measured polarization is ~ 82 %

CLIC Goal (0.5 TeV)

CLIC Goal (3 TeV)

QE ~ 0.7 %

J. Sheppard / SLAC @CLIC09 workshop

Page 16: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Photocathode:

Production of the full current with space charge and surface charge limits

High polarization: 80 % - 90% => Measurements and accuracy

High Quantum Efficiency: 0.5 – 1 % => Photo-cathodes preparation techniques

Long life time

Gun:

Reliable load locked gun

High voltage 100 kV - 350 kV => No field emission

Ultra-high vacuum requirments => range of 10-12 Torr

Cathode/anode optics => challenge for uniform focusing properties

Laser:

Laser frequency: 2 GHz or cw

Pulse length: 0.1 to 800 ns

Pulse energy: > 1 mJ

Challenges for the e- source

Page 17: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

SLAC Jlab

DC guns at SLAC and JLAB

Page 18: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Bunching system simulations

F. Zhou / SLAC

Page 19: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Pre-Injector e- Linac

MKL 01 MKL 02 MKL 03

2 GHz

40 MW

2 GHz

DC Gun

PB2 B1A1 A2 A3 A4

SLED

40 MW

2 GHz

SLED

50 Hz50 Hz50 Hz

40 MW

PB1

20 MeV200 MeV

Accelerating cavities:

• Number of cavities: N = 4• Length: L = 3 m• Aperture radius: r = 20 mm• Energy Gain: E = 45 MeV• Accelerat. gradient: Ez = 15 MV/m• Frequency: f = 2 GHz

Page 20: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Unpolarized positrons

Page 21: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

SLC CLIC(3 TeV)

ILC(RDR)

LHeC

Energy 1.19 GeV 2.86 GeV 5 GeV 100 GeV

e+/ bunch 50 x 109 7.6x109 30 x 109 15x109

Bunches / macropulse

1 312 2625 20833

Macropulse Rep. Rate.

120 50 5 10

e+ / second 0.06 x 1014 1.1 x 1014 3.9 x 1014 31 x 1014

Comparison with SLC

X 20X 66

Page 22: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Primary Electron Beam Linac

Electron beam parameters on the crystal target

Crystal 2 GHz

Primary electron beam Linac

e

TargetThermionic e- gun

With a yield of 0.9 e+/e- at 200 MeV and 7.6x109 e+/bunch needed at the entrance of

the Pre-Damping Ring, the requested charge is 10 x109 e-/bunch on the target.

Parameter Unit CLIC

Primary e- Beam

Energy GeV 5

N e- /bunch 109 10

N bunches / pulse - 312

N e- / pulse 1012 3.12

Pulse length ns 156

Repetition frequency Hz 50

Beam power kW 125

Beam radius (rms) mm 2.5

Bunch length (rms) mm 0.3

5 GeV

e-/Target

Amorphous

It is a classical linac but the design of the source, the bunching system and the linac itself remains to be done.

Bunching system

Page 23: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

E. Eroglu / Uludag University

FLUKA simulations for a W target

Excellent agreement between EGS4 and FLUKA

MeV / e-

Amorphous W target (CLIC Note 465): Electron beam energy: 2 GeV Charge: 2x1012 e-/pulse Repetition frequency: 200 Hz

Energy deposition from FLUKA code

Page 24: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

crystal amorphous

e-

e-

e+

e-

e+

Unpolarized e+ source

5 GeV

Primary electron beam Linac

Crystal thickness: 1.4 mm

Distance (crystal-amorphous): 3 m

Amorphous thickness: 10 mm

Dipole

Oriented along the <111> axis

R. Chehab & A. Variola / LAL

Page 25: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Channeling process

T. Suwada / KEK

E ~ 0.7 GeV threshold for channeling inside W

Higher E, higher channeling effects

U = potential (on axis)

= normal incidence angle

for channeling< 2U/E

crystal

amorphous

Page 26: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

The characteristic features of its acceptance are:

•Geometrical acceptance:(R0)max = a.[Bs/Bo]1/2

•Transverse momentum(pT)max = e[BoBs]1/2a

Adiabatic Matching Device (AMD)

B0 = 6 T

Bs = 0.5 T

20 cm < L < 50 cm

Bs

The AMD transforms the initial emittance with large angles and small dimensions into an emittance with small angles and large dimensions => easier to transport

B(z)= Bo/(1+z)

= 22 m-1

a = aperture radius = 20 mm

Z (cm)

B(z) (Gauss)

Page 27: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Positron beam distributions

O. Dadoun / LAL

Blue = upstream AMD

Red = downstream AMD

The field law: B (z) = Bo/(1+z)is introduced in GEANT4 and the accepted e+ yield is calculated at the AMD exit

Positron distribution at the amorphous target exit for 2 different primary electron beam energy

Most of e+ are below 100 MeV

10 GeV

3 GeV

Transverse emittances

Page 28: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Flux concentrator

T. Kamitani / KEK

Development BINP and KEK

Page 29: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Layout of e+ targets at KEKB

Hybrid targets are installed on the KEKB Linac

T. Takahashi / Hiroshima University

Preliminary tests results: enhancement of factor ~ 2 for the e+ yield when the crystal is aligned and not aligned

1.9

e+ yield

Page 30: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

KEKB installation

Page 31: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

e+ source for CLIC 500 GeV

=> very close to the breakdown limit

=> Double target station ?

=> Double beam diagnostics

Thermionic e- gunPrimary beam

Linac for e-

2 GHz

e-/Target

2 GHz

e

Target

AMD

e-/Target

2 GHz

e

Target

AMD

Pre-injector e+ Linac

200 MeV

Pre-injector e+ Linac

200 MeV

5 GeVTo injector linac

RF deflectors

Double charge / bunch => Double Peak Energy Deposition Density inside the target

Page 32: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CrystalTo the Injector

Linac

Amorphous Target

Adiabatic MatchingDevice Pre-injector linac

Solenoid Cavities

Bunch compressor

e+

Dipoles

e+

e-

e-

Dipole

2 GHzAMD

• Length : L = 20 cm• Magnetic Filed: B = 6 - 0.5 T• Final Aperture: r = 2 cm

SOLENOID

• Length : L = 41 m• Magnetic Filed: B = 0.5 T

Accelerating cavities:

• Number of cavities: N = 4• Length: L = 3 m• Aperture radius: r = 20 mm• Energy Gain: E = 50 MeV• Maximum Gradient: Ez (r=0) = 17 MV/m• Frequency: f = 2 GHz

Pre-Injector e+ Linac

200 MeVYield = 0.9 e+ / e-

Page 33: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Challenges for the e+ source

1) A single hybrid targets station or several stations to cover all the CLIC needs

2) Targets issues (Heat load dynamics, beam energy deposition, shock waves, breakdown limits, activation, ….)

3) Adiabatic Matching Device (AMD)

4) Capture sections (Transport and collimation of large emittances, high beam loading, 2 GHz unusual)

5) Efficient use of existing codes (EGS4, FLUKA, Geant4, PPS-Sim, PSCSim, Parmela, ASTRA,…)

6) Integration issues for the target station (remote handling in radioactive area)

7) Radioactivity issues

8) For polarized positron (=>Design and implementation of the spin rotators; => Polarization issues to analyze systematic errors of measurements)

9) For the Compton schemes (=> Optical cavities at IP, powerful laser systems,…)

10) For the Undulator scheme (=> Helical undulator, collimators, dumps, civil engineering for the tunnel,…)

11) ……..

Page 34: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

F0DO lattice at the beginning

Q1 Q2 Q3 Q4

Q5 Q6 Q7

L0

Matching from FODO to Triplet

Triplet for the end of the linac

L0 L0L0 L0L0

Injector Linac

Q5 Q6

Page 35: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

FODO

Number of Accelerating sections (L= 4 m, G = 15 MV/m) 15

Number of quadrupoles on accelerating sections (L = 42 cm) 6 x 15 = 90

Number of quadrupoles between accelerating sections (L = 42 cm) 14 x 2 = 28

Matching section

Number of quadrupoles (L = 42 cm) 6 x 1 = 6

Triplet

Number of Accelerating sections (L= 4 m, G = 15 MV/m) 21

Number of quads between accelerating sections (Length = 42 cm) 20 x 3 = 60

CLIC Injector Linac optics parameters

Page 36: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

S

cm

N. e+

Yield

e+/e-

x

mm mrad

y

mm mrad

<E> MeV

E

MeV

z

mm

z

cm MeV

38550 4558 0.76 19804 14729 2825.1 129.5 6.2 69.5

To be optimized…

e+ in PDR: 2747; Yield e+/e- =0.458

A. Vivoli / CERN

Simulation results Injector Linac

Black distribution = end of Injector Linac Red distribution = captured inside the

PDR

Page 37: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CLIC Pre-Damping Ring acceptance

e+ to the PDR

Simulations CLIC Notes 465 and 737

Vivoli simulations2008

Energy 200 MeV, 1.98 GeV and 2.4 GeV

200 MeV

Number of particles 6.8 x 109 6.4 x 109

Bunch length (rms) 5 mm 9 mm

Energy spread (rms) 2.7 % 1 %

Normalized rms emittances 9300 mm.mrad 7000 mm.mrad

PDR geometrical acceptance:

H = V = 6

F. Antoniou Pre-Damping Ring design is based on these values

Page 38: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Layout of the Bunch Compressors

BC1

BC2

F. Stulle / CERN

Page 39: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Two stages of the Bunch Compressor

Parameter DR BC1 BC2

Out In Out In Out

Energy (GeV) 2.86 2.86 2.86 9 9

No. of e+ /bunch (109) 4.1 4.1 4.1 4 4

Bunch length (rms) (mm) 1.4 1.4 0.300 0.300 0.044

Energy Spread (rms) (%) 0.1 0.1 0.7 0.25 1.14

Longitud. emitt. (eV.m) < 4000 < 4000 < 4000 < 4000 < 4000

BC factor - 4.6 6.8

RF frequency - 4 GHz 12 GHz

Gradient (Loaded) - 20 MV/m 80 MV/m

Structure length 3 m 1 m

RF voltage - 172 MV (3 ACS) 1200 MV (15 ACS)

Length of linac - 10 m 15 m

Length of chicane - 30 m 70 m

Total length - ~ 40 m ~ 90 m

Page 40: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Values along the Main Beam Injector Complex

Yield

e+ / e-

# of e+ per bunch

# of e+ per pulse

Total charge

(nC)

Current

(A)

Entrance Main Linac ( 9 GeV) 0.4 4 x 109 1. 2 x 1012 200 1.2

Entrance of the RTML (2.8 GeV) 0.41 4.1 x 109 1.3 x 1012 204 1.3

Captured into PDR (2.8 GeV) 0.458 4.6 x 109 1.4 x 1012 228 1.4

Entrance of PDR (2.8 GeV) 0.759 7.6 x 109 2.4 x 1012 379 2.4

Entrance of Injector Linac (200 MeV) 0.98 9.8 x 109 3 x 1012 489 3.1

Entr. of Pre-Injector Linac (80 MeV) 2 20 x 109 6.2 x 1012 998 6.4

Yield and charge of e+ beam

Based on the lastest simulations, the yield and the charge have been revised along the Main Beam Injector Complex,

Primary electron beam (5 GeV) 10 x 109 3.1 x 1012 499 3.2

Page 41: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Laser

DC gunPolarized e-

200 MeVe-/

Target

200 MeV5 GeV

Inje

ctor

Lin

ac

2.66

GeV

e+ DR

e+ PDRB

oost

er L

inac

6.

14 G

eV

e+ BC1 e- BC1

e+ BC2 e- BC2e+ Main Linac e- Main Linac

e- DR

e- PDR

e

TargetAMD

Charges along the Injector ComplexIP

Spin rotator

12 GHz, 100 MV/m, 21 km 12 GHz, 100 MV/m, 21 km

4x109

4.4x109

4x109

4.6x109

7.6x109

4.2x109

4.1x109

10x1099.8x109

4.1x109

4.2x109

4.4x109

4.6x109

5x109

6x1095.5x10920x109

3.7x109

Pre-injector e- Linac

Pre-injector e+ Linac

Primary e- Beam LinacThermionic

e- gun

3 TeV

Base line configuration

Page 42: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Polarized positrons

Page 43: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Number of e- = 312 x 6.2 x 109 = 1.93 x1012 in the ring

I = 2 A

Photon yield = 0.063 photons / e- / turn (simulation)

Photon flux: 1.33x1016 photons / s

E. Bulyak / NSC KIPT

CLIC Compton RingE

nerg

y sp

read

Time (cw)

Page 44: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

2 GHz

e

Target

Drive Linac 1 GeV

Compton ring

2 GHz

Stacking cavity

YAG Laser

RF gun

156 ns/turn, 312 bunches with 6.2x109 e-/bunch

Inje

ctor

Lin

ac 2

.66

GeV

e+ DR

2.86 GeV

e+ PDR and Accumulator

ring

Pre-injector Linac for e+

200 MeV

2.86 GeV

1100 turns makes 312 bunches with 4.4x109 e+/bunch

4x106 pol. e+/turn/bunch

4x108 photons /turn/bunch

2 G

Hz

156 ns x1100 turns => 170 s pulse length for both linacs

CLIC based Compton Ring

Compton Ring:

E = 1.06 GeV C = 46.8 m VRF = 200 MV fRF = 2 GHz CP = 0.05 m

Laser pulse: E = 1.164 eV r = 0.005 mm l = 0.9 mm

Page 45: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

4.4x109 e+/bunch50 Hz Linac (if necessary)

CLIC Compton ERL

CLIC requires 4.4 x 109 e+/ bunch

N of stack (same bucket) = 2003

4.2x109 e+/bunch

T. Omori / KEK

Page 46: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CLIC Compton Linac

N / Ne- = 1 (demonstrated at BNL)

Ne+ / N = 0.02 (expected)

i.e. 50 gammas to generate 1 e+

312 pulses

~5 ns With 5 nC / e- bunch and 10 Compton IP's

=> 1 nC / e+ bunch

Data for CLIC:

Ne+ = 6.4 x 109 / bunch ~ 1 nC

Ne- = 0.32 x 1012 / bunch ~ 50 nC

6GeV e- beam 60MeV beam 30MeV

e+ beam

to e+ conv. target

~2 m

V. Yakimenko / BNL

Page 47: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

250 GeV

Cleaning chicaneTi alloy

450 m

e+

CLIC Undulator scheme

W. Gai / ANL

Page 48: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

L. Zang / CI

CLIC Undulator scheme

Undulator 100 m long with:

K = 0.92

u = 12 mm

Page 49: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Spin Rotators

K. Moffeit / SLAC

Requirements:

1) Rotate spin to the vertical plane before pre-damping ring so polarization is not destroyed during damping.

2) Rotate spin after the last turnaround to have the desired polarization at the e+e- IP, e.g. longitudinal polarization at IP. May be can be done upstream the Booster Linac.

bendbendspin

GeVEg

44065.0

)(

2

2

Spin rotation is done with a combination of spin rotation solenoids and spin precession in dipole bends

spin is be rotated 90o in a solenoid field

for ILC

Page 50: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Impact of lowering the RF frequency in the low energy

part of the injector

November 18th, 2009

F. Antoniou, M. Barnes, A. Grudiev, L. Rinolfi, G. Rumolo, Y. Papaphilippou, F. Stulle, A.

Vivoli

RF frequency from 2 GHz down to 1 GHz ?

Page 51: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

660 ns

156 bunches

1 ns

Bunch structure at 1 GHz

Pre-Injector and Injector Linacs: more acceptance (for e+ capture) and less energy spread

PDR: 1 ns spacing reduces the harmonic number => momentum acceptance increased

PDR and DR: 1GHz is much closer to existing high-power CW klystron systems used in storage rings or the one designed for NLC damping rings (714MHz). An extrapolation of this design should be straightforward.

156 bunches

New Delay lines: two new Delay Lines should be implemented downstream the DR to recombine the trains in order to have the 312 bunches spaced by 0.5 ns (2 GHz) before being injected into the Booster Linac => stabilities issues

Page 52: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

CountriesInstitutes Collaborators Subject

France LAL I. Chaikovska, O. Dadoun, F. Poirier, A. Variola

e+ studies

France IPNL X. Artru, R. Chehab, M. Chevallier, V. Stakhovenko

Channeling studies

Germany FZR Rossendorf J. Teichert Compton sources

Japan Hiroshima Uni. M. Kuriki, T. Takahashi Experiments at KEKB

Japan KEK T. Kamitani, T. Omori, J. Urakawa e+ studies

Turkey Uludag University E. Eroglu, A. Kenan Çiftçi, E. Pilicer, I.Tapan

FLUKA simulations

Ukraine Kharkov Institute E. Bulyak, P. Gladkikh Compton Rings

United Kingdom Cockcroft Institute I. Bailey, J. Clarke, L. Zang Undulator e+ studies

USA ANL W. Gai, W. Liu Undulator e+ studies

USA BNL I. Pogorelski, V. Yakimenko Compton Linac

USA JLAB M.Poelker DC gun for polarized e-

USA SLAC A. Brachmann, T. Maryama, J. Sheppard, F. Zhou

Polarized e- sources

Alphabetic order for countries

Collaborations

for the CLIC Main Beam Generation studies

Page 53: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Summary

Polarized e- : the requested charge for a DC gun have been obtained and demonstrated by SLAC. Simulations to be done up to 200 MeV. Laser system needs some investigations.

Polarized e+: a lot of R&D remain to be done before making a choice between the different options: Compton ring, Compton linac, Energy Recovery Linac or Undulator.

Unpolarized e+ : for 3 TeV, simulations based on hybrid targets configuration provide the requested performance. For 0.5 TeV (double charge), may be a double target positron station would be necessary to achieve the requested performance. Issues related to the targets and radioactivity need also investigations.

Page 54: CLIC Main Beam Generation Complex

C L I CC L I C

20th November 2009CLIC meeting L. Rinolfi

Acknowledgements

F. Antoniou, X. Artru, I. Bailey, A. Brachmann, E. Bulyak, I. Chaikovska, R. Chehab, M. Chevallier, J. Clarke, O. Dadoun, S. Doebert, E. Eroglu, A. Ferrari, W. Gai, P. Gladkikh, A. Grudiev, T. Kamitani, M. Kuriki, A. Latina, W. Liu, T. Maruyama, T. Omori, Y. Papaphilippou, M. Poelker, F. Poirier, I. Pogorelski, D. Schulte, J. Sheppard, V. Strakhovenko, F. Stulle, T. Takahashi, F. Tecker, J. Urakawa, A. Variola, A. Vivoli, V. Yakimenko, L. Zang, F. Zhou, F. Zimmermann


Recommended