+ All Categories
Home > Documents > Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi...

Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi...

Date post: 21-Dec-2015
Category:
Upload: shawn-berry
View: 225 times
Download: 0 times
Share this document with a friend
Popular Tags:
24
Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….
Transcript
Page 1: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Closure of Kern’s Method

P M V SubbaraoProfessor

Mechanical Engineering Department

I I T Delhi

Another Peculiar Averaging Method.….

Page 2: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Shell-Side Reynolds Number

Reynolds number for the shell-side is based on the equivalent diameter and the velocity based on a reference flow:

s

e

s

ss

D

A

m

Re

Page 3: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Identification of (Pseudo) Velocity Scale

Page 4: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Pseudo Shell side Mass Velocity: Perpendicular Flow

s

ss A

mG

The shell-side mass velocity is found with

BdPP

DA oT

T

ss

Page 5: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Hydraulic or Equivalent Diameter : Axial Flow• A Hydraulic radius based on cross flow cannot recognize the

importance of tube layout.• The equivalent diameter is calculated along (instead of across)

the long axes of the shell and therefore is taken as four times the net flow area as layout on the tube sheet (for any pitch layout) divided by the wetted perimeter.

rerperimeteheattransfDe

area flow-FreeNet 4

Page 6: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Free Flow Area for Square Layout:

2222

444

14 OTOTflow dPdPA

Free Flow Area for Triangular Layout:

2

0

0

4360

603 Otriangleflow dAA

2

0

0

4360

603

2

1Oflow dheightbaseA

2

22

0

0

0 84

3

4360

603

602

1OO

TTflow d

Pd

Tan

PPA T

Page 7: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Perimeter for square Layout: OO

e dd

P

44

Perimeter for triangular Layout:2360

603

0

0O

Oe

ddP

Equivalent diameter for square layout:

O

OT

e

flowsquaree d

dP

P

AD

22

44

4

Equivalent diameter for Triangular layout:

2

84

34

42

2

O

O

e

flowtriangulare d

dP

P

AD

T

Page 8: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Shell-Side Reynolds Number

Reynolds number for the shell-side is based on the equivalent diameter (based on axial flow) and the velocity on the cross flow area at the diameter of the shell:

s

e

s

ss

D

A

m

Re

s

es

s

esss

DGDU

Re

Page 9: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Justification for this peculiar Definition of Re

• It is true that, this method of evaluating the hydraulic radius (based on axial flow) and pseudo velocity (based on perpendicular flow) does not account for relative percentage of cross flow and parallel flow.

• The proportions of normal flow and axial flow will be influenced by baffle spacing.

• Out of many possible definitions, this particular definition could generate an accurate correlation for h & f.

Page 10: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Correlation for Shell side Heat Transfer Coefficient

Page 11: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Overall Heat Transfer Coefficient for the Heat Exchanger

The overall heat transfer coefficient for clean surface (Uc) is given by

Considering the total fouling resistance, the heat transfer coefficient for fouled surface (Uf) can be calculated from the following expression:

Page 12: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Outlet Temperature Calculation and Length of the Heat Exchanger

The outlet temperature for the fluid flowing through the tube is

The surface area of the heat exchanger for the fouled condition is :

Page 13: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

and for the clean condition

where the LMTD is always for the counter flow.

The over surface design (OS) can be calculated from :

Page 14: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

The length of the heat exchanger is calculated by

Page 15: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Hydraulic Analysis for Tube-Side

• The pressure drop encountered by the fluid making Np passes through the heat exchanger is a multiple of the kinetic energy of the flow.

• Therefore, the tube-side pressure drop is calculated by

The second term in above equation is the additional pressure drop introduced by the change of direction in the passes. The tube fluid experiences sudden expansions and contractions during a return that is accounted for allowing four velocity heads per pass.

Page 16: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Hydraulic Analysis for Shell-Side • The shell-side fluid experiences a pressure drop as it passes

through the exchanger, over the tubes, and around the baffles. • If the shell fluid nozzles (inlet and outlet ports) are on the

same side of the heat exchanger, then the shell-side fluid makes an even number of the tube bundle crossings, but if they are on opposite sides, then it makes an odd number of the bundle crossings.

• The number of bundle crossings therefore influences the pressure drop.

Page 17: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Where,

baffles ofNumber :bN

velocitymass side Shell :sG

.correctionproperty Variable : 14.0

w

b

s

factorfriction side Shell :sf

Based on experiments, the pressure drop experienced by the shell-side fluid is calculated by

Page 18: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

μb is the viscosity of the shell-side fluid at bulk temperature, and μw is the viscosity of the tube-side fluid at wall temperature.

The wall temperature can be calculated as follows:

Page 19: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Evaluation & Fine tuning of Design

• Insufficient Thermal Rating• Insufficient Pressure Drop Rating

Page 20: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Insufficient Thermal Rating• If the output of the rating analysis is not acceptable, a

geometrical modification should be made• If the required amount of heat cannot be transferred to satisfy

specific outlet temperature, • one should find a way to increase the heat transfer coefficient

or increase exchanger surface area• One can increase the tube side heat transfer coefficient by

increasing the fluid velocity - Increase number of tube passes• One can increase the shell side heat transfer coefficient by

decreasing baffle spacing and/or baffle cut• One can increase the surface area by• Increasing the heat exchanger length• Increasing the shell diameter• Multiple shells in series

Page 21: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Insufficient Pressure Drop Rating

• If the pressure drop on the tube side is greater than the allowable pressure drop, then

• the number of tube passes can be decreased or• the tube diameter can be increased which may result to

decrease the tube length – (Same surface area)• increase the shell diameter and the number of tubes• If the shell side pressure drop is greater than the allowable

pressure drop then baffle spacing, tube pitch, and baffle cut can be increased or one can change the baffle type.

THERE IS ALWAYS A TRADE-OFF BETWEEN THERMAL & PRESSURE DROP RATINGS!

Page 22: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

The Trade-OffBetween Thermal Balance & Flow

Loss

• Heat transfer and fluid friction losses tend to compete with one another.

• The total energy loss can be minimized by adjusting the size of one irreversibility against the other .

• These adjustments can be made by properly selecting physical dimensions of the solid parts (fins, ducts, heat exchanger surface).

• It must be understood, however, that the result is at best a thermodynamic optimum.

• Constraints such as cost, size, and reliability enter into the determination of truly optimal designs.

Page 23: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Roadmap To Increase Heat Transfer

• Increase heat transfer coefficent

• Tube Side– Increase number of tubes

– Decrease tube outside diameter

• Shell Side– Decrease the baffle spacing

– Decrease baffle cut

• Increase surface area– Increase tube length

– Increase shell diameter à increased number of tubes

– Employ multiple shells in series or parallel

• Increase LMTD correction factor and heat exchanger effectiveness– Use counterflow configuration

– Use multiple shell configuration

Page 24: Closure of Kern’s Method P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Peculiar Averaging Method.….

Roadmap To Reduce Pressure Drop

• Tube side– Decrease number of tube passes– Increase tube diameter– Decrease tube length and increase shell diameter

and number of tubes

• Shell side– Increase the baffle cut– Increase the baffle spacing– Increase tube pitch– Use double or triple segmental baffles


Recommended