+ All Categories
Home > Documents > Climate warming alters subsoil but not topsoil carbon dynamics in...

Climate warming alters subsoil but not topsoil carbon dynamics in...

Date post: 26-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
11
Glob Change Biol. 2019;00:1–11. wileyonlinelibrary.com/journal/gcb | 1 © 2019 John Wiley & Sons Ltd Received: 29 May 2019 | Accepted: 15 August 2019 DOI: 10.1111/gcb.14823 PRIMARY RESEARCH ARTICLE Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland Juan Jia 1,2 | Zhenjiao Cao 1,2 | Chengzhu Liu 1,2 | Zhenhua Zhang 3 | Li Lin 4 | Yiyun Wang 1,2 | Negar Haghipour 5 | Lukas Wacker 6 | Hongyan Bao 7 | Thorston Dittmar 8 | Myrna J. Simpson 9 | Huan Yang 10 | Thomas W. Crowther 11 | Timothy I. Eglinton 5 | Jin‐Sheng He 4,12 | Xiaojuan Feng 1,2 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 3 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China 4 Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China 5 Geological Institute, ETH Zürich, Zurich, Switzerland 6 Laboratory of Ion Beam Physics, Department of Physics, ETH Zürich, Zurich, Switzerland 7 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China 8 Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany 9 Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada 10 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China 11 Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland 12 State Key Laboratory of Grassland Agro‐ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China Correspondence Xiaojuan Feng, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. Email: [email protected] Jin‐Sheng He, State Key Laboratory of Grassland Agro‐ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China. Email: [email protected] Funding information Chinese National Key Development Program for Basic Research, Grant/Award Number: 2015CB954201 and 2017YFC0503902; International Partnership Program of Chinese Academy of Sciences, Grant/Award Number: 151111KYSB20160014; National Natural Science Foundation of China, Grant/ Award Number: 31370491, 31630009, 41422304 and 41773067 Abstract Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai‐Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized ( 14 C‐enriched) carbon in the subsoil slow‐cycling pool (silt‐clay fraction) but promoted the decomposition of plant‐derived lignin in the fast‐ cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sug‐ ars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deep‐ ening roots in a wide range of ecosystems, root‐driven accrual of slow‐cycling pool may represent an important and overlooked mechanism for a potential long‐term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change. KEYWORDS deep soil, lignin decomposition, physical fraction, radiocarbon, soil organic carbon, warming
Transcript
Page 1: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

Glob Change Biol. 2019;00:1–11. wileyonlinelibrary.com/journal/gcb  | 1© 2019 John Wiley & Sons Ltd

Received:29May2019  |  Accepted:15August2019DOI: 10.1111/gcb.14823

P R I M A R Y R E S E A R C H A R T I C L E

Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland

Juan Jia1,2 | Zhenjiao Cao1,2 | Chengzhu Liu1,2 | Zhenhua Zhang3 | Li Lin4 | Yiyun Wang1,2 | Negar Haghipour5 | Lukas Wacker6 | Hongyan Bao7 | Thorston Dittmar8 | Myrna J. Simpson9  | Huan Yang10 | Thomas W. Crowther11 | Timothy I. Eglinton5 | Jin‐Sheng He4,12 | Xiaojuan Feng1,2

1StateKeyLaboratoryofVegetationandEnvironmentalChange,InstituteofBotany,ChineseAcademyofSciences,Beijing,China2CollegeofResourcesandEnvironment,UniversityofChineseAcademyofSciences,Beijing,China3KeyLaboratoryofAdaptationandEvolutionofPlateauBiota,NorthwestInstituteofPlateauBiology,ChineseAcademyofSciences,Xining,China4InstituteofEcology,CollegeofUrbanandEnvironmentalSciences,PekingUniversity,Beijing,China5GeologicalInstitute,ETHZürich,Zurich,Switzerland6LaboratoryofIonBeamPhysics,DepartmentofPhysics,ETHZürich,Zurich,Switzerland7StateKeyLaboratoryofMarineEnvironmentalScience,XiamenUniversity,Xiamen,China8ResearchGroupforMarineGeochemistry,InstituteforChemistryandBiologyoftheMarineEnvironment,CarlvonOssietzkyUniversityofOldenburg,Oldenburg,Germany9EnvironmentalNMRCentre,DepartmentofPhysicalandEnvironmentalSciences,UniversityofTorontoScarborough,Toronto,ON,Canada10StateKeyLaboratoryofBiogeologyandEnvironmentalGeology,ChinaUniversityofGeosciences,Wuhan,China11InstituteofIntegrativeBiology,ETHZürich,Zurich,Switzerland12StateKeyLaboratoryofGrasslandAgro‐ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou,China

CorrespondenceXiaojuanFeng,StateKeyLaboratoryofVegetationandEnvironmentalChange,InstituteofBotany,ChineseAcademyofSciences,Beijing100093,China.Email:[email protected]

Jin‐ShengHe,StateKeyLaboratoryofGrasslandAgro‐ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou,China.Email:[email protected]

Funding informationChineseNationalKeyDevelopmentProgramforBasicResearch,Grant/AwardNumber:2015CB954201and2017YFC0503902;InternationalPartnershipProgramofChineseAcademyofSciences,Grant/AwardNumber:151111KYSB20160014;NationalNaturalScienceFoundationofChina,Grant/AwardNumber:31370491,31630009,41422304 and 41773067

AbstractSubsoilcontainsmorethanhalfofsoilorganiccarbon(SOC)globallyandisconventionallyassumedtoberelativelyunresponsivetowarmingcomparedtothetopsoil.Here,weshowsubstantialchangesincarbonallocationanddynamicsofthesubsoilbutnottopsoilintheQinghai‐Tibetanalpinegrasslandsover5yearsofwarming.Specifically,warmingenhancedtheaccumulationofnewlysynthesized(14C‐enriched)carboninthesubsoilslow‐cyclingpool(silt‐clayfraction)butpromotedthedecompositionofplant‐derivedlignininthefast‐cyclingpool(macroaggregates).Thesechangesmirroredanaccumulationoflipidsandsug‐arsattheexpenseoflignininthewarmedbulksubsoil,likelyassociatedwithshortenedsoilfreezingperiodandadeepeningrootsystem.Aswarmingisaccompaniedbydeep‐eningrootsinawiderangeofecosystems,root‐drivenaccrualofslow‐cyclingpoolmayrepresentanimportantandoverlookedmechanismforapotentiallong‐termcarbonsinkatdepth.Moreover,giventhecontrastingsensitivityofSOCdynamicsatvarieddepths,warmingstudiesfocusingonlyonsurfacesoilsmayvastlymisrepresentshiftsinecosystemcarbonstorageunderclimatechange.

K E Y W O R D S

deepsoil,lignindecomposition,physicalfraction,radiocarbon,soilorganiccarbon,warming

Page 2: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

2  |     JIA et Al.

1  | INTRODUC TION

Theresponseofsoilorganiccarbon(SOC)cyclingtoglobalwarmingrepresents a critical feedback of terrestrial ecosystems to climatechange(Koven,Hugelius,Lawrence,&Wieder,2017;Melilloetal.,2017).Untilnow,mostresearchhasfocusedontopsoilcarbondy‐namics(Crowtheretal.,2016;Kovenetal.,2017).Incontrast,sub‐soil (i.e., residing>20cmbelowground)containingmorethanhalfofglobalSOCstocks(Rumpel,Chabbi,&Marschner,2012)remainspoorlyinvestigatedintermsofitsresponsetowarming.Thisknowl‐edge gap has emerged as one of the central uncertainties in ourunderstanding of terrestrial carbon storage under climate change(Ahrens&Reichstein,2017).

Subsoil carbon is conventionally assumed to be relatively sta‐bleandunresponsivetoairwarmingdueto its longturnovertimeand good insulation at depth (Harrison, Footen, & Strahm, 2011).However, according to the Intergovernmental Panel on ClimateChange(IPCC),subsoilsareprojectedtowarmatroughlythesamerateas surfacesoilsover thenextcentury (HicksPries,Castanha,Porras,&Torn,2017;IPCC,2013).Moreimportantly,emergingevi‐dencesuggeststhatsubsoils,havingvariedorganicmattersources,microbial communities, and substrate availability compared to thetopsoil (Rumpel et al., 2012), may show even stronger responseto warming‐induced shifts in microbial activities and functioning(Fontaineetal.,2007) inassociationwithalteredplantcommunitystructureanddistribution(Keuperetal.,2017;Liuetal.,2018).Forinstance,plantrootsareexpectedtogrowdeeperunderwarming‐inducedmoistureornutrientlimitation(Johnson,Rygiewicz,Tingey,&Phillips,2006;Liuetal.,2018;Wangetal.,2017),potentiallyin‐creasingrootinputs(includingrootlitterandexudates)andenhanc‐ingcarbonaccumulation in subsoils thatare relatively low inSOCcontent(Cotrufoetal.,2015).Alternatively,increasedfreshcarboninputand/orchangingsoilphysicalpropertiesmayleadtoshiftsinmicrobialcommunities(Chengetal.,2017)andacceleratethedegra‐dationofnativeSOC(Fontaineetal.,2007;Jiaetal.,2017).However,experimentalevidenceislackingtodemonstratehowtheabovepro‐cessesjointlyaffectSOCdynamicsinthesubsoil.Detectingchangesin subsoil carbon stock is particularlydifficult given the long resi‐dencetimeofSOC(Rumpeletal.,2012)andcounteractingeffectsofwarmingonvariouscarbonpools(Feng,Simpson,Wilson,Williams,&Simpson,2008).Hence,in‐depthinvestigationsintoSOCcompo‐sition and carbon allocation are essential to reveal changing SOCdynamicsandtoidentifySOCpoolsthataresensitivetowarming.

Deep soil carbon dynamics in high‐latitude and high‐altitudeecosystems warrant particular attention under warming becausethesesoilsstorethevastmajorityoftheglobalSOCpool(Tarnocaietal.,2009;Yangetal.,2008).Inaddition,thesecolderregionsareexperiencingahigher‐than‐averagewarming trend in recent years(Chen et al., 2013). On the world's highest and largest plateau,Qinghai‐TibetanPlateau(QTP),anaturalwarmingtrendinthepastdecadehasledtoasignificantincreaseofSOCinthesubsurfacesoil(10–30cm)whileshowingnoeffectonthetopmostsoil(0–10cm)in the alpine grasslands (Ding et al., 2017). These results stand in

contrastwithpreviousviewsthatwarmingmayinducelargecarbonlossesfromsoilswithahighSOCcontent(Crowtheretal.,2016),es‐peciallyinthehigh‐latitudeandhigh‐altitudeareas.IdentifyingthemechanismsgoverningthesedivergentresponsesofSOCtowarm‐ingatdifferentdepths is critical tominimizeuncertainty in futuresoilcarbonfeedbackprojections.

Here,weutilizeamanipulativesoilwarmingexperimentintheQTPalpinegrassland(Liuetal.,2018)tocomparewarmingeffectsonthecompositionandsourcingofSOCpoolsatdifferentdepths.Consistent with field observations over QTP alpine grasslandsfor the past decades, 5 years of continuous warming increasedgrasseswithdeeprootsanddecreasedsedgesandforbswithshal‐low roots in our experiment, resulting in elevated belowgroundnet primary productivity (BNPP) in the subsoil (30–50 cm; Liuetal.,2018).Comparedtoabovegroundbiomass(59.7g/m2),rootsaretheprimarycarboninputstotheQTPgrasslandsoils(330.5g/m2; Yang,Fang,Ji,&Han,2009).WithanenhancedBNPPinthesub‐soil,we anticipate a strongerwarming impacton subsoil carbondynamicscomparedtothetopsoil(0–10cm)intermsofnewcar‐bon accrual and labile‐carbon‐stimulated degradation of nativeSOC.Furthermore,thealteredplantcommunitycomposition(Liuetal.,2018)mayhavecascadingeffectsonthequantityandqual‐ityofplant‐derivedcarboninputsintosoilsandconsequentlythechemicalcompositionofsoilorganicmatter.Torevealthedetailedmechanisms,weuseradiocarbonanalysiscoupledwithsoil frac‐tionationtodisentangletheallocationofnewcarbonamongSOCpools of varied turnover times. Complementary molecular‐levelanalyses,thatis,biomarkers,nuclearmagneticresonance(NMR),and high‐resolution mass spectrometry, are further employedto investigate the fate and degradation of various plant‐ andmicrobial‐derived components in the soil. These state‐of‐the‐artanalysesofSOCcomponents,complementedbyinsitumonitoringofecosystemcarbonfluxes,helptodeliveradetailedunderstand‐ingofhowsoilcarbondynamicsrespondtowarminginthisalpinegrassland.

2  | MATERIAL S AND METHODS

2.1 | Experiment design and soil sampling

The field warming experiment is located at the Haibei AlpineGrasslandEcosystemResearchStation(101°19′E,37°36′N,3,215ma.s.l.).Thesitehasacontinentalmonsoonclimatewithameanannualtemperatureof−1.2°Candameanannualprecipitationof489mm.SoilsatthesiteareMat‐GryicCambisolwithaclayloamtextureandameanpHof8.01.Thesurfacelayersofthesoilareseasonallyfro‐zenwithfreezinginitiatingfromthetopinthelatefall.ThenativeplantcommunityisdominatedbyKobresia humilis,Carex przewalskii,Helictotrichon tibeticum, Stipa aliena, Saussurea pulchra, and S. pul‐chra.Afullfactorialdesignwithtwotemperaturelevels,thatis,con‐trolandyear‐roundwarming(W1;warmedby1.5–1.7°C),andthreeprecipitationlevels(ambient,+50%precipitation,and−50%precipi‐tation)weresetupinJuly2011(detailsinFigureS1).Eachtreatment

Page 3: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

     |  3JIA et Al.

hadsixrandomlydistributedplots(1.8m×2.2meach)onahomoge‐neouslandscape.Aswarmingratesarereportedtobesignificantlyhigher inwinter than the other seasons on theQTP (Chen et al.,2013), theexperimentwasexpanded to includeawinterwarming(W2) treatment inJanuary2012.Onanannualaveragebasis, sur‐face soil temperature in theW2treatment increasedby thesamemagnitudeasthatintheW1plots,butwithvariedscenariosofsea‐sonality(W2increasedby~3°Cduringlate‐Octobertolate‐Aprilandby0.5–1°Cfortherestoftheyear).Warmingplotswereheatedbyinfraredheatersinstalled1.6mabovegroundwhiledummyheaterswereinstalledabovethecontrolplots.Heatingstartedimmediatelyafterinstallationandsoiltemperaturewasmonitoredcontinuouslyatthedepthsof5,10,and20cm.

Threesoilcores(diameterof3cm,depthof70cm)wererandomlycollected fromeachplotof thecontrol andW1 treatments in July2011(beforewarming)andfromallcontrol,W1andW2plotsintheAugust of both2013 and2015 (after 3 and5 years ofW1warm‐ing,respectively).Soilswereseparatedintovariousdepthsandthosefromthesameplotandsamedepthwerehomogenized insitu.Forthisstudy,weselectedthetopsoil(0–10cm)andsubsoil(30–50cmfor2011;30–40cmfor2013and2015)fromfourplotsofeachtem‐peraturetreatments(i.e.,n=4).Afractionoffreshsoilswasstoredat−80°Cimmediatelyaftersamplingforglyceroldialkylglyceroltet‐raether(GDGT)analysis.Therestwaspassedthrough2mmsievesandfreeze‐driedimmediatelywithstonesandvisiblerootsremoved.

Assuming that the warming treatments did not change thechemicalcompositionofdominantspeciesduringourexperimentalperiod,wetookfouradditionalsoilcores(40cmindepth)fromadja‐centareasoutsidethecontrolplotsinAugust2015toanalyzeligninphenolsinplantroots.Rootmaterialswerepickedoutfromtheen‐tiresoilcores,immediatelywashedunderwaterandgroupedintosixspecies,namelygrasses(H. tibeticum and S. aliena),sedges(K. humilis and C. przewalskii),andforbs(S. pulchra and S. pulchra),whichtotallycontributedto~56%ofabovegroundnetprimaryproductivityatthesite.Allplantmaterialswerekeptat−20°C,freeze‐dried,andgroundintofinepowderbeforeanalysis.

2.2 | Ecosystem CO2 exchange measurement

To complement our SOCmeasurement related towarming effecton soil carbon stock changes, growing‐seasonnet ecosystemCO2 exchange (NEE) and ecosystem respiration (Reco) were measuredwithatransparentchamber (40cm×40cm×60cm)attachedtoaninfraredgasanalyzer(LI‐6400;LiCor)during2013and2015.WemeasuredNEEandReco2dayspermonthfromMaytoOctoberonsunny days during 9:00–11:00 (local time) for all treatments. Foreach measurement, six consecutive recordings of CO2 and watervaporconcentrationsweretakenat10s intervalsoveraperiodof60swithasmallfanrunningcontinuouslyinsidethechamberdur‐ingNEEmeasurement.ThefluxrateofCO2wascalculatedbasedontheslopeofthelinearregressionforthesixconcentrationrecordsinthetimeseries.RecowasmeasuredimmediatelyafterNEEmeas‐urementusingashadeclothtocoverthetransparentchamber.To

calculatedailyNEE,diurnalpatternsofNEEat2hr intervals (over24hr)weremonitoredandacalibrationcoefficientof0.17 (ratiosof daily averagevaluesbasedondiurnal patterns to valuesmeas‐uredduring9:00–11:00)wasused.Thecalibrateddailyvalueswerethenusedtoestimategrowing‐seasonNEE.Grossecosystempro‐ductivity(GEP)wascalculatedasthedifferencebetweenNEEandReco.PositiveandnegativevaluesofNEEindicateCO2releaseandfixation,respectively.Duringthenon‐growingseason(late‐Octoberto late‐April),diurnalchangesinRecoweresmall (Katoetal.,2006;Wangetal.,2014)andrespirationofnon‐growingseasonwasmeas‐ured once a month using the LI‐8100 Automated Soil CO2 FluxSystemwithLI‐8100‐103short‐termchamber(Li‐CorInc.).Recorep‐resentsNEEduringthenon‐growingseasonduetotheabsenceofphotosynthesis.

2.3 | Soil size fractionation and radiocarbon analysis

SoilswerefractionatedusingamethodmodifiedfromWilson,Rice,Rillig,Springer,andHartnett(2009)toexaminetheallocationofnewcarbonandbiomarkersamongmacroaggregates(>250µm),microag‐gregates(250–63µm),andsilt‐clayfractions(<63µm;detailsinTextS1.1).Theorganiccarbon(OC)and14Ccontentsofallsizefractionsandbulksoilweremeasuredafterremovalofinorganiccarbon(TextS1.1).Radiocarboncontentswere reportedas∆14C (‰)with fieldreplicates(n=4).AsthesubsoilshowedvaryingΔ14Cvaluesamongfractions(seeSection3.3),wefurtherestimatedtheturnovertimeofsubsoil(butnottopsoil)OCfractions.Soilfractionswereassumedto be in a steady state over themodeled period (~1 × 104 years)and their turnover timewas estimated based on∆14C accountingforbothradioactivedecayand incorporationofthebomb‐derived14Cproducedinthe1950sand1960s(Torn,Swanston,Castanha,&Trumbore,2009).

2.4 | Biomarker analyses

Arangeofbiomarkers(TableS1)wasselectedtoexaminechangesin thesourceanddegradationofSOCcomponents that representmajor plant and microbial contributions. Freeze‐dried bulk soils(<2mm)collectedbefore(2011)andafterwarming(2013and2015)aswellassoilsizefractionsin2015werefirstsolventextractedtoremoveextractablelipidsandthensequentiallysubjecttobasehy‐drolysisandcopperoxidationtoisolatehydrolysablelipids(includingsuberinandmicrobial‐derivedlipids)andligninphenols,respectively(Otto&Simpson,2007).Rootmaterialsofthesixplantspecieswerealsoanalyzedforligninphenols.Bulksoilscollectedfrom2015(butnotsizefractionsdueto limitedavailability)werefurtheranalyzedfor non‐cellulosic sugars (hereafter referred to as “sugars”; Eder,Spielvogel,Kӧlbl,Albert,&Kӧgel‐Knabner,2010)andcoreGDGTs(Tierney,Schouten,Pitcher,Hopmans,&SinningheDamsté,2012).Themacroaggregatesandsilt‐clayfractionsofthesubsoilsin2015weresolvent‐extractedusingdichloromethaneandmethanoltoiso‐latecoreGDGTsforcomparisonwiththebulksoil.DetailsregardingextractionprocedurescanbefoundinTextS1.2.

Page 4: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

4  |     JIA et Al.

BiomarkersofinterestwerequantifiedafterderivatizationonaTrace1310gaschromatographcoupledtoan ISQmassspectrom‐eter(MS;ThermoFisherScientific)oranAgilent1200liquidchro‐matographandtriplequadrupoleMSusinginternalstandards(TextS1.2). To better illustrate warming‐induced changes to biomarkerconcentrations after removing inter‐annual variabilities, relativechangesofmajormolecularcomponentswerecalculatedasthecon‐centrationoffsetbetweenwarming(W1andW2)andcontrolplotsrelativetotheconcentration inthecontrolplotsoftherespectivesamplingyearandexpressedaspercentages.

Otherthanligninphenols,hydroxyphenols,potentiallyderivedfrom proteins, tannins, and/or lignin degradation products in thesoil (Zaccone, Said‐Pullicino, Gigliotti, & Miano, 2008), were alsodetectedinsubstantialamountsintherootsofdominantplantspe‐ciesattheHaibeiStation(FigureS2).Inparticular,sedges(includingK. humilis and C. przewalskii)withshallowroots(<25cm,with95%oftherootbiomassdistributedintheupper10cm)weremostconcen‐tratedwithhydroxyphenolswhile grasses (includingS. aliena and H. tibeticum)withthedeepestroots(downto85cm;Liuetal.,2018)weremostenrichedwithligninphenolsintherootmass.Giventhehighvolumeofrootmass,bothhydroxyandligninphenolsarethere‐foreconsideredtomainlyderivefromplantsatoursite.

2.5 | Molecular characterization of bulk organic matter

Tofurthercharacterizewarming‐inducedchanges inorganicmat‐ter composition in the subsoil, water‐extractable organic matter(WEOM) and bulk soil were examined by Fourier transform‐ioncyclotronresonancemassspectrometry(FT‐ICRMS)andNMR,re‐spectively.Briefly,WEOMwasextractedfromfreeze‐dried,mixedsubsoilsusingdilutedHCl(0.1M),andconcentratedbysolid‐phaseextractionwith commercially availableBondElut cartridgeswithstyrene divinyl benzene polymer (PPL, Agilent; Text S1.3). FT‐ICRMS analysiswas performed on a solariX FT‐ICRMS (BrukerDaltonicGmBH) equippedwith an electrospray source and a 15TeslamagnetatOldenburgUniversity(TextS1.3).Identifiedcom‐poundswerealignedaccording to theiraromaticity index (AImod),ratios of oxygen‐to‐carbon and hydrogen‐to‐carbon in their for‐mula (Koch & Dittmar, 2006) and divided into five groups: (a)polycyclicaromatics, (b)polyphenols, (c)highlyunsaturatedcom‐pounds, includes lignindegradationproducts, (d)unsaturatedali‐phaticsandpeptides,and(e)saturatedcompounds,includinglipidsandcarbohydrates.

TheHCl‐extractedsoilresidueswerefurthertreatedwithhydro‐fluoricacid(10%)15timestoremoveparamagneticmaterialsandtoconcentrateSOC.The treated residuewas rinsed repeatedlywithdeionizedwater,freeze‐dried,andgroundintofinepowderforsolid‐state 13C NMR analysis. The 13C Cross Polarization/Magic AngleSpinningNMRspectrawereacquiredonaBrukerBioSpinAvanceIII500MHzNMRspectrometerwitha4mmprobeusingspinrateof13kHz,contacttimeof1ms,recycledelayof1s,acquisitiontimeof0.0135s,linebroadeningof75Hz,andwith2,048timedomain

points. Structures were represented by alkyl (0–45 ppm),O‐alkyl(45–110ppm),aromaticandphenolic(110–165ppm),andcarboxylicandcarbonyl(165–215ppm)carbon.Alkyl/O‐alkylratios,increasingwith increasingdegradation,werecalculatedbydividing theareasofthealkylandtheO‐alkylregionsofthespectra(Simpson,Otto,&Feng,2008).

2.6 | Statistical analysis

All statistical analyseswereperformedusingSPSS18.0 (SPSS).Homogeneity of variances and normal distribution of the dataweretestedbeforeapplyingparametricmethodsand logtrans‐formationwasperformedwherenecessary.Nonparametrictestswere conducted if normal distribution of the transformed dataor homogeneity of varianceswas not achieved. The t testwasused to examine differences in the concentrations of SOC andbiomarkers as well as acid‐to‐aldehyde (Ad/Al) ratios betweencontrol and W1 plots before warming. One‐way ANOVA wasperformedtotesttheeffectsofwarmingontheReco,GEP,NEE,SOCcontents,biomarkerconcentrations, and ratios in thebulksoil and size fractions. Two‐way ANOVAwas used to examinethemain and interactive effects ofwarming and soil size frac‐tions on SOC content, Δ14C, and biomarker concentrations in2015.Differenceswereconsideredtobesignificantatthelevelofp<.05.Principalcomponentanalysis(PCA)wasperformedforbiomarkers in soils of 2015 usingCANOCO4.5.Min–max nor‐malizationoforiginaldataintotherangeof[0,1]wasconductedbeforePCAanalysis.

3  | RESULTS

3.1 | Warming effects on ecosystem carbon fluxes and soil bulk properties

Comparedwiththecontrol,bothW1andW2treatmentssignificantlyincreasedsoiltemperatureatthedepthsof5,10,and20cmacross2013and2015(p<.05,FigureS3a–c).Soiltemperatureatthedepthof 30–40 cm was not monitored but estimated based on GDGTs(Weijers,Schouten,vandenDonker,Hopmans,&SinningheDamsté,2007),whichshowedanincreasingtrend(0.26±0.08,0.48±0.21,and0.69±0.14°Cforcontrol,W1,andW2,respectively;detailsaregivenintheSupportingInformation).Warmingincreasedthelengthof thawing period, decreased soil freezing depth (38.3, 35.4, and32.6cmforcontrol,W1,andW2,respectively)andthedurationoffreezing period (Lin,Wang, Zhang, &He, 2017). Soilmoisture de‐creasedatthedepthsof5,10,and20cmunderW1andat5cmunderW2comparedwiththecontrolinbothyears(p<.05;FigureS3d–f).

Ecosystem carbon fluxes were monitored in 2013 and 2015,exhibiting slight inter‐annual variabilities (Figure 1a) and yieldingsimilarresults(i.e.,NEEandReco)inthecontroltreatmentstothosemeasuredbyeddycovariancetechniques(Katoetal.,2006)orau‐tomated continuous measurement in the same grassland nearby(Wangetal.,2014).Comparedtothecontrol,GEPdidnotchange

Page 5: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

     |  5JIA et Al.

underwarminginthegrowingseason(late‐Apriltolate‐October)of2013 but increased inW1 and notW2 in 2015 (p < .05).Reco in‐creasedinbothW2andW1,relativetothecontrolduringthegrow‐ingseasonof2013and2015,respectively(p<.05).Respirationratesalsoincreasedunderwarming(exceptW1in2015)duringthenon‐growingseasonofbothyears(p<.05).Asaresult,NEEwasslightlylessnegative inW2than thecontrol in2013, indicating increasedcarbonrelease(insteadoffixation)underW2,whileNEEwassimilaracrossalltreatmentsin2015.Overall,theaboveresultssuggestthatwarminghadminimalimpactsoncarbonfluxesofthesealpinegrass‐landsduringthestudyperiod.

ChangesinNEEweretoosmalltobedetectedintheSOCstocksinthatSOCcontentsremainedsimilaramongalltreatmentsatbothdepthsbefore (forW1andcontrol in2011) andafterwarming (in2013and2015;p>.05;Figure1b).AsW2wasestablished1yearlater,initialsoilswerenotcollectedforcomparison.However,giventhehomogeneouslandscapeandvegetationcoverageatthestudysite,weassumesimilarSOCcontentsforthecontrolandW2plotsbeforewarming aswell. TheΔ14Cvaluesof SOC,beingmorede‐pletedinthesubsoil(−224±17‰;mean±SEM; n=4)thantopsoil(77±14‰)during2015,showednodifferenceamongtreatments,either(p>.05;Figure1c).

3.2 | Changing dynamics of major SOC molecular components under warming

Despite unaltered bulk SOC properties, considerable changeswere observed inmajor plant‐ andmicrobial‐derivedmolecularcomponents.Importantly,theseeffectsweredetectedinthesub‐soilonly,withnochangesinthetopsoil.Specifically,biomarkersofvariousoriginshadcomparableabundancesinthecontrolandW1plotsatbothdepthsatthestartoftheexperiment(p>.05;Figure2).Neitherwarmingtreatmentaffectedbiomarkerabun‐dancesinthetopsoilin2013or2015(p>.05).However,subsoilsinbothW1andW2plotsdisplayedadecreaseofplant‐derivedphenols (Figure 2a) relative to the control in 2013 and 2015(p<.05)despiteenhancedgrowthofdeepgrassroots(Liuetal.,2018) that are relatively abundant in lignin (Figure S2). In con‐trast, microbial‐derived hydrolysable lipids (referred to as “mi‐crobial lipids”hereafter)andsugarsofbothmicrobialandplantoriginsincreasedintheW1plotsin2015(p<.05).ThelattertwogroupsofbiomarkersalsoshowedanincreasingtrendrelativetothecontrolintheW2subsoilsin2015,butthedifferencewasnotstatistically significant, probably due to large spatial heteroge‐neitythatobscuredtheseeffects.GDGTsderivedfromarchaealandbacterialmembranelipidsalsoincreasedintheW2subsoilsin2015(p<.05).Bycomparison,root‐derivedsuberinlipidsre‐mainedsimilaramongtreatments(p>.05).

Changes in the entire SOC molecular profile were identifiedusingPCAofbiomarkersinthewarmedandcontrolsoils,whichex‐plained78.2%and73.7%ofvarianceinthetop‐andsubsoilof2015,respectively(Figure3).Whilethetopsoilsamplesdidnotclusterac‐cordingtotreatments,subsoilsfrombothwarmingtreatmentswereseparated from those under controlwith phenolsweighing in theoppositedirectionofsugarsandGDGTsonthex‐axisandmicrobiallipidsandsuberinweighingonthey‐axis.Theseresultscollectivelysuggestanaccumulationoflipidandsugarcomponentsderivedfromboth plants andmicrobes at the expense of lignin in thewarmedsubsoil.

Enhanced lignindegradation in thewarmed subsoilwas fur‐ther evidenced by the Ad/Al ratios of vanillyl (V) and syringyl(S) phenols, which typically increasewith elevated degradation(Otto&Simpson,2006).Beforethewarmingtreatmentinitiatedin2011,bothratioswerehigherinthetop‐thansubsoils(p<.05;FigureS4a),butbecamesimilarbetweendepthsin2015(p>.05;FigureS4b), indicatingconvergenceof ligninoxidationstatebe‐tweendepthsunderwarming.Moreover,incontrasttothecom‐monobservationofincreasingAd/Alratioswithsoildepths(Otto&Simpson,2006), the lower (Ad/Al)S ratio in thesubsoilat thissiteindicatedarelativelylowoxidationstageofligninlikelyduetosubstrateand/ortemperaturelimitationsatdepth.Bycompar‐ison, thehigher (Ad/Al)V ratio in the top, relative to subsoils of2011,canalsobepartlyattributedto the influenceof theshal‐low‐rooted, dominant vegetation (K. humilis) with a very high(Ad/Al)Vratioinitsroots(FigureS2d).

F I G U R E 1  Changesinecosystemcarbonfluxes(a),soilorganiccarboncontent(SOC,b),and∆14CofSOC(c)underwarming.Reco,ecosystemrespiration;NEE,netecosystemCO2exchange;GEP,grossecosystemproductivity;growingseasonrefertolate‐Apriltolate‐Octoberofeachyear.Negativeandpositivevaluesindicatecarbonuptakeandrelease,respectively.Meanvaluesareshownwithstandarderror(n=3fora;n=4forbandc).W1andW2representtheyear‐roundwarmingandwinterwarming,respectively.Lowercaselettersindicatedifferentlevelsamongdifferenttreatments(p<.05)

Page 6: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

6  |     JIA et Al.

3.3 | Shifting carbon allocation in soil physical fractions

Different size fractions had similar OC and 14C contents in thetopsoilin2015(p>.05),buttheOCcontentsandΔ14Cvaluesde‐creasedwith decreasing size of fractions in the subsoil (p < .05;Figure4a,b). In thecontrol subsoil, themacroaggregatesand silt‐clay fractions had a turnover time of ~1,500 and ~3,100 years,respectively,confirmingtheslow‐cyclingnatureofOCassociatedwith fineparticles.Warmingdidnot change themassproportionofsizefractionsateitherdepth(p>.05;FigureS5a).TheOCand14Ccontentsdidnotchangeforanytopsoilfractionunderwarming,either.However,warminghadsignificanteffectsonthesubsoilsilt‐clayfractionbyincreasingtheOCcontentofW2(by~56%)andin‐creasingtheΔ14CvaluesofW1relativetothecontrol(p<.05).Thesilt‐clay fraction ofW2 subsoils also showed an increasing trendin Δ14C, but the changewas not significant due to a high spatialheterogeneity (p> .05).Theseresultssuggestanaccumulationofrecentlysynthesizedcarbon in the fine fractionofsubsoilsunderwarming.Warmingdidnotproduceinteractiveeffectswithfraction

sizeonthemassproportion,OC,or14Ccontentsofsoilfractionsateitherdepth(p>.05).

Phenolsandlipidswerefurtherexaminedinvarioussoilfractionstoexplaintheirchangesinthebulksoil(Figure4;FiguresS5andS6).Inthetopsoil,neitherconcentrationsnorproportionsofbiomarkerswereaffectedbywarminginanyfraction.Bycontrast,suberincon‐centrationsincreasedintheW2relativetocontrolandW1subsoilswithall fractionsconsidered (p= .00)whileGDGTconcentrationsdecreasedinthesilt‐clayfractionofW2thancontrolandW1sub‐soils(p<.05).Warmingdecreasedphenolsinthesubsoilmacroag‐gregates,withsignificantlylowervaluesintheW2thancontrolplots(p<.05).Asaresult,warmingdecreasedthepercentageofphenolsinthemacroaggregatesofW2subsoilscomparedwithcontrol(p<.05)withoutaffectingtheallocationofotherbiomarkers(FigureS6).

Lignin Ad/Al ratios did not differ among soil size fractionsorwarming treatment in the topsoil in 2015 (p > .05; Figure S7).However, macroaggregates had lower (Ad/Al)S ratios relative toothersoil fractions inthecontrolsubsoils (p< .05).Moreover, theW1treatment increasedthe (Ad/Al)S ratio inthemacroaggregatesbutdecreasedthe(Ad/Al)Vratiointhesilt‐clayfractionofsubsoils

F I G U R E 2  Warmingeffectsontheconcentrationofmajorsoilmolecularcomponents.(a)Phenols,includingligninandp‐hydroxyphenols;(b)suberin;(c)microbiallipids:microbial‐derivedhydrolysablelipids;(d)glyceroldialkylglyceroltetraethers(GDGTs;explainedinTableS1);(e)sugars.Percentagechangesarecalculatedastheconcentrationoffsetbetweenthewarmedandcontrolplotsrelativetotheconcentrationinthecontrolplotsoftherespectivesamplingyear.Meanvaluesareshownwithstandarderror(n=4).Blueandredarrowsindicatesignificantdecreaseandincrease,respectively(p<.05).W1andW2representtheyear‐roundwarmingandwinterwarming,respectively.RawconcentrationdataarelistedinTableS2

F I G U R E 3  Principalcomponentanalysisofbiomarkersinthetopsoil(a)andsubsoil(b)in2015.Theresultsareexpressedasabiplot,wherethedistanceanddirectionfromtheaxiscenterhavethesamemeaningforsoilsamplesandbiomarkervariables.Numbersinparenthesisrepresentdatavariationsexplainedbythefirsttwoprincipalcomponents(PC).BiomarkersaredefinedinTableS1.W1andW2refertotheyear‐roundwarmingandwinterwarming,respectively

Page 7: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

     |  7JIA et Al.

relativetothecontrol(p<.05).AsimilaralbeitnonsignificantpatternwasobservedfortheW2subsoil,indicatingincreasedligninoxida‐tioninthemacroaggregatesandadecreasedoxidationstageinthefinefractionofsubsoilslikelyduetofreshlignininputs.

3.4 | Composition of bulk organic matter in the subsoil

Warming‐inducedchangestobulkorganicmattercompositionwerefurther investigated for the subsoil in 2015. Unsaturated aliphat‐icsandpeptides (e.g.,proteins)weremoreabundant intheWEOMfrombothwarmedsubsoils(especiallyinW1)relativetothecontrol(Figure5).Meanwhile,polycyclicaromatics,polyphenols,andhighlyunsaturatedcompoundswerelessabundant(especiallyinW2),sug‐gestingadecreaseofsolublearomaticcompounds(includingtanninsand lignindegradationproducts) underwarming.These results areconsistentwiththedecreaseofphenolicbiomarkersandincreaseoflipidsinthebulksubsoil.Bycomparison,solid‐state13CNMRanalysisofbulkSOCshowedincreasedratiosofalkyl/O‐alkylinthesubsoilsofW1(1.09)andW2(1.11)comparedwithcontrol(0.96;TableS3),againsuggestingenhanceddegradationofsubsoilSOCunderwarm‐ing,despitenegligiblechangesinthetopsoil.

4  | DISCUSSION

Five years ofwarming (forW1) did not alter SOC concentrationsin the studied alpine grassland due to relatively small changes inNEE comparedwith soil carbon stocks. However, given the com‐plex composition and varying turnover of SOC pools, shifts incarbon allocation and dynamics among various soil fractionsmay

F I G U R E 4  Changesinbulkpropertiesandbiomarkerconcentrationsofsoilsizefractionsunderwarmingin2015.Meanvaluesareshownwithstandarderror(n=4)fororganiccarbon(OC)content(a),Δ14Cvalues(b),andconcentrationsofphenols(c)andsuberin(d).Lowercaselettersindicatedifferentlevelsamongthecontrol,year‐roundwarming(W1),andwinterwarming(W2)treatmentsinthesamesizefraction(p<.05).ValuesshownforT,S,and T×Srepresentthepvaluesgeneratedfromtwo‐wayANOVAtestsfortheeffectsoftemperature(warmingtreatment),sizefraction,andinteractionbetweenthetwo,respectively

F I G U R E 5  Relativechangesinthemoleculesidentifiedinthewater‐extractableorganicmatterofsubsoilsin2015.RedandbluedotsrepresentproducedandremovedmoleculesidentifiedbyFouriertransform‐ioncyclotronresonancemassspectrometry(FT‐ICRMS)insamplesofyear‐roundwarming(W1;a)andwinterwarming(W2;b)relativetothecontrol,respectively.Boxeswithdifferentcolorsinthediagramcorrespondtomajorclassesofcompounds.Moleculargroupswereassignedtomolecularformulasaccordingtotheiraromaticityindex(AImod),hydrogen‐to‐carbon(H/C),andoxygen‐to‐carbon(O/C)

Page 8: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

8  |     JIA et Al.

impartcontrastingwarmingfeedbacksinthelongterm,eventhoughchanges inbulksoilcarbonstocksarenotdetectedat thecurrent(initialwarming) stage.Using a combination of sensitivemeasure‐ments on SOC characteristics, we reveal divergent responses ofdifferentSOCcomponents,providingevidenceforshiftingcarbondynamics (reflected inbothmolecularand14Ccomposition) in thesubsoil.Thesechangesmayindicatefutureshiftsinthecarbonstor‐agepotentialofsoilsunderwarming.Importantly,noneoftheseef‐fectsweredetectedinthetopsoil,highlightingthatthevastsubsoilcarbonstocksmaybethemostsensitivecomponentsofSOCpoolsinthisstudyregion(Figures2and3).

In contrast to lignin accrual in the macroaggregates of a tall‐grassprairiesoilunderelevatedlitter inputs (Cotrufoetal.,2015),plant‐derivedphenolsdecreasedinthewarmedsubsoils(especiallyinmacroaggregates) relative to thecontrol (Figure2a)despiteen‐hancedinputsoflignin‐enrichedgrassroots(FigureS2).Ourresultspointtowarming‐enhancedlignindegradationatdepthinthisalpinegrassland.Thisfindingiscorroboratedbytherelativechangeoflig‐ninAd/Al ratioswithprogressivewarming (FigureS4), in linewithincreased alkyl/O‐alkyl ratios (Feng et al., 2008; Pengerud et al.,2017)inthewarmedsubsoilsanddecreaseofsolublearomaticsde‐rivedfromligninandtannin,etc.,intheWEOM(Figure5;TableS3).Thedecreaseofphenolsinbulksubsoilswaslargelycausedbytheirdeclining concentrations and proportions in the macroaggregates(Figure 4c; Figure S6a),which are enrichedwith fungal communi‐ties(andhyphae)astheprimarylignindegrader(Gleixner,Czimczik,Kramer,Lühker,&Schmidt,2001)andpoor inmineralsconferring

physiochemical protection for carbon substrates (Wilson et al.,2009).Enhancedligninoxidationinthemacroaggregatesisalsoevi‐dencedbythehigher(Ad/Al)Sratiointhewarmedthancontrolsub‐soilfractions(FigureS7a).

Theabovechangescollectivelysuggest that lignindegradationismoresensitivetowarminginthesub‐thantopsoilofthisalpinegrassland. This may be linked to several factors. First, underde‐graded lignin in the subsoil (indicated by lignin Ad/Al ratios) maybemoresusceptibletodegradationinthewarmedsoilswithanex‐tendedperiodofmicrobialactivity(Linetal.,2017)andapotentiallyincreasedsizeofenzymepools(Alvarezetal.,2018),highlightingthevulnerabilityof relatively fresh ligninpartially “cryo‐locked” in thedeephorizonsofalpinesoils.Second,microbialdegradationofmil‐lennia‐oldSOCwasfoundtobefueledbyincreasedinputsoflabilecarbonviarootpenetrationtothedeeplayersofatemperategrass‐land (Shahzad et al., 2018). Similarity, lignin decomposition couldhavebeenstimulatedinouralpinesubsoilduetowarming‐inducedrootdeepening.Thisexplanationissupportedbyastrongercomet‐abolicdecayofligninintheglucose‐amendedincubationofsubsoilsfromthewarmingcomparedtocontrolplots(Jiaetal.,2017).Third,microbialgenesinvolvedindegradingcomplexorganicssuchaslig‐ninareshowntoincreaseunderwarmingintundrasoils(Sistlaetal.,2013;Xueetal.,2016),andmicrobialcommunitiescanshiftinfavoroffungithatdominatelignindecomposition(Gleixneretal.,2001).InaQTPalpinemeadow,warminghasbeenreportedtoinducemi‐crobial community shifts toward bacteria at 0–10 cm but towardfungiinthedeeperlayers,highlightingthatfunctionalshiftsinsoil

F I G U R E 6  Conceptualfigureshowingcontrastsinsoilcarbondynamicsinresponsetowarmingatvarieddepthsinthealpinegrassland.Warming‐inducedvegetationshifts(Liuetal.,2018)areobservedtocausedeeperrootdistributionandelevatedBNPPinthesubsoil,potentiallyincreasinginputofrootexudates.Thesechangesleadtonewcarbonaccumulationinthesilt‐clayfraction,increasedconcentrationsofsugarsandlipidsaswellasenhanceddegradationoflignininthesubsoillikelyduetoelevatedprimingeffect(Jiaetal.,2017).TheaboveshiftsstandincontrasttotheunalteredBNPPandsoilorganiccarbon(SOC)dynamicsinthetopsoil,underscoringthehighsensitivityofdeepSOCcyclingtowarminginthealpinegrassland

Page 9: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

     |  9JIA et Al.

communitiescouldunderpinthesesubsoilchangesinSOCdynamics(10–50cm;Zhangetal.,2015).

In contrast to phenols, root‐ andmicrobe‐derived biomarkerssuggestthatbulkSOCreceivedincreasedinputsoflipidsandsug‐ars frombothplantsandmicrobes in thewarmedsubsoil. Inpar‐ticular,accompaniedbyanincreasedgrassrootredistributionintothedeeper soil (Liu et al., 2018), the silt‐clay fractionofwarmedsubsoilsshowedan increaseofOCcontent (Figure4a)andanac‐cumulationofnewlysynthesizedcarbon(Figure4b)aswellasun‐degraded (fresh) lignin indicated by lower (Ad/Al)V ratios relativetothecontrol (FigureS7b).Theseresultsagreewithan increasedsilt‐clayfractioninawarmedsubarcticgrassland(Poeplau,Katterer,Leblans,&Sigurdsson,2017)andwith favorablesequestrationofnew carbon in the fine‐sized soil particles under elevated rootgrowth(Desjardins,Barros,Sarrazin,Girardin,&Mariotti,2004).Itis also notable that in contrast to their increase in the bulk sub‐soil (Figure2d), archaea‐andbacteria‐derivedGDGTsdeclined inthesilt‐clayfractionofW2relativetocontrolsubsoils(FigureS5c),likelyduetodilutionbyfreshplant‐derivedOC.Therefore,newlysequestered carbon in the fine fraction appeared to be mainlyplant(root)derived.Takentogether,ourresultsindicatethatwhilewarming‐enhanceddegradation(ofphenols)mainlyoccurredinthefast‐cycling pool (i.e., macroaggregates), sequestration of newlysynthesizedcarbonwaselevatedintheslow‐cyclingpool(i.e.,silt‐clayfraction;Figure6).Asfine‐sizedormineral‐associatedfractionis considered to be responsible for the long‐term stabilization ofSOC (Cotrufoet al., 2015), the shiftingallocationof carbon fromfast‐toslow‐cyclingpoolsmaybenefitlong‐termSOCstorageandexplain the reported increase of subsurface carbon stocks withwarmingontheQTP(Dingetal.,2017).

Insummary,ourstudyprovidescompellingevidenceforshiftingsoilcarbondynamicsontheQTPunderwarming (Figure6).Giventhattheseeffectswereobservedinthesubsoilandnottopsoil,ourresultshighlightthehighsensitivityofdeepSOCcyclingtowarminginalpinegrasslands(Dorrepaaletal.,2009;HicksPriesetal.,2017).Untilnow,studieshavefocusedprimarilyonthewarmingresponseoftopsoil.OurresultssuggestthatthesestudiesmaymisrepresentorunderestimatetotalchangesinSOCdynamicsorterrestrialcar‐bon cycling under warming. The specific ecological mechanismsidentified can help to provide insights into the vulnerability ofhigh‐altitude and high‐latitude regions under warming.Moreover,aswarmingisreportedtoinducedeeperrootdistributioninawiderangeofecosystems(Arndal,Tolver,Larsen,Beier,&Schmidt,2018;Johnson et al., 2006; Keuper et al., 2017; Leppälammi‐Kujansuuetal.,2013;Limetal.,2018;Liuetal.,2018;Shietal.,2017;Wangetal.,2017),theobservedroot‐drivenaccelerationofsubsoilcarboncyclingandnewcarbonsequestrationmayalsooccurinnon‐alpinesystems. It is important to assesswhether,where, andwhennewcarbonaccrualinthefine‐sizedfractionmayoutweighthedecayofnativeSOCatdepth.Itisalsonecessarytoexamineiftheoutcomeisrelatedtothenatureoforganicmatterpreserved(suchasthefresh‐nessof lignin components) and/or the statusofnutrient availabil‐ity in the soil, given thatbothmicrobial activity andplant growth

are strongly regulated by nutrient cycling under global changes(Fontaineetal.,2011;Perveenetal.,2014).Giventhetremendouscarbonstorageinsubsoils,addressingthesequestionswillbecriticaltoimproveconfidenceinfutureprojectionsofsoilcarbondynamicsunderclimatechange.Thiscouldalsohelpus to identifypotential“hotspots”fornewcarbonsequestrationversusoldcarbonpreser‐vationunderwarming.

ACKNOWLEDG EMENTS

This studywas supported financiallyby theChineseNationalKeyDevelopment Program for Basic Research (2017YFC0503902,2015CB954201),theNationalNaturalScienceFoundationofChina(41422304,31630009,31370491,41773067),andtheInternationalPartnership Program of Chinese Academy of Sciences (Grant no.151111KYSB20160014). J. Jia thanks China Scholarship Councilfor supportinghervisit toETHZürich.Wearegrateful toXinyingZhang,TingLiu,andZhiyuanMaforhelpinsamplinganddataanaly‐ses.Thedatausedare listed inthetables,figures,andSupportingInformationofthepaper.

CONFLIC T OF INTERE S T

Theauthorshavenocompetingintereststhatmightbeperceivedtoinfluencetheresultsanddiscussionreportedinthispaper.

AUTHOR CONTRIBUTIONS

X.F.andJ.J.designedthestudy.J.S.H.,L.L.,andZ.Z.designedandcarriedoutthewarmingexperiment.J.J.,Z.C.,C.L.,andY.W.carriedout sample analyseswith help fromN.H., L.W., andT.I.E. for 14C,H.B.andT.D.forFT‐ICRMS,M.J.S.forNMR,andH.Y.forGDGTs.J.J.,X.F.,andT.W.C.wrotethepaperwithinputsfromallco‐authors.

ORCID

Myrna J. Simpson https://orcid.org/0000‐0002‐8084‐411X

Xiaojuan Feng https://orcid.org/0000‐0002‐0443‐0628

R E FE R E N C E S

Ahrens,B.,&Reichstein,M.(2017).Soilcarbon:Depthofunderstanding.Nature Climate Change, 7, 762–763. https://doi.org/10.1038/nclimate3426

Alvarez,G.,Shahzad,T.,Andanson,L.,Bahn,M.,Wallenstein,M.D.,&Fontaine,S.(2018).Catalyticpowerofenzymesdecreaseswithtem‐perature:NewinsightsforunderstandingsoilCcyclingandmicrobialecology under warming. Global Change Biology,24,4238–4250.https://doi.org/10.1111/gcb.14281

Arndal,M.F.,Tolver,A.,Larsen,K.S.,Beier,C.,&Schmidt,I.K.(2018).Fine root growth and vertical distribution in response to ele‐vated CO2, warming and drought in a mixed heathland‐grassland.Ecosystems,21,15–30.https://doi.org/10.1007/s10021‐017‐0131‐2

Chen,H.,Zhu,Q.,Peng,C.,Wu,N.,Wang,Y.,Fang,X.,…Wu,J.(2013).Theimpactsofclimatechangeandhumanactivitiesonbiogeochemical

Page 10: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

10  |     JIA et Al.

cycles on the Qinghai‐Tibetan Plateau. Global Change Biology, 19,2940–2955.https://doi.org/10.1111/gcb.12277

Cheng,L.,Zhang,N.,Yuan,M.,Xiao,J.,Qin,Y.,Deng,Y.,…Zhou,J.(2017).Warmingenhancesoldorganiccarbondecompositionthroughalter‐ing functionalmicrobial communities.The ISME Journal,11, 1825–1835.https://doi.org/10.1038/ismej.2017.48

Cotrufo,M.F.,Soong,J.L.,Horton,A.J.,Campbell,E.E.,Haddix,M.L.,Wall,D.H.,&Parton,W. J. (2015).Formationof soil organicmat‐terviabiochemicalandphysicalpathwaysoflittermassloss.Nature Geoscience,8,776–779.https://doi.org/10.1038/ngeo2520

Crowther,T.W.,Todd‐Brown,K.E.,Rowe,C.W.,Wieder,W.R.,Carey,J.C.,Machmuller,M.B.,…Bradford,M.A.(2016).Quantifyingglobalsoil carbon losses in response towarming.Nature,540, 104–108.https://doi.org/10.1038/nature20150

Desjardins,T.,Barros,E.,Sarrazin,M.,Girardin,C.,&Mariotti,A.(2004).Effectsofforestconversiontopastureonsoilcarboncontentanddy‐namicsinBrazilianAmazonia.Agriculture, Ecosystems & Environment,103,365–373.https://doi.org/10.1016/j.agee.2003.12.008

Ding,J.,Chen,L.,Ji,C.,Hugelius,G.,Li,Y.,Liu,L.,…Li,F.(2017).DecadalsoilcarbonaccumulationacrossTibetanpermafrostregions.Nature Geoscience,10,420–424.https://doi.org/10.1038/ngeo2945

Dorrepaal,E.,Toet,S.,vanLogtestijn,R.S.P.,Swart,E.,vandeWeg,M.J.,Callaghan,T.V.,&Aerts,R.(2009).Carbonrespirationfromsub‐surfacepeatacceleratedbyclimatewarminginthesubarctic.Nature,460,616–620.https://doi.org/10.1038/nature08216

Eder,E.,Spielvogel,S.,Kӧlbl,A.,Albert,G.,&Kӧgel‐Knabner,I.(2010).Analysisofhydrolysableneutralsugarsinmineralsoils:Improvementof alditol acetylation for gas chromatographic separation andmeasurement. Organic Geochemistry, 41, 580–585. https://doi.org/10.1016/j.orggeochem.2010.02.009

Feng,X.,Simpson,A.J.,Wilson,K.P.,Williams,D.D.,&Simpson,M.J.(2008).Increasedcuticularcarbonsequestrationandligninoxidationinresponsetosoilwarming.Nature Geoscience,1,836–839.https://doi.org/10.1038/ngeo361

Fontaine,S.,Barot,S.,Barre,P.,Bdioui,N.,Mary,B.,&Rumpel,C.(2007).Stability of organic carbon in deep soil layers controlled by freshcarbonsupply.Nature,450,277–280.https://doi.org/10.1038/nature06275

Fontaine, S.,Henault,C.,Aamor,A.,Bdioui,N.,Bloor, J.M.G.,Maire,V., …Maron, P. A. (2011). Fungi mediate long term sequestrationof carbon and nitrogen in soil through their priming effect. Soil Biology Biochemistry, 43, 86–96. https://doi.org/10.1016/j.soilbio.2010.09.017

Gleixner,G.,Czimczik,C.J.,Kramer,C.,Lühker,B.,&Schmidt,M.W.I.(2001).Plantcompoundsandtheirturnoverandstabilizationassoilorganicmatter.InE.‐D.Schulze,M.Heimann,S.Harrison,E.Holland,J.Lloyd,I.Prentice,&D.Schimel(Eds.),Global biogeochemical cycles in the climate system(pp.201–215).SanDiego,CA:AcademicPress.

Harrison,R.B.,Footen,P.W.,&Strahm,B.D.(2011).Deepsoilhorizons:Contributionand importance tosoil carbonpoolsand inassessingwhole‐ecosystemresponsetomanagementandglobalchange.Forest Science,57,67–76.https://doi.org/10.1016/j.forpol.2010.06.005

HicksPries,C.E.,Castanha,C.,Porras,R.C.,&Torn,M.S.(2017).Thewhole‐soilcarbonfluxinresponsetowarming.Science,355,1420–1422.https://doi.org/10.1126/science.aal1319

IPCC (2013).Climate Change 2013 – The physical science basis: Working group I contribution to the fifth assessment report of the intergovern‐mental Panel on Climate Change. Cambridge: CambridgeUniversityPress.

Jia,J.,Feng,X.,He,J.‐S.,He,H.,Lin,L.,&Liu,Z.(2017).Comparingmi‐crobialcarbonsequestrationandpriminginthesubsoilversustopsoilofaQinghai‐Tibetanalpinegrassland.Soil Biology Biochemistry,104,141–151.https://doi.org/10.1016/j.soilbio.2016.10.018

Johnson,M.G.,Rygiewicz,P.T., Tingey,D.T.,&Phillips,D. L. (2006).ElevatedCO2andelevatedtemperaturehavenoeffectonDouglas‐fir

fine‐rootdynamicsinnitrogen‐poorsoil.New Phytologist,170,345–356.https://doi.org/10.1111/j.1469‐8137.2006.01658.x

Kato, T., Tang, Y.,Gu, S.,Hirota,M.,Du,M., Li, Y.,&Zhao,X. (2006).Temperature and biomass influences on interannual changesin CO2 exchange in an alpine meadow on the Qinghai‐TibetanPlateau. Global Change Biology, 12, 1285–1298. https://doi.org/10.1111/j.1365‐2486.2006.01153.x

Keuper, F., Dorrepaal, E., van Bodegom, P. M., van Logtestijn, R.,Venhuizen, G., van Hal, J., & Aerts, R. (2017). Experimentally in‐creased nutrient availability at the permafrost thaw front selec‐tively enhances biomass production of deep‐rooting subarcticpeatlandspecies.Global Change Biology,23,4257–4266.https://doi.org/10.1111/gcb.13804

Koch,B.P.,&Dittmar,T.(2006).Frommasstostructure:Anaromaticityindexforhigh‐resolutionmassdataofnaturalorganicmatter.Rapid Communications in Mass Spectrometry, 20, 926–932. https://doi.org/10.1002/rcm.2386

Koven, C. D., Hugelius, G., Lawrence, D.M., &Wieder,W. R. (2017).Higherclimatological temperaturesensitivityofsoilcarbon incoldthanwarmclimates.Nature Climate Change,7,817–822.https://doi.org/10.1038/nclimate3421

Leppälammi‐Kujansuu, J., Ostonen, I., Strömgren, M., Nilsson, L. O.,Kleja,D.B.,Sah,S.P.,&Helmisaari,H.‐S.(2013).Effectsoflong‐termtemperatureandnutrientmanipulationonNorwaysprucefinerootsand mycelia production. Plant and Soil, 366, 287–303. https://doi.org/10.1007/s11104‐012‐1431‐0

Lim,H.,Oren,R.,Näsholm,T.,Strömgren,M.,Lundmark,T.,Grip,H.,&Linder,S.(2018).Borealforestbiomassaccumulationisnotincreasedby two decades of soilwarming.Nature Climate Change,9, 49–52.https://doi.org/10.1038/s41558‐018‐0373‐9

Lin,L.,Wang,Q.,Zhang,Z.,&He,J.‐S. (2017).Warmingenhancessoilfreezingandthawingcirclesinthenon‐growingseasoninaTibetanalpinegrassland.Acta Scientiarum Naturalium Universitatis Pekinensis,53, 171–178. https://doi.org/10.13209/j.0479‐8023.2016.121. (InChinesewithEnglishabstract)

Liu,H.,Mi,Z.,Lin,L.,Wang,Y.,Zhang,Z.,Zhang,F.,…He,J.‐S.(2018).Shifting plant species composition in response to climate changestabilizesgrasslandprimaryproduction.Proceedings of the National Academy of Sciences of the United States of America,115,4051–4056.https://doi.org/10.1073/pnas.1700299114

Melillo,J.M.,Frey,S.D.,DeAngelis,K.M.,Werner,W.J.,Bernard,M.J.,Bowles,F.P.,…Grandy,A.S.(2017).Long‐termpatternandmag‐nitude of soil carbon feedback to the climate system in a warm‐ing world. Science, 358, 101–105. https://doi.org/10.1126/science.aan2874

Otto,A.,&Simpson,M.J. (2006).EvaluationofCuOoxidationparam‐eters for determining the source and stage of lignin degradationin soil. Biogeochemistry, 80, 121–142. https://doi.org/10.1007/s10533‐006‐9014‐x

Otto,A.,&Simpson,M. J. (2007).Analysis of soil organicmatterbio‐markersby sequential chemicaldegradationandgas chromatogra‐phy‐massspectrometry.Journal of Separation Science,30,272–282.https://doi.org/10.1002/jssc.200600243

Pengerud, A., Dignac, M.‐F., Certini, G., Strand, L. T., Forte, C., &Rasse, D. P. (2017). Soil organic matter molecular compositionand state of decomposition in three locations of the EuropeanArctic. Biogeochemistry, 135, 277–292. https://doi.org/10.1007/s10533‐017‐0373‐2

Perveen,N.,Barot,S.,Alvarez,G.,Klumpp,K.,Martin,R.,Rapaport,A.,…Fontaine,S.(2014).Primingeffectandmicrobialdiversityinecosys‐temfunctioningandresponsetoglobalchange:AmodelingapproachusingtheSYMPHONYmodel.Global Change Biology,20,1174–1190.https://doi.org/10.1111/gcb.12493

Poeplau, C., Katterer, T., Leblans, N. I., & Sigurdsson, B. D. (2017).Sensitivityofsoilcarbonfractionsandtheirspecificstabilization

Page 11: Climate warming alters subsoil but not topsoil carbon dynamics in …sourcedb.nwipb.cas.cn/yw/lw/201911/P... · 2019-11-08 · The response of soil organic carbon (SOC) cycling to

     |  11JIA et Al.

mechanisms to extreme soil warming in a subarctic grassland.Global Change Biology, 23, 1316–1327. https://doi.org/10.1111/gcb.13491

Rumpel, C., Chabbi, A., & Marschner, B. (2012). Carbon storage andsequestration in subsoil horizons:Knowledge, gapsandpotentials.In R. Lal, K. Lorenz, R. Hüttl, B. Schneider, & J. von Braun (Eds.),Recarbonization of the biosphere (pp. 445–464). New York, NY:Springer.

Shahzad,T.,Rashid,M. I.,Maire,V.,Barot,S.,Perveen,N.,Alvarez,G.,… Fontaine, S. (2018). Root penetration in deep soil layers stim‐ulates mineralization of millennia‐old organic carbon. Soil Biology Biochemistry, 124, 150–160. https://doi.org/10.1016/j.soilbio.2018.06.010

Shi,S.,Xiong,D.,Deng,F.,Feng,J.,Xu,C.,Zhong,B.,…Yang,Y.(2017).InteractiveeffectsofsoilwarmingandnitrogenadditiononfinerootproductionofChinesefirseedlings.Chinese Journal of Plant Ecology,41,186–195.https://doi.org/10.17521/cjpe.2016.0274.(InChinese)

Simpson,M. J.,Otto,A.,&Feng,X. (2008).Comparisonof solid‐statecarbon‐13nuclearmagneticresonanceandorganicmatterbiomark‐ersforassessingsoilorganicmatterdegradation.Soil Science Society of America Journal, 72, 268–276. https://doi.org/10.2136/sssaj2007.0045

Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., &Schimel, J. P. (2013). Long‐term warming restructures Arctic tun‐drawithoutchangingnetsoilcarbonstorage.Nature,497,615–619.https://doi.org/10.1038/nature12129

Tarnocai,C.,Canadell,J.G.,Schuur,E.A.G.,Kuhry,P.,Mazhitova,G.,&Zimov,S. (2009).Soilorganiccarbonpools inthenortherncircum‐polarpermafrost region.Global Biogeochemical Cycles,23,GB2023.https://doi.org/10.1029/2008gb003327

Tierney, J. E., Schouten, S., Pitcher, A., Hopmans, E. C., & SinningheDamsté, J. S. (2012). Core and intact polar glycerol dialkyl glyc‐erol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island(USA): Insights into the origin of lacustrine GDGTs. Geochimica Et Cosmochimica Acta, 77, 561–581. https://doi.org/10.1016/j.gca.2011.10.018

Torn,M. S., Swanston, C.W., Castanha, C., & Trumbore, S. E. (2009).Storageandturnoveroforganicmatterinsoil.InN.Senesi,B.Xing,& P. M. Huang (Eds.), Biophysico‐chemical processes involving natu‐ral nonliving organic matter in environmental systems (pp. 219–272).Hoboken,NJ:Wiley.

Wang,P.,Limpens,J.,Mommer,L.,vanRuijven,J.,Nauta,A.L.,Berendse,F.,…Heijmans,M.P.D.(2017).Above‐andbelow‐groundresponsesof four tundraplant functional types todeepsoilheatingandsur‐face soil fertilization. Journal of Ecology,105, 947–957. https://doi.org/10.1111/1365‐2745.12718

Wang,Y., Liu,H.,Chung,H.,Yu,L.,Mi,Z.,Geng,Y.,…He, J.‐S. (2014).Non‐growing‐season soil respiration is controlled by freezing andthawing processes in the summer monsoon‐dominated Tibetan

alpinegrassland.Global Biogeochemical Cycles,28,1081–1095.https://doi.org/10.1002/2013g b004760

Weijers, J.W., Schouten, S., vandenDonker, J.C.,Hopmans,E.C.,&SinningheDamsté, J. S. S. (2007). Environmental controls on bac‐terial tetraether membrane lipid distribution in soils. Geochimica Et Cosmochimica Acta, 71, 703–713. https://doi.org/10.1016/j.gca. 2006.10.003

Wilson,G.W.T.,Rice,C.W.,Rillig,M.C.,Springer,A.,&Hartnett,D.C.(2009).Soilaggregationandcarbonsequestrationaretightlycor‐relatedwiththeabundanceofarbuscularmycorrhizalfungi:Resultsfromlong‐termfieldexperiments.Ecology Letters,12,452–461.https://doi.org/10.1111/j.1461‐0248.2009.01303.x

Xue,K.,Yuan,M.,Shi,Z.,Qin,Y.,Deng,Y.,Cheng,L.,…Zhou,J.(2016).Tundra soil carbon is vulnerable to rapidmicrobial decompositionunderclimatewarming.Nature Climate Change,6,595–600.https://doi.org/10.1038/nclimate2940

Yang,Y.,Fang,J.,Ji,C.,&Han,W.(2009).Above‐andbelowgroundbio‐massallocation inTibetangrasslands.Journal of Vegetation Science,20,177–184.https://doi.org/10.1111/j.1654‐1103.2009.05566.x

Yang,Y.,Fang,J.,Tang,Y.,Ji,C.,Zheng,C.,He,J.‐S.,&Zhu,B. (2008).Storage,patternsandcontrolsofsoilorganiccarbonintheTibetangrasslands. Global Change Biology, 14, 1592–1599. https://doi.org/10.1111/j.1365‐2486.2008.01591.x

Zaccone, C., Said‐Pullicino, D., Gigliotti, G., & Miano, T. M. (2008).Diagenetic trends in thephenolic constituentsof Sphagnum‐dom‐inated peat and its corresponding humic acid fraction. Organic Geochemistry, 39, 830–838. https://doi.org/10.1016/j.orggeochem.2008.04.018

Zhang,B.,Chen,S.,Zhang,J.,He,X.,Liu,W.,Zhao,Q.,…Tian,C.(2015).Depth‐related responses of soil microbial communities to ex‐perimental warming in an alpine meadow on the Qinghai‐TibetPlateau. European Journal of Soil Science, 66, 496–504. https://doi.org/10.1111/ejss.12240

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:JiaJ,CaoZ,LiuC,etal.Climatewarmingalterssubsoilbutnottopsoilcarbondynamicsinalpinegrassland.Glob Change Biol. 2019;00:1–11. https://doi.org/10.1111/gcb.14823


Recommended