+ All Categories
Home > Engineering > CM 2014_GG_Plates and shells

CM 2014_GG_Plates and shells

Date post: 08-Jul-2015
Category:
Upload: franco-bontempi-org-didattica
View: 632 times
Download: 3 times
Share this document with a friend
94
PLATE AND SHELLS: BUCKLING AND NON – LINEAR ANALYSIS Corso di COSTRUZIONI METALLICHE Prof. Ing. Franco Bontempi Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” [email protected] Ing. Giordana Gai Roma, 5 Dicembre 2014 [email protected]
Transcript
Page 1: CM 2014_GG_Plates and shells

PLATE AND SHELLS:BUCKLING AND NON – LINEAR

ANALYSIS

Corso diCOSTRUZIONI METALLICHE

Prof. Ing. Franco Bontempi

Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

[email protected]

Ing. Giordana Gai

Roma, 5 Dicembre 2014

[email protected]

Page 2: CM 2014_GG_Plates and shells

2Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

OUTLINEPLATES

• Buckling analysis Compressive forces Bending moment forces Shearing forces Shearing and compressive forces Shearing and bending moment forces

• Non – linear analysis (elastic material)• Non – linear analysis (elastic – plastic material)

SHELLS• Thin shells (membrane theory)• Thick shells• Buckling analysis• Non – linear analysis (elastic material)

1/92

Page 3: CM 2014_GG_Plates and shells

PLATES

Buckling analysis

3Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 2/92

Page 4: CM 2014_GG_Plates and shells

How can we calculate the critical load for a plate?• Analytical method:by solving equations of equilibrium it can be difficult to find the solution (the

equations are fourth order - partial differential equations)• Energy methods:by equaling the work done by acting forces with strain energy it is useful if we are

interested in approximate solutions.

4

HipotesisHipotesisGEOMETRY No imperfections Thin plate: one dimension is very small with respect on the other twoMATERIAL (Steel) Linear ElasticLOADS Loads are applied in the middle plane of the plate

Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 3/92

Page 5: CM 2014_GG_Plates and shells

The critical value of the forces acting on a plate depends on: Ratio a/b (length / width) Thickness s Material properties (E and ν) Boundary conditionsfor each condition of loads

55Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 4/92

Page 6: CM 2014_GG_Plates and shells

1.COMPRESSIVE FORCES

The plate buckles in a shape that can have several half-waves in the direction ofcompression but only one half wave in the perpendicular direction.

m = number of half – waves parallel to thedirection of Nn = number of half – waves perpendicular to thedirection of N

Deflection surface

Critical load

The minimum value of the critical load isobtained by putting n = 1

PlatePlate simplysimply supportedsupported alongalong fourfour edgesedges

66Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 5/92

Page 7: CM 2014_GG_Plates and shells

Euler load for a strip of length “a” and unit width

the stability of the continuous plate is greater than the stability of an isolated strip

(depends on the ratio a/b and on the number m)

• If a < b the minimum is obtained by putting m = 1(only one half – wave )

• If a > b it is used a simplified expressionwhere k is a numerical factor depending on a/b

77Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCES

6/92

Page 8: CM 2014_GG_Plates and shells

• Short plates buckles in only one half – wave

• Long plates can have very large “m” (comparable to the ratio a/b)

• If m > 1 , the plate buckles in more half – waves and each half is in the condition of a simply supported plate of length a/(number of half – waves).

• The curve m = 1 has a minimum for square plate; before and after the ratio a/b = 1, the value k increases.

• Critical value of the compressive stress

88Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCES

7/92

Page 9: CM 2014_GG_Plates and shells

PlatePlate simplysimply supportedsupported alongalong twotwo edgesedges perpendicularperpendicular totothe direction the direction ofof NN

Solution depends on boundary conditions along the edges y = 0 and y = b

Deflection surface

•• y = 0 y = 0 simplysimply supportedsupported; y = b free; y = b free

• y = 0 zero displacement and zero bending moment • y = b zero shear and zero bending moment

k Ncr

Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCES

8/92

Page 10: CM 2014_GG_Plates and shells

•• y = 0 y = 0 builtbuilt in; y = b freein; y = b free

• y = 0 zero displacement and zero rotation

• y = b zero shear and zero bending moment

The curve m = 1 has a minimum fora/b = 1.635

1010Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCESPlatePlate simplysimply supportedsupported alongalong twotwo edgesedges perpendicularperpendicular toto

the direction the direction ofof NN

k Ncr

9/92

Page 11: CM 2014_GG_Plates and shells

•• y = 0 y = 0 builtbuilt in; y = b in; y = b builtbuilt inin

• y = 0 zero displacement and zero rotation

• y = b zero displacement and zero rotation

The smallest value of k is for 0.6 < a/b < 0.7.

In this case, a long compressed plate buckles in comparatively short waves

1111Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCESPlatePlate simplysimply supportedsupported alongalong twotwo edgesedges perpendicularperpendicular toto

the direction the direction ofof NN

k Ncr

10/92

Page 12: CM 2014_GG_Plates and shells

There are two possible forms of buckling

• y = 0 and y = b zero bending moment and shear equal to the action force (N w/ y)

•The first buckling form is antisymmetrical up to a value ofb/a=1.316

• then, for 1.316 < b/a < 2.632 the buckling form is symmetricaland then the value of k remains close to 2.31.

1212Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCESPlatePlate simplysimply supportedsupported alongalong twotwo edgesedges parallelparallel toto the the

direction direction ofof NN

11/92

Page 13: CM 2014_GG_Plates and shells

13

The curve of antysimmetrical buckling can be used also for the case of a plate simply supported along 3 sides (this plate is in the same conditions as the half of the antisymmetrical plate described before).

To calculate k, that curve can be used , using 2b/a instead of b/a.

13Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCESPlatePlate simplysimply supportedsupported alongalong twotwo edgesedges parallelparallel toto the the

direction direction ofof NN

12/92

Page 14: CM 2014_GG_Plates and shells

• = 0 pure compression• = 2 pure bending moment• = 1 bending moment and compression

For each case k is calculated and then the critical value of N0.

η = 2

Considering m=1, it has a minimum when a / b = 2/3.

For cases with η > 2, the value of the ratio at which k presents a minimum increases (for purecompression a/b = 1).

1414Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

2.BENDING MOMENT FORCES

13/92

Page 15: CM 2014_GG_Plates and shells

In this case, buckling is caused for the compressive stressesacting along one of the two principal diagonals.

The critical value of shear stresses can be calculated by usingk, that depends on the ratio a/b.

1515Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

3.SHEARING FORCES

14/92

Page 16: CM 2014_GG_Plates and shells

The axial stresses reduces the stability of the plate submitted at the action of shear stresses.

The interaction between shear and compression is highly negative.

1616Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

4.SHEARING AND COMPRESSIVE FORCES

15/92

Page 17: CM 2014_GG_Plates and shells

In this case we have both compressive that tension stresses.

The diagram shows that for τ / τ cr < 0.4 the effect of shearing stress on the critical value ofbending stress is small.

α is the ratio a/b

1717Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

5.SHEARING AND BENDING MOMENT FORCES16/92

Page 18: CM 2014_GG_Plates and shells

Comparison between analytical and numerical code solutionsAnalytical solution: by Timoshenko’s theory Numerical codes: SAP 2000 and Straus 7

a = b = L 50 cms 1 cmE 2E+08 KPaν 0.30

LOAD CASES ANALYZED:1. Compressive forces2. Bending moment forces3. Shearing forces4. Shearing and compressive forces5. Shearing and bending moment forces

1818Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

NUMERICAL EXAMPLENUMERICAL EXAMPLE

17/92

Page 19: CM 2014_GG_Plates and shells

ANALYTICAL SOLUTIONNcr = k Nl

Nl = π2Et3/12(1-ν2)b2 = 723KN/mk from the schedule

NUMERICAL SOLUTIONBuckling analysisMesh used = 30x30 finite elementsISOP4

SAP 2000

Straus 7

1919Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

1.COMPRESSIVE FORCES18/92

Page 20: CM 2014_GG_Plates and shells

CASE k BuckledPlate

1 1

2 4

3 6.5

4 5

5 7.7

6 5.7

CASE k BuckledPlate

7 1.44

8 1.7

9 10.2

10 2.05

11 2.3

12 2.3

2020Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 19/92

Page 21: CM 2014_GG_Plates and shells

CASE 1 CASE 2 CASE 5xy_view xz_view xy_view xz_view xy_view xz_view

Pcr = 723 KN/m Pcr = 2892.2 KN/m Pcr = 5560.2 KN/m

CASE Analytical Pcr[KN/m]

Differences Straus7-Analytical Solution [%]

Differences SAP2000-Analytical Solution [%]

1 723.0 -5.0% 1.8%7 1041.2 -2.8% 3.8%

8 1229.2 -2.9% 3.7%10 1482.2 -1.0% 3.1%11 1663.0 2.7% 1.7%

12 1663.0 3.8% 2.7%2 2892.2 -0.2% 5.0%4 3615.2 5.6% 5.6%

6 4121.4 0.5% 4.5%3 4699.8 3.4% 3.4%5 5560.2 -0.4% 3.0%

9 7375.1 -1.6% -1.7%

2121Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 20/92

Page 22: CM 2014_GG_Plates and shells

ANALYTICAL SOLUTIONNcr = k Nl

Nl = π2Et3/12(1-ν2)b2 = 723KN/mk from the schedules

NUMERICAL SOLUTIONBuckling analysisMesh used = 30x30 finite elementsISOP4

SAP 2000

Straus 7

2222Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

2.BENDING MOMENT FORCES21/92

Page 23: CM 2014_GG_Plates and shells

23

CASE k Pcr [KN/m] Buckled PlateDifferences Straus7-Analytical Solution

[%]

DifferencesSAP2000-Analytical

Solution [%]

25.6 18510 1.15% 0.15%

39.5 28530.4 -9.85% 1.73%

7.8 5639.8 -0.17% 0.27%

15.0 10845.7 -2.41% -1.72%

PURE BENDING

BENDING AND

COMPRESSION

23Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

2.BENDING MOMENT FORCES

22/92

Page 24: CM 2014_GG_Plates and shells

ANALYTICAL SOLUTIONτcr = k Nl

Nl = π2Et3/12(1-ν2)b2 = 723KN/mk from the schedule

NUMERICAL SOLUTIONBuckling analysisMesh used = 30x30 finite elementsISOP4

SAP 2000

Straus 7

2424Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

3.SHEARING FORCES23/92

Page 25: CM 2014_GG_Plates and shells

25

CASE k Pcr[KN/m] Buckled Plate w[m]_

XY view

DifferencesStraus7-

AnalyticalSolution [%]

DifferencesSAP2000-Analytical

Solution [%]

9.7 7013.6 4.3% 6.2%

15.0 10845.7 3.1% 3.1%

12.3 8893.5 -1.5% -0.3%

25Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

3.SHEARING FORCES

24/92

Page 26: CM 2014_GG_Plates and shells

ANALYTICAL SOLUTION• by using the approximateexpression, where N0cr and T0cr are those calculated before (respectivlycompressive and shear forces only)

• by using the schedule

NUMERICAL SOLUTIONBuckling analysisMesh used = 30x30 finite elementsISOP4

SAP 2000

Straus 7

2626Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

4.SHEARING AND COMPRESSIVE FORCES25/92

Page 27: CM 2014_GG_Plates and shells

27

Numerical Code Solution Analytical Expression Differences %

Tcr = Ncr [KN/m] Ncr =Ncr0[1-(Tcr/Tcr0)2] [KN/m]

Numerical Code –Analytical Solution

SAP 2000 2315.5 2666.1 13%

STRAUS 7 2452.4 2887.2 2%

27Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

4.SHEARING AND COMPRESSIVE FORCES

26/92

Page 28: CM 2014_GG_Plates and shells

ANALYTICAL SOLUTION• by using the approximateexpression, where N0cr and T0cr are those calculated before (respectivlycompressive and shear forces only)

• by using the schedule

NUMERICAL SOLUTIONBuckling analysisMesh used = 30x30 finite elementsISOP4

SAP 2000

Straus 7

2828Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

5.SHEARING AND BENDING MOMENT FORCES27/92

Page 29: CM 2014_GG_Plates and shells

29

Numerical Code Solution Analytical Expression Differences %

Tcr = Ncr [KN/m] Ncr = Ncr0[1-(Tcr/Tcr0)2]0.5 [KN/m] Numerical Code – AnalyticalSolution

SAP 2000 6103.1 6906.5 12%

STRAUS 7 6241.3 6709.6 7%

SHEAR SHEAR+BENDING SHEAR+COMPRESSION

λcr = 6708.5 λcr = 6241.3 λcr = 2452.4

29Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

5.SHEARING AND BENDING MOMENT FORCES28/92

Page 30: CM 2014_GG_Plates and shells

PLATES

Non – linear analysis

30Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 29/92

Page 31: CM 2014_GG_Plates and shells

We run displacement control - nonlinear analysis to investigate post – criticalbehavior.

31

NumericalNumerical exampleexampleNumerical code : Straus 7Mesh : 10x10 finite elements ISOP4Step : 200 increments of 0.001 mBoundary conditions: 2 edges simply supported

a = b = L 50 cm

s 1 cm

E 2E+08 KPa

ν 0.30

31Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC MATERIAL

30/92

Page 32: CM 2014_GG_Plates and shells

32

from Buckling analysis

from NL analysis (plate straight) with largedisplacement

from NL analysis (plate not perfectly straight) with large displacement

POST CRITICAL BEHAVIOR = stable, with hardening

(only geometric nonlinearity)

32Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC MATERIAL

31/92

Page 33: CM 2014_GG_Plates and shells

We insert elastic-plastic diagram into material properties and we run again NL analysis.

33

σy 235 MPa

εy 1.175*10-3

εu 7.5*10-2

NLM (NLM (idealideal plateplate) ) NLM (NLM (realreal plateplate) )

(only material nonlinearity)

= 235*103*0.5*0.01=1175 KN

33Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

32/92

Page 34: CM 2014_GG_Plates and shells

34

0

100

200

300

400

500

0 0.05 0.1 0.15 0.2

P [K

N]

Dx [m]

NLM_not perfectly straight plate

NLG_not perfectly straight plate

050

100150200250300350400450

0 0.05 0.1 0.15 0.2

P [K

N]

Dx [m]

Buckling Yielding_not perfectly straight plate

If we consider the plate with an initial imperfection, the elastic-plastic limit is really near to the buckling curve

NLM+NLG (realNLM+NLG (real plate) plate) The plate starts to reach the yelding

limit in the lateral zone, but rapidlyit is totally yelded (orange line)

34Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

33/92

Page 35: CM 2014_GG_Plates and shells

35

We studied two other plates: one thicker(s=3 cm) and one thiner (s=2mm).

The thicker reaches the yielding limit and then collapse, the thiner follows the buckling curve: the previous platewith s=1cm has an intermediate behavior.

We compared the three “orange curve” byadimensionalyzing respect on theiryielding maximum force.

35Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL34/92

Page 36: CM 2014_GG_Plates and shells

36

65% of the yielding limit

40% of the yielding limit

15% of the yielding limit

Coupled behaviour of yielding and buckling

36Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL35/92

Page 37: CM 2014_GG_Plates and shells

37

Experiments show that due to the interaction between the buckling and the yielding behaviour, when the compressive stress reaches the yield point of the material, the plate buckles.

Zone 1 buckling of plate when the compressive stress reach the yield point

Zone 2 buckling of plate when the stresses remain within the elastic limit

Some permanent set usually takes place at a stress lower than the yield point

It is unusual to find a sharp corner that separates the elastic behavior from the plastic one.

37Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

36/92

Page 38: CM 2014_GG_Plates and shells

38

• Different behaviour of plates and struts when the stresses are beyond the proportional limit

• The critical load for a strut is considered as the ultimate load, instead a thin buckled plate can carry a bigger load than the critical load at which buckling begins.

• In order to explain the post-critical behavior of plates we analyze a compressive square plate simply supported by using two different analytical solutions

Approximate solution Enhanced solution

38Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

37/92

Page 39: CM 2014_GG_Plates and shells

39

Approximate solutionApproximate solution1) Definition of the boundary condition

Simply supported plate with the lateral expansion in the x direction prevented by a rigid frame

This approximate expression of the components of the displacements satisfy the boundary conditions

39Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

38/92

Page 40: CM 2014_GG_Plates and shells

40

2) Determination of the components of the strain in the middle plane and the corresponding strain energy of the plate

3) Determination of the energy of bending

40Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALApproximate solutionApproximate solution

39/92

Page 41: CM 2014_GG_Plates and shells

41

4) By using the solution method of minimum of strain energy we determinate the constant f, C1, C2

By solving the system we obtain

We obtain a solution for “f” only if :

41Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALApproximate solutionApproximate solution

40/92

Page 42: CM 2014_GG_Plates and shells

42

5) Determination of the stresses σx and σy

By plotting the diagram of the stresses for the ultimatecompressive force (Nr,d) we can notice:

• The ultimate compressive force is n times bigger thanthe critical compressive force

• The compressive stress diagram is non-uniform

42Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALApproximate solutionApproximate solution

41/92

Page 43: CM 2014_GG_Plates and shells

43

For the restraints of the plate that we are considering, we know that the part of the horizontalfibres near of the edge is more rigid because is close to the restraints( that are considering havingan infinite rigidity). So the vertical fibres near to the vertical edge are able to absorb a greaterpost-critical load because they can count on a greater flexural rigidity of the horizontal fibres.

Why can the ultimate compressive force in a plate be n times bigger than the critical one?

Why is the compressive stress diagram non-uniform ?

For a compressive force greater than the critical one, the vertical fibres instead of collapse ,asthey would do if we analyzed a single strut, can absorb a further load because their deflectionout of the plane is hindered by the flexural rigidity of the horizontal fibres.

43Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALApproximate solutionApproximate solution

42/92

Page 44: CM 2014_GG_Plates and shells

44

The total compressive force acting on the plate at a unit compression necr is

The factor c gives the relative diminishing of the resistance of compression of the plate due to buckling

A1 = A2

We can state that this resistance is equivalent to that of a flat plate having a width equal to c.

44Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALApproximate solutionApproximate solution

43/92

Page 45: CM 2014_GG_Plates and shells

45

For thin plate the approximate solution that we calculated is not sufficiently accurate.

1)The solution can be improved by changing the boundary conditions.

we assume that the later bars of the frame keep the lateral edges of the plate straight but moving freely laterally.

We can resolve the problem by following the steps shown in the approximate solution

2) We determinate the ultimate load that the plate can carry by using the Tresca yield criterion.

45Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALEnhanced solutionEnhanced solution

44/92

Page 46: CM 2014_GG_Plates and shells

46

A square plate simply supported

DATA• a = b = 500mm• t = 10 mm• E = 2E5 MPa• Perfect elastic-plastic constitutive law • σy = 235 MPa• εy = 1.175E-3

46Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALNumericalNumerical exampleexample

45/92

Page 47: CM 2014_GG_Plates and shells

47

Analytical approximate solution

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

σx /σcr

asse y / a

Cross section x = a

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1 -0.5 0 0.5 1

σy /σcr

asse x /a

Cross section y = a

47Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

46/92

Page 48: CM 2014_GG_Plates and shells

48

1) We run the non linear static analysis by considering the non linear material

σy 235 MPa

εy 1.175*10-3

εu 7.5*10-2

Analytical solution Numerical solution

σy 235 MpaStep 4.7

Fcr 558 kN

Fy 2350 kN Fy 2622.6 kN

errore 10%

48Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

Straus 7 approximate solution

47/92

Page 49: CM 2014_GG_Plates and shells

49

2) We run the non linear static analysis by considering the non linear material and the non liner geometry

Geometric non - linearity Material non - linearity

Numerical solution Analytical solutionFu 1450.8 kN Fu 554.7 kN

49Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

48/92

Page 50: CM 2014_GG_Plates and shells

5050Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

49/92

Page 51: CM 2014_GG_Plates and shells

51

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1 -0.5 0 0.5 1

σx /σcr

asse y/a

Cross section x = a

Straus7 Analytical solution-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

σy /σcr

asse x/a

Cross section y = a

Analytical solution Straus7

Analytical enhanced solution

Straus7 approximate solution

51Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

50/92

Page 52: CM 2014_GG_Plates and shells

52

In order to obtain an enhanced solution, we repeat the analysis by considering different boundary conditions

Boundary condition:• Horizontal edges: uz=0• Right vertical edge: uz = 0• Left vertical edge: uz = 0ux = 0

52Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

51/92

Page 53: CM 2014_GG_Plates and shells

53

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

σy /σcr

asse x/a

Sezione y = a

Analytical solution Strauss7

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1

σx /σcr

asse y/a

Sezione x = a

Strauss7 Analytical solution

53Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

Analytical enhanced solution

Straus7 approximate solution

52/92

Page 54: CM 2014_GG_Plates and shells

-1.6-1.4-1.2

-1-0.8-0.6-0.4-0.2

00.20.40.6

-1 -0.5 0 0.5 1

σy/σcr

asse x/a

C.S. y = a analytical solutions

P.A.S.10 A.S.10

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

σx /σcr

asse y/a

C.S. x = a analytical solutions

P.A.S.10 A.S.10

54

ComparisonComparisonWe compare the results provided by the approximate and the enhanced analysis

Legend:P.A.S. Enhanced analytical solution A.S.Analytical solution P.S7.S. Enhanced Straus7 solution S7.S. Straus7 solution

54Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIAL

53/92

Page 55: CM 2014_GG_Plates and shells

00.5

11.5

22.5

33.5

44.5

-1 -0.5 0 0.5 1

σx /σcr

asse y/a

C.S. x = a Numerical solutions

P.S7.S.10 S7.S.10

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

σy /σcr

asse x/a

C.S. y = a Numerical solutions

P.S7.S.10 S7.S.10

5555Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

ELASTIC – PLASTIC MATERIALComparisonComparison

54/92

Legend:P.A.S. Enhanced analytical solution A.S.Analytical solution P.S7.S. Enhanced Straus7 solution S7.S. Straus7 solution

We compare the results provided by the approximate and the enhanced analysis

Page 56: CM 2014_GG_Plates and shells

SHELLS

56Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 55/92

Page 57: CM 2014_GG_Plates and shells

• We consider a shell where the thickness is small in comparison to its other dimensions

The components of the stresses

the component of the stresses

tangent to the meridian

σ1is Caused

by the resultant ofthe externalvertical forces

the component ofstresses tangent tothe parallel

σ2is

Caused

by the force Z

by the changingof direction ofthe stresses σ1

57Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSThe membrane theoryThe membrane theory

• We assume an axial-simmetric load.

Components of the external forces:X Component that is tangent to the meridian of the shell Z Component that is normal to the surface of the shell

56/92

Page 58: CM 2014_GG_Plates and shells

Hypothesis:very small ratio thickness / minimal

radius

Thesis :No flexural and torsional rigidity for

the membrane

Dimostration1) We subdivided the shell in elementary strips of unitary width that follow the geometry of the

meridians and parallels2) Because the strips of the parallels are compressed or in traction they modify their radius but

they remain circulars.3) Due to the deformation of the parallels, the strips of the meridians can deform and

consequently change their curvature4) The change of the meridian curvature causes not uniformly distributed stresses along the

thickness (σ’1).5) The total stress tangent to the meridians σ1tot = σ1+σ1’6) σ1’<< σ1 due to the small thickness (small ymax) and the small change of meridians curvature

58Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSThe membrane theoryThe membrane theory

57/92

Page 59: CM 2014_GG_Plates and shells

ConclusionFor shell characterized by a very small ratio thickness / minimal-radius

the stresses can be considered uniformly distributed along the thickness

Consequence

1) In each point of the membrane the stress state is plane.2) No bending or shear transverse stresses in any point of the shell

59Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSThe membrane theoryThe membrane theory

Hypothesis:very small ratio thickness / minimal

radius

Thesis :No flexural and torsional rigidity for

the membrane

58/92

Page 60: CM 2014_GG_Plates and shells

Compatibiliy conditions1) Boundary condition and deformation constraints must be compatible with the requirements of a pure membrane field.

2) There must not be concentrated loads.

3) Shell geometry must not change.

60Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSThe membrane theoryThe membrane theory

59/92

Page 61: CM 2014_GG_Plates and shells

The membrane forcesWe determinate the membrane forces due to the axial-simmetrical load

S1 integral of the stresses tangent to the meridians

Q is the resultant of the vertical loads

61Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSThe membrane theoryThe membrane theory

60/92

Page 62: CM 2014_GG_Plates and shells

S2 integral of the stresses tangent to the parallels

62Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSThe membrane theoryThe membrane theory

61/92

We determinate the membrane forces due to the axial-simmetrical load The membrane forces

Page 63: CM 2014_GG_Plates and shells

DATA•R = 3 m•s = 0.1 m•γW = 10 kN/m3

Calculate the membrane forces of a hemisphere tank full of water

63Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 1Numerical example 1

62/92

Page 64: CM 2014_GG_Plates and shells

• Analytical solution 1) We calculate the volume of the hemisphere

2) We calculate the membrane forces

64Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 1Numerical example 1

63/92

Page 65: CM 2014_GG_Plates and shells

In order to fulfil the requirements ofthe membrane theory, we apply anuniform distributed load that varieslinearly with the Z.

We define traslational restraints for theedge of the structure in order to have aboundary condition compatible with therequirements of a pure membrane state.

65Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLS

• Sap2000 solution

Numerical example 1Numerical example 1

64/92

Page 66: CM 2014_GG_Plates and shells

S1

S2

Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLS

• Sap2000 solution

Numerical example 1Numerical example 1

65/92

Page 67: CM 2014_GG_Plates and shells

SAP 2000 BELLUZZI

Stepz θ S1 S2 S1 S2

ErrorS1

ErrorS2

m deg KN/m KN/m KN/m KN/m % %

1 0.000 0 45.53 44.65 45.00 45.00 -1.2% 0.8%

2 0.333 10 44.45 42.61 44.66 43.97 0.5% 3.1%

3 0.667 20 43.04 38.94 43.66 40.92 1.4% 4.8%

4 1.000 30 41.32 34.10 42.06 35.88 1.8% 5.0%

5 1.333 40 39.33 27.94 39.97 28.98 1.6% 3.6%

6 1.667 50 37.16 20.40 37.55 20.31 1.0% -0.5%

7 2.000 60 34.91 11.52 35.00 10.00 0.3% -15.1%

8 2.333 70 32.77 1.40 32.61 -1.83 -0.5% 176.1%9 2.667 80 30.99 -9.84 30.77 -15.14 -0.7% 35.0%

10 3.000 90 29.90 -22.16 30.00 -30.00 0.3% 26.2%

67Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 1Numerical example 1

66/92

Page 68: CM 2014_GG_Plates and shells

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90stre

ss [K

N/m

]

θ [deg]

Comparison

S1 _ SAP S2 _ SAP S1 _analitica S2 _analitica

68Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 1Numerical example 1

67/92

Page 69: CM 2014_GG_Plates and shells

1) The stresses of the element depend only on the Z variable.2) The S1 stress is always positive The meridians are always in traction3) The stress S2 is positive near the bottom of the element and negative near the top of it The parallels are in compression near the top of the element and in traction near the bottom of it.

69Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLS

• Conclusion

Numerical example 1Numerical example 1

68/92

Page 70: CM 2014_GG_Plates and shells

Calculate the membrane forces of a toroidal tank full of water

S1e

S1i

DATA•Re = 4.5 m•Ri = 3.5 m•Rt = 0.5 m•S = 0.05 m•γW = 10 kN/m3

70Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 2Numerical example 2

69/92

Page 71: CM 2014_GG_Plates and shells

1) By using the Guldino’s formulations we calculate the volume of the parts E and I.

2) By writing the equation equilibrium we determinate the stresses S1e and S1i.

3) By using the formula we calculate S2e and S2i

71Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 2Numerical example 2

• Analytical solution

70/92

Page 72: CM 2014_GG_Plates and shells

In order to fulfil the requirements of themembrane theory, we apply a uniformdistributed load that varies linearly with the Z.

In addition we define traslational restraintsfor the edge of the structure in order to haveboundary condition compatible with therequirements of a pure membrane state.

72Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 2Numerical example 2

• Sap2000 solution

71/92

Page 73: CM 2014_GG_Plates and shells

The stress S2 varies between a maximum positive value that is reached in the internalcircumference and a minimum negative value in the external circumference .That means that the external circumference is in traction while the internal is in compression.

SAP 2000 BELLUZZI

S1est S1int S2est S2int S1est S1int S2est S2int

KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m

1.73 2.15 -10.72 13.28 1.84 2.12 -16.54 14.87

Error

S1est S1int S2est S2int

% % % %

6% 0% 35% 11%

73Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THIN SHELLSNumerical example 2Numerical example 2

• Conclusion

72/92

Page 74: CM 2014_GG_Plates and shells

These type of elements have a thickness that we can’t ignore during the analytical analysis

By considering the thickness of the shell, we must consider bending and shear stresses inaddition to the stresses that we regarded for the thin shells

The deformations generated from the bending and the shear stresses are caused by two factors:

1) External forces or bending moment applied at the edge of the shell.In this case the stresses quickly dampen and we can notice the presence of the bending and shear

stresses just as a local effect around the edge

2) External forces distributed on the surface of the element.In this case, the distributed forces deform the shells, so the bending and shear stresses aredistributed in all element.

74Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLS

73/92

Page 75: CM 2014_GG_Plates and shells

Hypothesis- We consider a pressure that act on a cylindrical tube from the internal to the external of thevolume.- Pressure has to be uniformly distributed on the same parallel and can vary along themeridian.- External bending moment or radial forces can be present in one or both of the cylinder edges

Development1) We subdivide the elements in strips of unitary width2) We assume that the pressure is supported by the

longitudinal strips

75Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSDifferential equationDifferential equation

74/92

Page 76: CM 2014_GG_Plates and shells

Development3) The transversal strips contrast the deformation of longitudinal strips by reacting with radial forces (ρ) that act on the longitudinal strips.Aim:Determinate the relation between the radial force (ρ) and the deformation of the parallels

- We considerate a meridian segment

- We determinate the deformation of a generic parallel- We determinate the relation ρ = f(w)

76Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSDifferential equationDifferential equation

75/92

Page 77: CM 2014_GG_Plates and shells

The differential equation of the elastic line

We know the relations between the component of displacement w and the other factors:

The stationary solution The general solution

-Represent the effect of the pressure P actingon the tube surface.-The solution is stationary because dependson to the distributed load acting on the entireelement.

-Represent the effect of external forces orbending moment acting on the edges of theelement.-The solution dissipates by going away fromthe loaded edge .

77Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSDifferential equationDifferential equation

76/92

Page 78: CM 2014_GG_Plates and shells

The general solution:

By considering a tube that is very long in comparison with its other dimensions and assumingthat the variable x starts where the transverse shear forces and bending moments are applied, theconstant C1 and C2 can be considered equal to zero.

The dissipation of the displacements is regulated by the term e-αx that rapidly decrease with the increasing of the variable x.

The bending moment (M) and the transverseshear (H) assume relevant value just in thepart of the element near the loaded edge andcan be ignored in the rest of the volume.

78Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSDifferential equationDifferential equation

77/92

Page 79: CM 2014_GG_Plates and shells

The dissipation of these local effects is as fast as the wavelength is small.The wavelength depends on the radius and the thickness of the element by the expression:

The dissipation of these local effects is as fast as the radius and the thicknessof the element are small.

79Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSDifferential equationDifferential equation

The general solution:

78/92

By considering a tube that is very long in comparison with its other dimensions and assumingthat the variable x starts where the transverse shear forces and bending moments are applied, theconstant C1 and C2 can be considered equal to zero.

The dissipation of the displacements is regulated by the term e-αx that rapidly decrease with the increasing of the variable x.

Page 80: CM 2014_GG_Plates and shells

Calculate the displacement w, the bending moment M and the transverse shear H associated to one longitudinal strip

DATA:•R = 1 m•L = 5 m •h = 5 m•s = 0.01•Material : Steel•Constitutive law : linear elastic •E = 2*10^8 kPa•γt = 10 kN/m3

80Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSNumerical exampleNumerical example

79/92

Page 81: CM 2014_GG_Plates and shells

The particular solution The general solution

We determinate the constant by using the boundary conditions:

We determinate the parametersα 13.13 1/mv 0.3B 18.31 KN/m2

β 2.0E+06 kN/m3

a 12.85C3 -2.46E-05 mC4 -2.50E-05 m

81Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSNumerical exampleNumerical example

• Analytical solution

80/92

Page 82: CM 2014_GG_Plates and shells

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0 1 2 3 4 5

T [KN]

X [m]

Trasverse shear - T

00.5

11.5

22.5

33.5

44.5

5

0 0.00001 0.00002

X [m]

W [m]

Displacement - W

-0.05

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5

M [KNm]

X [m]

Bending moment- M

The bending moment (M) and thetransverse shear (H) can be consideredas local effects

T = B w’’’

M = B w’’

82Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSNumerical exampleNumerical example

• Analytical solution

81/92

Page 83: CM 2014_GG_Plates and shells

We run the analysis and then we export the displacements(w), the transverse shear (H) and the bending moment (M)of a single meridian in order to compare the resultsprovided by the numerical and the analytical analysis

83Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

THICK SHELLSNumerical exampleNumerical example

• Sap2000 solution

82/92

Page 84: CM 2014_GG_Plates and shells
Page 85: CM 2014_GG_Plates and shells

SHELLS

Buckling analysis

85Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 84/92

Page 86: CM 2014_GG_Plates and shells

86

In the case of shells, the most interesting behaviour is that out of plane.• LOADS: perpendicular to the middle plane, along the revolution axis.• MATERIAL: Linear Elastic• No imperfection

Buckled Shell

86Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

CYLINDRICAL SHELLS WITH CIRCULAR SECTION

Undeformed Shell

85/92

Page 87: CM 2014_GG_Plates and shells

87

Numerical code : Straus 7Mesh : 10x10 finite elements ISOP4Boundary conditions: two edges simply supported or built in

L 1 m

Width 1 m

E 2E+08 KPa

ν 0.30

87Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

CYLINDRICAL SHELLS WITH CIRCULAR SECTION

NumericalNumerical exampleexample

86/92

Page 88: CM 2014_GG_Plates and shells

88

• The shells with built in - ends presents higher buckling load• The shells with larger thickness presents higher buckling load• The curves presents a maximum for 0.3 < h/L < 0.4; then Pcr decreaeses

trendline : sixth-order polynomiale

88Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

CYLINDRICAL SHELLS WITH CIRCULAR SECTION

87/92

Page 89: CM 2014_GG_Plates and shells

SHELLS

Non – linear analysis

89Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 88/92

Page 90: CM 2014_GG_Plates and shells

90

We chose one of the analyzed shells and we runnonlinear analys.

Displacement control:Step: 150 increments of 0.006 mForce control:Step: 150 increments of 50 KN

Numerical code : Straus 7Mesh : 10x10 finite elements ISOP4Boundary conditions: two edges simply supported

L 1 m

Width 1 m

h 0.4 m

s 0.02 m

90Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

CYLINDRICAL SHELLS WITH CIRCULAR SECTION

NumericalNumerical exampleexample

89/92

Page 91: CM 2014_GG_Plates and shells

91

Snap – through buckling

Looking at the red line, we see that when the curve reaches the maximum the plate buckleslaterally, and then flips over : the structure goes from a “arch behavior” to a “cable behavior”.When the structure is in the third position, the load can increase, but the resistence mechanism iscompletely changed.

1 2 3

This is a typical non-eulerianbuckling: the behaviour of thiskind of structures is nonlineareven before the buckling limit.

91Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

CYLINDRICAL SHELLS WITH CIRCULAR SECTION

90/92

Page 92: CM 2014_GG_Plates and shells

92

In this case the axial stress, due to the action of the thrust H, becomes important: the buckledform is influenced by the presence of high axial stresses and is not extensionless.

Numerical code : Straus 7Mesh : 10x10 finite elements ISOP4

L 1 m

Width 1 m

h 0.05 m

Ends hinged

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.02 0.04 0.06 0.08 0.1

P [K

N]

Dy [m]

Force control - Nonlinear analysis

s = 1 cm

s = 2 cm

s = 3 cm

92Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

VERY FLAT SHELLS

NumericalNumerical exampleexample

91/92

Page 93: CM 2014_GG_Plates and shells

93

DIFFERENCES %

Buckling –force control NL analysis

s = 1 cm s = 2 cm s = 3 cm

6.4 % 12.9 % 26.5 %

We find always the same way of buckling (snap – through) but, by increasing the thickness, we goes away from ideal buckling curve (green line).

93Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

VERY FLAT SHELLS92/92

Page 94: CM 2014_GG_Plates and shells

94

• Timoshenko, Gere, “Theory of elastic stability”• Belluzzi, “Scienza delle costruzioni – Volume terzo”• Bontempi, Sgarbi, Malerba, “Sulla robustezza strutturale dei ponti a arco molto ribassato”

94Corso di Costruzioni MetallicheProf. Ing. Franco Bontempi, Ing. Giordana Gai

UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA”

BIBLIOGRAFY


Recommended