+ All Categories
Home > Documents > Climate change & carbon benefits AR · • BC, AB, ON, QC, MB have carbon pricing ... 7 0 7 5 8 0 5...

Climate change & carbon benefits AR · • BC, AB, ON, QC, MB have carbon pricing ... 7 0 7 5 8 0 5...

Date post: 22-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
74
Wood Products – Climate Change & Carbon Benefits (USEPA) Adam Robertson, M.A.Sc., P.Eng. Canadian Wood Council Ontario Wood Solutions Fair November 2, 2017
Transcript
  • Wood Products –Climate Change & Carbon Benefits

    (USEPA)

    Adam Robertson, M.A.Sc., P.Eng.Canadian Wood Council

    Ontario Wood Solutions FairNovember 2, 2017

  • Presentation Outline

    • Motivations & navigating the landscape– Global; National; Provincial; Municipal

    • Three S’s of carbon (sink, storage, & substitution)• Embodied & operational emissions• Design tools for environmental evaluation• Environmental product declarations (EPD)• Additional information & resources

  • “No challenge poses a greater threat to future generations than climate change”  (Barack Obama)

  • UN Sustainable Development Goals

  • Paris Agreement

    COP 21 Plenary meeting space, Paris

  • – “Mitigating options by the forest sector include extending carbon retention in HWP, product substitution, and producing biomass for bioenergy.”(IPCC, 2007)

    – “In the long term, a sustainable forest management strategy aimed at maintaining or increasing forest carbon stocks, while producing an annual sustained yield of timber fibre or energy from the forest, will generate the largest sustained [climate change] mitigation benefit.” (IPCC, 2007)

    – “Increasing the global forest land base and increasing the capacity of each forest, while using them as a sustainable supply of wood for building materials and fuel to offset the need for other energy‐intensive materials and fossil fuelsrepresents an important carbon mitigation option over the long term.” (UNFAO, 2010)

    Climate Change Mitigation

  • • October 2015:  Pan‐Canadian agreement by Provinces to reduce GHG emissions by 30% below 2005 levels by 2030

    • BC, AB, ON, QC, MB have carbon pricing mechanisms in place (carbon tax or cap‐and‐trade system) – all Provinces required by 2018

    (www.pm.gc.ca)

    Vancouver Declaration

  • • Reduce GHG emissions by 40% from 2005 levels by 2030

    Federal Sustainable Development Strategy

  • Pan Canadian Framework on Clean Growth and Climate Change

  • • Make new & existing buildings more efficient by: 

    • Requirements for labeling of building energy use by 2019

    • 2022 national model code for retrofit of existing homes and buildings

    • “net‐zero energy ready” model building code adopted by provinces in 2030

    Pan Canadian Framework on Clean Growth and Climate Change

  • • Make new & existing buildings more efficient by: 

    • GoC $2 billion Low Carbon Economy Fund:– help interested provinces and territories expand their efforts to improve building energy performance

    – support Indigenous communities and governments as they improve the energy efficiency of their buildings

    Pan Canadian Framework on Clean Growth and Climate Change

  • • Increase carbon removals & carbon sinks by: 

    • Enhancing carbon storage in forests• Support increased use of wood for construction• Generating fuel from bioenergy and bioproducts• Advancing innovation in bio‐based product development and forest management practices 

    Pan Canadian Framework on Clean Growth and Climate Change

  • • Canadian forest industry is pledging to remove 30 MT of CO2 a year by 2030

    • Equivalent to 13% of Canada’s national commitments under Paris Agreement

    FPAC 30 by 30 Challenge

  • • Product displacement – bio‐based products in place of fossil fuel products & energy sources

    • Forest management – increased utilization, improved residue use, better growth & yield, land use planning

    • Accounting of long‐lived bio‐based product carbon pools

    • Higher efficiencies in manufacturing processes

    FPAC 30 by 30 Challenge

  • 15

    Building Sector Contributions

    • Construction and operation of buildings are responsible for (UNEP, 2009):• 40% of global energy use• 30% of anthropogenic GHG emissions worldwide

    • Building sector is 3rd largest GHG emitter in Canada (17% of emissions including plug loads)

    • Energy/resource use outpacing population growth

    • Decreasing environmental impacts of buildings offers high environmental returns for low economic investment

  • Based on 1990 GHG emission levels:• Short‐term:  reduce GHGs by 30% by 2020• Long‐term:  reduce GHGs by 80% by 2050

    • Buildings produce half of TO’s GHG emissions

    City of Toronto – Transform TO

  • Goals:• 100% of new buildings are built to be near zero GHG emissions by 2030 (city‐owned by 2026)

    • 100% of existing buildings retrofitted to achieve 40% energy performance improvement by 2050 

    • 75% of energy comes from renewable or low‐carbon sources by 2050

    • 95% of waste diverted from landfills by 2050

    City of Toronto – Transform TO

  • • Support energy efficiency in buildings through technical and financial assistance  (Better Buildings Partnership)

    • Toronto Green Standard v3.0 (May 1, 2018)

    • Recognized need to develop workforce that can implement high‐performance buildings

    City of Toronto – Transform TO

  • • Zero emissions building framework:– Support the use of passive design strategies to improve building resilience

    – Higher quality building envelopes over improvements in equipment efficiency 

    – Low‐carbon energy sources (on‐site & grid sourced)– Building labeling related to performance targets (operational and embodied?)

    City of Toronto – Transform TO

  • THAT COUNCIL:• Direct staff to build all new City-owned and

    Vancouver Affordable Housing Agency (VAHA) projects to be Certified to the Passive House standard or alternate zero emission building standard. (Applicable for all City-owned and VAHA building projects by 2018.)

    • Incorporate requirements for calculating and reporting embodied emissions in the restructured Rezoning Policy for Green Buildings

    City of Vancouver July 5, 2016Policy Report Development And Building

    Passed July 12, 2016

  • Zurich2000-watt

    Society and Minergie

    (Eco Version)

    Germany BNBWhole Building

    LCANetherlands

    Whole Building LCA

    BelgiumEmbodied

    Impacts

    FranceEPD

    U. K.BREEAM

    LCA

    Decarbonization – increasing polices affecting both performance and embodied impacts.

  • • Mitigation:– CO2 + H2O + Sunlight  Sugars  Cellulose (Wood) + O2

    – Wood is 50% carbon by dry weight (a natural carbon storage device)

    • Adaptation:– Hygroscopic (stores or releases moisture to external environment, i.e. shrinks & swells)

    – High thermal resistance properties(resulting from trapped still air)

    Wood – A Natural Building Material

    (Wood Handbook)

  • CARBON CONSIDERATIONSSINK

    STORAGE

    OPERATIONS

    SUBSTITUTE

    TIME

  • Three S’s of Carbon – Forests as Sinks• Carbon flows

    – Forest cover has remained constant for last 100 yrs.– Sustainable management is paramount

    (Tackle Climate Change,Use Wood)

    (Federal Actions for a Clean Growth Economy, 2016)

  • (NRCan, 2016)

  • Forest Products Association of Canada |Association des produits forestiers du Canada | 6

    166

    47  41 23  19  16  14  12  10  9  8  8 

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Millions of h

    ectares c

    ertified

    Canadian Certification in the Global Context2015 Year‐end

    Sources:  www.certificationcanada.org as of Dec 31/15www.fsc.org as of Jan. 5/16

    www.pefc.org as of Dec 31/15

    Net Total for Canada(Double counting of areas certified to more than one standard has been removed).

  • Importance of Forests as Carbon SinksDeforestation account for 20% of GHGs (IPCC, 2007)

    Change in Global Forest Cover 2000-2005 – FAO 2006

  • http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/36180.pdf

  • Carbon Fluxes in Sustainably Managed Forests

  • • Wood products & building systems have ability to store large amounts of carbon (CO2 eq.)

    • 1 m3 of S‐P‐F stores   ̴ 1 tonne of CO2 eq.• Amount of carbon stored ∞ wood density

    Three S’s of Carbon – Storage

    (Johal)

    (APA)

  • Tracking Carbon Pools

  • Three S’s of Carbon – Substitution

    • Wood products can substitute for other more carbon‐intensive building materials

    • Embodied emissions are avoided by using wood

    • Displacement factors (kg CO2 avoided/kg wood used) can be estimated to calculate carbon avoided 

  • 1/ Values are based on life cycle assessment and include gathering and processing of rawmaterials, primary and secondary processing, and transportation.2/ Source: USEPA (2006) and Bowyer (2015)

    Net Carbon Emissions in Producing1,2 a kg of:

  • Net Production Emissions

  • Whole Building Evaluation

  • Forest, Product, Emissions, Displacement & Substitution Carbon by Component

    -100

    0

    100

    200

    300

    400

    500

    600

    700

    800

    2000

    2005

    2010

    2015

    2020

    2025

    2030

    2035

    2040

    2045

    2050

    2055

    2060

    2065

    2070

    2075

    2080

    2085

    2090

    2095

    2100

    2105

    2110

    2115

    2120

    2125

    2130

    2135

    2140

    2145

    2150

    2155

    2160

    2165

    Year

    Met

    ric T

    ons

    Per H

    ecta

    re

    Stem Root Crown Litter Dead Chips Lumber HarvEmis ManufEmis Displacement Substitution

    Forestwith Products

    with Substitution

    Forest, Product and Substitution Pools

  • (CEI‐Bois/EPF)

    End‐of‐life Alternatives

    • Energy recovery• Recycle

    • Reuse• Landfill

  • 0

    5E‐14

    1E‐13

    1.5E‐13

    2E‐13

    2.5E‐13

    3E‐13

    3.5E‐13

    0 50 100 150 200 250 300 350 400 450 500

    Avoide

    d radiative forcing (W

    .yr.m

    ‐2)

    Years

    Cumulative benefit of avoided 1 kg CO2 emission

    Net present value of 1 tonne CO2 in 80 years

    .24 tonne

  • Operational Embodied

    Whole Life Cycle Emissions – 80 Year Building Life

  • Year 0Operational Emissions

    Embodied Emissions

  • Operational Emissions

    Embodied Emissions

    Year 12Operational = Embodied

  • Operational Emissions

    Embodied Emissions

    BUT……

    Year 80

  • What if….• The building is poorly maintained and becomes

    decrepit before 80 years?• The building is operated more efficiently?• The land becomes more valuable for another use

    and the building is removed?• The building uses renewable (zero emission)

    energy?• The building is rendered unusable (fire, storm,

    flood…)• A carbon tipping point is reached before the

    modeled savings are reached?• Or….???

  • Rising Importance of Embodied Material Impacts

    (PE International)

  • Rising Importance of Embodied Material Impacts

    (CPA, 2012)(Architect:  Richard Rogers)

  • Green design choices are complex

  • • Building Code– NBC plans to develop a stretch code/code plus– IgCC, ASHRAE 189.1 & CalGreen have codified         green building practices in U.S.

    • Green Building Rating Systems & Challenges– LEED®, Green Globes, Living Building, Architecture 2030

    Whole‐Building Evaluation Tools

  • • www.cwc.ca Resources     Electronic Tools

    Online Carbon CalculatorFor Wood Buildings ‐ Updated

  • Online Carbon Calculator

  • (ESSB, Vancouver – Perkins + Will)

    Online Carbon Calculator

  • Online Carbon Calculator

  • Online Carbon Calculator

  • NRCan, 2016

    UBC Brock Commons (18‐storeys)

  • Example

    55

    Study of GHG emissions of a functionally equivalent floor structure: 

    6m x 6m bay size in office building.

    Steel deck and concrete solution

    Wood solution

  • Steel‐Concrete Solution

    56

    Results

    Potential GHG emissions

    Quantity of materials

    Steel girders and steel deck with concrete slab

    Concrete

    3 m3

    540kg CO2 

    Steel deck

    0.4 tonnes

    868kg CO2

    Steel girders

    0.2 tonnes

    198kg CO2

    Steel reinfor‐cement

    0.03 tonnes

    27kg CO2

    1633 kg CO2 éq.

    CIRAIG Data

  • Wood Solution

    57

    Results

    Potential GHG emissions

    Quantity of materials

    Wood floor trusses with OSB

    Truss plates

    0.05 tonnes

    63 kg CO2

    Nails

    0.04 tonnes

    37 kg CO2

    OSB

    75 m2

    75 kg CO2

    Softwood lumber

    0.9 m3

    32 kg CO2

    276 kg CO2 éq.

    CIRAIG Data

  • BEES – Select Alternatives

    Based on functional unit

  • BEES – Reporting Results

  • Publicly available at:

    https://www.nist.gov/services‐resources/software/bees

  • Athena Impact Estimator

  • ATHENA Impact Estimator – Custom Wall

  • ATHENA Impact Estimator

  • Athena Impact Estimator – Floors & Roof

  • Impact Estimator – Design Comparison

  • Available for free:

    http://calculatelca.com 

  • • ‘Nutrition labels’ conveying LCA‐derived environmental impact data about products

    • Transparently discloses standardized data about potential environmental impacts

    • Simple & user‐friendly mechanism to bring LCA data into the marketplace

    Environmental Product Declarations (EPD)

  • Data averaged for North America

    EPD for Softwood Lumber

    NRCan, 2016

  • • Industry wide EPDs for wood products                      (available at www.cwc.ca)1. Softwood lumber2. Plywood3. OSB4. Glulam5. LVL6. I‐Joists7. LSL8. MDF9. Particleboard10. Preservative treated lumber (ACQ & Borate)11. Redwood decking

    • Data weighted by production volume

    EPDs for North American Wood Products

  • • CWC Sustainability Fact Sheets:– Carbon– Life Cycle Assessment– Resilient & Adaptive Design– Social & Economic Benefits(cwc.ca/publications/technical/fact‐sheets)

    • rethinkwood.com • naturallywood.com • Free online tools:

    – Carbon Calculator– BEES– Athena Impact Estimator

    Resource Materials

  • NRCan CFS Resources

  • What Lies Ahead

  • Questions & Comments??

    Adam Robertson, M.A.Sc., P.Eng.Manager, Codes and Standards

    Structural Engineering and SustainabilityCanadian Wood Council

    www.cwc.ca

    [email protected]


Recommended