+ All Categories
Home > Documents > CMOS Analog Design May 21.ppt - UFSC

CMOS Analog Design May 21.ppt - UFSC

Date post: 10-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
59
ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 1 CMOS ANALOG DESIGN USING ALL- REGION MOSFET MODELING: PART I Carlos Galup-Montoro, Márcio Cherem Schneider Federal University of Santa Catarina Brazil
Transcript

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 1

CMOS ANALOG DESIGN USING ALL-REGION MOSFET MODELING: PART I

Carlos Galup-Montoro, Márcio Cherem Schneider

Federal University of Santa Catarina Brazil

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 2

CONTENTS

� Two-terminal MOS structure

� Unified charge control model (UCCM)

� Drain current

� Pinch-off and threshold voltage

� Small-signal parameters

� Noise and mismatch compact models

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 3

VG

G

B

+ + + + + + + + +

QI

QG

--- -- -- -

-QB- -- ---- - - - - --

-

TWO-TERMINAL MOS STRUCTURE

gate-to-bulk voltage

oxide capacitance per unit area

surface potential

inversion charge per unit area

bulk charge per unit area

flat-band potential

( ) ( )G ox G FB s I BQ C V V Q Qφ′ ′ ′ ′= − − = − +

oxC′

IQ′

BQ′

FBV

GV

+

φφφφs

_

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 4

MOSFET SMALL-SIGNAL EQUIVALENT CIRCUIT

Ggb

G

dQC

dV

′′ =

1

1 1gb

c ox

C

C C

′ =

+′ ′

I Ii

s t

dQ QC

dφ φ

′ ′′ = − ≅ −

2

oxb

s t

CC

γ

φ φ

′′ ≅

c b i

C C C′ ′ ′= +

body-effect coefficient γ

thermal voltage (26 mV @ 300K)

t

kT

qφ =

CMOS Analog Design Using All-Region MOSFET Modeling 5

Determination of

Potential balance

0ssa Q

I

φ φ′ =

=

THE LINEARIZATION SURFACE POTENTIAL φsa

GV

s saφ φ=

BQ′

+_

bC′+

_

0IQ′ =

0iC′ =

oxC′

( )( ) 1sa t

G FB sa sa sa tV V sgn e

φ φφ φ γ φ φ −− = + + −

( )( ) ( )

/1

1 12sgn 1

sa t

sa t

G b

sa oxsa sa t

edV Cn

d C e

φ φ

φ φ

γ

φ φ φ φ

−′= = + = +

′ + −

25/05/2010ISCAS 2010

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 6

UNIFIED CHARGE CONTROL MODEL (UCCM)-1

n+ n+

p

VSVG VD

1 tC I

ox I

dV dQnC Q

φ ′= −

′ ′

( )

ox b ox

G

C C nC

n n V

′ ′ ′+ =

=

Ii

t

QC

φ

′′ = −

I ox sdQ nC dφ′ ′=

S C DV V V≤ ≤

s i

C i ox b

d C

dV C C C

φ ′=

′ ′ ′+ +

1

1

I

ox t

Q

nC φ

′− <

′�

WI

SI

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 7

7

1 tC I

ox I

dV dQnC Q

φ ′= −

′ ′ Integrating between VC and VP

yields UCCM

lnIP I IP C t

ox IP

Q Q QV V

nC Qφ

′ ′ ′−− = +

′ ′

UNIFIED CHARGE CONTROL MODEL (UCCM)-2

IP ox t

II

ox t

Q nC

Qq

nC

φ

φ

′ ′= −

′′ =

′−

Thermal charge

Normalized inversion charge density

( 1 ln )P C t I I

V V q qφ ′ ′− = − +Normalized UCCM

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 8

8

IC s t

I

dQdV d

Qφ φ

′= −

( )I i C sdQ C dV dφ′ ′= −

CdVsdφ

GVI

i

t

QC

φ

′′ = −

IdQ′+ _

DRAIN CURRENT: PAO-SAH MODEL

s t CID I I

I

d dVdQI WQ WQ

dy Q dy dy

φ φµ µ

′′ ′= − − = −

D

S

V

D I CV

WI Q dV

Lµ ′= − ∫

,

( , )

G S

Dmd I D G

D V V

I Wg Q V V

V Lµ

∂′= = −

driftI diffI

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 9

DRAIN CURRENT: CHARGE-SHEET MODEL

I ox sdQ nC dφ′ ′=

( )2 2

2

IS ID

D t IS ID

ox

Q QWI Q Q

L nC

µφ

′ ′−′ ′= − −

s ID I t

d dQI WQ W

dy dy

φµ µ φ

′′= − +

drift diffusion drift diffusion

2

2

tS ox

I C n Sφ

µ ′=Normalization (specific) current

2

2

tSH ox

I C nφ

µ ′=Sheet normalization (specific) current

WS

L=

D F R S f r SH f rI I I I i i SI i i = − = − = −

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 10

10

Long-channel MOSFET ),(),( DGSGRFD VVIVVIIII −=−=

IF: forward current IR: reverse current

IF=

IR=

FORWARD AND REVERSE CURRENTS

(Forward) Saturation

D F R FI I I I= − ≅

Triode

D F RI I I= −

Triode for VDS→0

; F R D F R FI I I I I I≅ = − <<

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 11

MASTER DESIGN EQUATION

2

2

ISF drift diff t IS

ox

QWI I I Q

L nC

µφ

′′= + = −

ms IS

Wg Q

Lµ ′= − Pao-Sah model

( )1

2 /

msF ms t

ox t

gI g

C n W Lφ

µ φ

= +

( )( )

/1

/

thDsat WI

W LI I

W L

= +

or

( ) ( )/ 2ms ox tthg W L nCµ φ′=

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 12

ASPECT RATIO VS. CURRENT EXCESS

( )( )

/1

/

thDsat WI

W LI I

W L

= +

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 13

WEAK, MODERATE, STRONG INVERSION

D F R S f rI I I I i i = − = −

( ) ( ) ( ) ( ) ( )2 2 1 1

f r IS D IS D IS D f ri q q q i′ ′ ′= + ⇒ = + −

WI MI SI

1 100fi< <1fi < 100 fi<

0.4 9Iq′< < 9 Iq′<0.4Iq′ <

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 14

14

Common-source characteristics

( )1 2 ln 1 1P S t f fV V i iφ − = + − + + −

UNIFIED I-V RELATIONSHIP (UICM)

since

D S f r S f

f r

I I i i I i

i i

= − ≅

>>

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

0,00E+00 5,00E-01 1,00E+00 1,50E+00 2,00E+00 2,50E+00 3,00E+00 3,50E+00 4,00E+00 4,50E+00

10-3

10-6

10-9

VS = 0 V

3.0

2.5

2.0

1.5

0.5 1.0

0 1 2 3 4 VG (V)

ID (A) VD = VG

WI

MI

SI

VD

ID

VGVS

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 15

THE PINCH-OFF CHARGE DENSITY

The channel charge density corresponding to the

effective channel capacitance times the thermal

voltage, or thermal charge, defines pinch-off

( )IP ox b t ox t

Q C C nCφ φ′ ′ ′ ′= − + = −

The name pinch-off is retained herein for historical

reasons and means the channel potential

corresponding to a small (but well-defined)

amount of carriers in the channel.

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 16

THE PINCH-OFF VOLTAGE VP

The channel-to-substrate voltage (VC) for which the

channel charge density equals the pinch-off charge

density is called the pinch-off voltage VP.

UCCM is asymptotically correct in weak inversion if

in weak inversion

( ) ( )2 / 2 /( 1)sa F C t sa F C tV V

I b t ox tQ C e C n eφ φ φ φ φ φφ φ− − − −′ ′ ′− = = −

2 1 ln1

P sa F t

nV

nφ φ φ

= − − + −

2P sa F

V φ φ≅ −

0 2 2 T FB F F

V V φ γ φ≅ + +

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 17

THE THRESHOLD VOLTAGE VT0

Equilibrium threshold voltage VT0, for VC=0, gate voltage for which Q’I = Q’IP = -nC’oxφt

(gate voltage for which VP=0 )

2P sa F

V φ φ≅ −

G FB sa ox sa tV V Cφ γ φ φ′− = + −Recalling that

it follows that

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 18

Pinch-off voltage and slope factor as functions of VG [0.18 µm CMOS technology].

VP[V]

PINCH-OFF VOLTAGE AND SLOPE FACTOR

0G TP

V VV

n

−≅

( )0 1 3 2 ln 1 3 1P SV V − = = + − + + − if=3 at pinch-off

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 19

SATURATION VOLTAGE

Saturation voltage

(VDSsat): VDS at which

the ratio ID ISq q ξ′ ′ =

,

Saturation voltage versus inversion level

( )( )1ln 1 1 1DSsat t fV iφ ξ

ξ

= + − + −

( )1 ξ− is the saturation level

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 20

( )21 1

f S

ms S IS f

S t

di IWg I Q i

dV Lµ

φ′= − = − = + −

BmbDmdSmsGmgD VgVgVgVgI ∆+∆+∆−∆=∆

Calculation of gms

TRANSCONDUCTANCES

0mg ms md mb

g g g g− + + =

D F R S f rI I I I i i = − = −

( ) ( ) ( )2 2

( 1 ln )

f r IS D IS D

P C t I I

i q q

V V q qφ

′ ′= +

′ ′− = − +

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 21

Transconductance

-to-current ratio 11

2

)()(

)(

++=

rfRF

tdms

iI

g φ 1≅

( )

2

f ri≅

WI (if <1)

SI (if >>1)

TRANSCONDUCTANCE-TO-CURRENT RATIO

n

ggg mdms

mg

−=

msmg

gg

n=

in saturation:

10-4 10-2 100 102 104if

tox = 28 nm (IS = 26 nA)

model

102

101

100

gms/IF

tox = 5.5 nm (IS = 111 nA)

Seqüência1

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 22

PARAMETER EXTRACTION

( ) ( )max

/ 1/m D tg I nφ=

( ) ( )

( )

IS D IS D

IS D

IP ox t

Q Qq

Q nC φ

′ ′′ = =

′ ′−

max

2

2

m m

D D IS ID

g g

I I q q

=

′ ′+ +

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 23

INTRINSIC CAPACITANCES

( )1gb ox gs gd

nC C C C

n

−= − −

VDS= 1 V

( )2

2 1 2

3 11

ISgs o x

IS

qC C

q

α

α

′+=

′++

( )

2

2

2 2

3 11

IDgd ox

ID

qC C

q

αα

α

′+=

′++

( 1)bd gdC n C= −( 1)bs gsC n C= −

1

1

ID

IS

q

′+=

′+ox oxC WLC′=

bg gbC C=

( )

2 3

3

4 3

15 11

IDsd ox

ID

qC nC

q

α α α

α

′+ += −

′++( )

2

3

4 1 3

15 11

ISds ox

IS

qC nC

q

α α

α

′+ += −

′++

A set of 9 independent MOSFET capacitances

Channel linearity factor

( ) / dg gd m sd dsC C C C C n− = = −

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 24

SMALL-SIGNAL MOSFET MODEL

G

DS

B

DBmd DB sd

dvg v C

dt+

GBmg GB m

dvg v C

dt−

SBms SB ds

dvg v C

dt+

Cgs

Cbs

Cgd

Cbd

Cgb

( ) / dg gd m sd dsC C C C C n− = = −

CMOS Analog Design Using All-Region MOSFET Modeling 25

INTRINSIC TRANSITION FREQUENCY

( ) ( )2 2

mg msT

gs gb gs gb

g gf

C C n C Cπ π= =

+ +

( )22 1 1

2

tT ff i

L

µφ

π≅ + −

25/05/2010ISCAS 2010

26

NOISE & MISMATCH

� The spontaneous fluctuations over time of the current and voltage inside a device, which are basically related to the discrete nature of electrical charge, are called electrical noise.

� Time-independent variations between identically designed devices in an integrated circuit due to the spatial fluctuations in the technological parameters and geometries are called mismatch.

� Mismatch (spatial fluctuation) and noise (temporal fluctuation) are similar phenomena, both being dependent on the process, device dimensions, and bias.

� Mismatch can be seen as “dc noise”.

25/05/2010ISCAS 2010

CMOS Analog Design Using All-Region MOSFET Modeling

THERMAL NOISE EXCESS FACTOR-1

For VDS→0, the transistor is equivalent to a resistor and

where gms (=gmd) is the equivalent conductance of the transistor

In weak inversion

For a saturated transistor (gms>>gmd) in weak inversion

CMOS Analog Design Using All Region MOSFET Modeling 27

2

24 4d IS

ms

i WLQkT kTg

f Lµ

′= − =

( )2

4 42 2

IS IDd ms mdQ Q g gi W

kT kTf L

µ′ ′+ +

≅ − =∆

2

2dms

ikTg

f=

25/05/2010ISCAS 2010

THERMAL NOISE EXCESS FACTOR-2

In general, the channel thermal noise is written as

γ is the excess noise factor and its value is 2/3 for a long-channel

saturated transistor in strong inversion.

for a short-channel transistor

where Le and Lesat are the electric length of the channel in the

linear and the saturation regions, respectively. Considering that

Lesat= Le-∆L, where ∆L is the channel shortening due to CLM, then

we can write

for short-channel transistors it is possible that γ >1 due to the CLM

effect.

CMOS Analog Design Using All Region MOSFET Modeling 28

2

4dms

ikT g

fγ=

2

e Ishort

esat I

L Q

L WQγ =

21 I

short

e e IS

QL

L WL Qγ

∆≅ +

25/05/2010ISCAS 2010

CMOS Analog Design Using All-Region MOSFET Modeling 29

THERMAL AND 1/F NOISE

10n 100n 1µ 10µ 100µ 1m 10m

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9 (Not=2.6x107cm

-2)

Thermal Noise

Simulated

(Typ.NMOS model)

Measured

1/f Noise

Simulated(a)

Simulated(b)

Measured

SID

/ID

2

Drain Current [A]

Normalized flicker and thermal PSD at f=1Hz for saturated NMOS-T (W/L=200/5)

25/05/2010ISCAS 2010

CMOS Analog Design Using All-Region MOSFET Modeling30

CORNER FREQUENCY

Noise corner frequency (frequency at which the PSD of the 1/f

noise equals the PSD of the thermal noise)

100n 1µ 10µ 100µ

100

1k

10k

100k

Corner frequency fc

Calculated from measured gm

Calculated from estimated gm

Measured

Co

rne

r F

req

ue

ncy

f c

[Hz]

Drain Current ID [A]

2

Fc T

t

Kf f

nq

π

φ≈

25/05/2010ISCAS 2010

FK SPICE NLEV 2,3

1/f noise constant

PELGROM’S MODEL OF MISMATCH

� In most applications: the standard deviation of the difference

between the threshold voltages of two identical transistors

(∆VT0=VT1-VT2) is

CMOS Analog Design Using All Region MOSFET Modeling 31

( )( )

0

number of acceptors under gate/ ( )T d A ox

ox

V q q WLx N WLCWLC

σσ ′= =

( ) ( )0 0

22

d A VTT T

ox

q x N AV V

C WL WLσ σ∆ = = =

2 d AVT

ox

q x NA

C=

ISCAS 2010

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 32

MISMATCH – EXPERIMENTAL RESULTS

Dependence of mismatch on inversion level - Linear: � (VDS=50mV);

Saturation: � (VDS=1V) regions. Model :—

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 33

CMOS ANALOG DESIGN USING ALL-REGION MOSFET MODELING: PART II

Carlos Galup-Montoro, Márcio Cherem Schneider

Federal University of Santa Catarina Brazil

CONTENTS

� The intrinsic gain stage

� The source-coupled pair

� The two-transistor current mirror

� A self-biased current source

� A folded cascode amplifier

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 35

SUMMARY OF MAIN DESIGN EQUATIONS - 1

2 / 2SH ox t

I C nµ φ′=

( )/S SHI I W L=

( )D F R S f rI I I I i i= − = −Specific (normalization)

current

0.35 um CMOS technology

70 nA

25 nA

SHN

SHP

I

I

Forward and reverse currents

VDD

VT0

+

3ISH

/ 1W L =

25% SI±

Sheet specific current

D F S fI I I i≅ = saturation

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 36

SUMMARY OF MAIN DESIGN EQUATIONS-2

( )21 1S

m f

t

Ig i

nφ= + −Saturation

/ds D A

g I V=( )1 3DSsat t fV iφ= + +

( ) ( )( )

( ) ( )1 1 1 ln 1 1P S D

f r f r

t

V Vi i

φ

−+ = + − + + −

UICM

0G TP

V VV

n

−≅

A EV V L=

Gate transconductance

DS DSsatV V>

Output conductance

ID

VDS

dsg

AV

m Gg V∆

DSsatV

0

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 37

THE INTRINSIC GAIN STAGE - 1

Vmax

Vmin

maximum output swing

VDSsat1

VDSsat2

VDD

VDD

vo

viVTH

vo=vi

Av

( )011 1

1

1 2 ln 1 1TH Tf f

t

V Vi i

n φ

−≅ + − + + −

From UICM we find the dc voltage VTH at the input:

VDD

VI

M1

+

IB

CL

ID

I

L

M2

VO

VDD

ID

VO

IBVG

M1 M2

Output characteristics

Voltage transfer characteristic1 1 1

1

; BD B F R f

S

II I I I i

I= ≅ − ≅

0

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling

CLgogmvg

vi

+

vgvo

0

1 1

1 /

oV m V

i o L b

vA g A

v g sC s ω

= = − =

+ +

V-I converter (transconductor) followed by an I-V converter

(output impedance)

THE INTRINSIC GAIN STAGE - 2

1

1

Bds

A

Ig

V=

1 10

1

m mV

o ds

g gA

g g

− −= =

1 1

A EV V L=

10

1 1

2

1 1

AV

t f

VA

n iφ= −

+ +

38

|AV|dB

ωωuωb0

-20 dB/dec

|AV0|

Voltage gain vs frequency

/

/

b o L

u m L

g C

g C

ω

ω

=

=

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 39

CLgogmvg

vi

+

vgvo

0

1

1

EV

t

V LA

n ECFφ= −

+

minD WI m tI I g nφ= =

( ) ( )/ 1 1 / 2D WI WI fECF I I I i= − = + −

1

2

m

ox t

gW

L C ECFµ φ=

′Power-area tradeoff

How long can L be?

Sizing and biasing: W, L, IB

ECFCIN and transit time are both proportional to L2 (for constant W/L)!

THE INTRINSIC GAIN STAGE - 3

1 1

2

f

D t m

iI n gφ

+ +=

m u Lg Cω= ⋅

( )min min/D D DECF I I I= −

Design example Specifications: 0, ,u L V

C Aω

How do we choose if ?

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 40

2 21

4 4 1ch F m cms ms

ox

i K g fkTg kTg

f WLC f fγ γ

= + ≅ + ′∆

2chi

Bias-dependent factor

Thermal 1/fMOST noise model

2

Fc T

t

Kf f

nq

π

φ≅

Corner frequency

2 1/ 21

3 1 1fiγ

= − + +

1/2 (WI) 2/3 (SI)

2000

Tc

ff ≅ 0.35 um CMOS

technology

2 /chi f∆

cf f

Noise current generator

Input-referred noise model

2 2

2

1n ch

m

e i

f g f=

∆ ∆

2ne

Noiseless MOST

- +

THE INTRINSIC GAIN STAGE - 4

CMOS Analog Design Using All-Region MOSFET Modeling

2 /chi f∆

cf f

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 41

VSS

IT

+vG1

-

M1 M2

I1 I2

+vG2

-

First order analysis:

� Ideal current source

� M1 & M2 in saturation → I1 & I2 independent of drain voltage;

1 2

1 2

1 2 0

S S S

r r

n n n

I I I

i i

≅ =

≅ =

= =

1 2

1 2

1 2

T

OD

G G id

I I I

I I I

V V V

+ =

− =

− = 1 1 2 2

/ /

/ /

t T S od OD S

S S

i I I i I I

i I I i I I

= =

= =

Normalization

THE SOURCE-COUPLED PAIR -1

1 2 1 2 t odi i i i i i= + = −

1 12 2

ln 1 1 1 12 2

id t od t od

t

t od t od

V i i i i

n

i i i i

φ

+ −= + − + +

+ −+ − + −

0 84 12-4-8-12

1

it=1000100

10<1

I1/IT

I2/IT

id

t

V

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 42

VSS

IT

+vG1

-

M1 M2

I1 I2

+vG2

-

02 01 2 1; T T T S S SV V V I I I= + ∆ = + ∆

2

STG OS T

m S

IIV V V

g I

∆∆ = = ∆ −

Offset voltage VOS = ∆VG =VG2- VG1 such that

∆ ID= I2- I1=0

Simple model

( )0S mD

G T

D S D

I gIV V

I I I

∆∆≅ + ∆ − ∆

The differential input voltage at the input required for ∆ ID =0 is

THE SOURCE-COUPLED PAIR - 2

0( , )

D S f r S G T SI I i i I f V V V = − = −

0

( )0 0

0

@D D D DD S G T S m G T S

S G T S

I I I II I V V I g V V V

I V V I

∂ ∂ ∂∆ ≅ ∆ + ∆ + ∆ = ∆ + ∆ − ∆

∂ ∂ ∂

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 43

VSS

IT

+vG1

-

M1 M2

I1 I2

+vG2

- ( ) ( )( )

2 2

2 2

22

STOS T

m S

IIV V

g I

σσ σ

∆ = ∆ +

2

STG OS T

m S

IIV V V

g I

∆∆ = = ∆ −

( )( )22 2

2

2;

SVT IST

S

IA AV

WL I WL

σσ

∆∆ ≅ ≅Pelgrom’s

model

( )2

2 22

2

VT ISTOS

m

A AIV

WL g WLσ

= +

1 1

2 2

fT Dt

m m

iI In

g gφ + + = =

Uncorrelated ∆∆∆∆ VT & ∆∆∆∆ IS

Reminder

ISA Aβ=

THE SOURCE-COUPLED PAIR - 3

(I) (II)

(I) is dominant over (II) for

21 1 VT

f

t IS

Ai

n Aφ+ + <

0580 ( +0.8 V) for 32 mV,

8 mV m, 2 % m

f G T t

VT

i V V n

A Aβ

φ

µ µ

< < =

= ⋅ = ⋅

( ) 22 mV for 16µm & 100OS fV WL iσ ≅ = <

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 44

THE TWO-TRANSISTOR CURRENT MIRROR - 1

VDD

ii

+vG

-

iovo

+-

M1 M2

1:1

M1: i→v converterM2: v→i converter

Basic principle VG1=VG2; VS1=VS2; vout>VDsat → io≅ii

iD

vD

locus vD=vG

vG

vo

iD1

iD2

o i o i o i

i i A E

i i v v v vi

i i V V L

− − −∆= ≅ ≅

Error due to difference in VD values Error due to mismatch

0

0

0

1

D D DS T

D D S T

S mT

S D

I I II V

I I I V

I gV

I I

∆ ∂ ∂≅ ∆ + ∆

∂ ∂

∆≅ − ∆

( )( )

( )2 22 2

2 2 2

2 2

1D Sm mT VT IS

D D S D

I Ig gV A A

I I I WL I

σ σσ

∆ ∆ = ∆ + = +

( )( )0 , 1 / D S f G T S D A D Dsat

I I i V V V V V V V≅ − + >

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 45

THE TWO-TRANSISTOR CURRENT MIRROR - 2

( )( )1 1 2 2 1

1 1 1 2 1

A gs gb gs gb db B

A gs gb db ovd

C C C C C C C

C A C C C C

= + + + + +

= + + + +

1:A2mg v

1

1

m

ds

g

g+

ii

+

v

-

io

CA

CB

iiio

M1 M2

VDD

( )1

1

1 2

o A B

i m T

I C CA As

I s g fτ

τ π

+ +≅ = ≈

+

ii

io

M1 M2i1

i21:A

( )

( )

2

2 2 2 22 21 2

1 1

2 2 2 2 2

1 1

m mo i

m m

o i

g gi i i i A

g g

i A i i Ai

= + + =

= + +

Uncorrelated noise sourcesNoise analysis

ac analysis

The effect of M1 on noise is A times greater than that of M2

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 46

Gain-of-two current mirrors

VDD

II IO

1/2:1

W/L

W/L

W/L

VDD

II IO

1:2

W/L

W/LW/L

CURRENT MIRROR: GAIN SCHEMES

VDD

ii io==Aii

......

VDD

iiio==ii/A

......

Gain=A

Gain= 1/A

ii

io==ii/(NM)

.....

.

......N

M

Gain=1/(NM)

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 47

A SELF-BIASED CURRENT SOURCE – 1

21 2 2

1

11 1

f f f

Si i i

S Nα

= + + =

2

2 2

2

1 11 1 ln

1 1

fXf f

t f

iVi i

i

αα

φ

+ − = + − + + + −

Applying UICM to both M1 & M2

SELF-CASCODE MOSFET (SCM)

Sat.

Triode

2 xI NI=

M1

M2

( )2 2 2

1 1 2( ) ( 1)

S f r x

S f f x

I i i NI

I i i N I

− =

− = +

2 1f ri i=

0

2

2 2

X Xf

S SH

NI NIi

I S I= =where

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 48

A SELF-BIASED CURRENT SOURCE – 2

1 1

1 1 ln

1 1

X

even SHX X X

t even SH even SH X

even SH

I

S IV I I

S I S I I

S I

α

αφ

+ −

= + − + +

+ −

1 0.01 S =

2 0.01 S =IX

IX

2IX

SCM1,2

11 1even

odd

S

S Nα

= + +

/X t

V φ

/X SHI I

SCM1,2 SCM3,4

2

30.01S

α ==

4

18.71.13S

α ==

310 S =

4 1.13 S =IX

IX

2IX

SCM3,4

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 49

VOLTAGE FOLLOWING (NMOS) CURRENT MIRROR (PMOS)1

9 ln( )ref S t

V V JKφ= +

1 B. Gilbert, AICSP vol. 38, pp. 83-101, Feb. 2004

When both M8 & M9 operate in WI:

89

8 8

8

1 11 1 ln

1 1

fref S

f f

t f

JKiV VJKi i

+ −− = + − + + + −

A SELF-BIASED CURRENT SOURCE – 3

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 50

Vx

VFCMVx

A SELF-BIASED CURRENT SOURCE – 4

/X tV φ

/X SHI I

SCM1,2SCM3,4

VFCM is a positive feedback circuit →→→→return ratio must be < 1 for stability

1

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 51

A SBCS – 5: DESIGNOutput current: Iref=10 nA

ISHn-channel≅100 nA, ISHp-channel≅40 nA

21 2

1

11 1 3

S

S Nα −

= + + =

1 30 11 30 1 10 ln 2.93

1 10 1

X

t

V

φ

+ −= + − + + = + −

2(4)

2(4) 2(4)

2(4)

1 11 1 ln

1 1

fX

f f

t f

iVi i

i

αα

φ

+ − = + − + + + −

VFCM

Let us choose

if3(4) <<1 (WI)

2.93

3 4 3 4ln 18.7X

t

Veα α

φ− −≅ ⇒ = ≅

4 43 4

3 3

11 1 8.85

1

S S

S Sα −

= + + ⇒ =

=10 nA

2 2 2 2 110 nA 1 nA 0.01

S f SI i I S S= → = → = =

Let us choose 4 3 3 4/ 0.01f fi i α −= =

4 4 4 410 nA 1 A 10

S f SI i I Sµ= → = → =

43

1.138.85

SS = =

if2 = 10, S2= S1

Let us choose

if3=0.187 →→→→

1

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 52

A SBCS – 6: DESIGN

S if ir

M1 0.01 30 10

M2 0.01 10 0

M3 1.13 0.187 0.01

M4 10 0.01 0

M8, M8(a) 1 0. 1 0

M9, M9(a) 1 0. 1 0

MP (all) 2.5 0.1 0

4 10S =

VFCM

=1

=10 nA

21 0.0S =

2.93X t

V φ= 2.93X t

V φ=

3 1.13S =1 1 0.0S =

Summary

Core area in 0.35µm CMOS ≈≈≈≈ 0.02 mm2

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 53

A SBCS – 7 : IOUT vs. VDD AT CONSTANT T

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 54

A FOLDED CASCODE AMPLIFIER - 1

IT

ioM1 M2

M3 M4

M5 M6

M7 M8

M9 M10

M11

+ -

ITIT

VDD

GND

to VB3

+

vo

-CL

vi1 vi2

to VB2

to VB1

to VB4

V-I converter Current sources

1:1

High-Ro

current mirror

M3 & M4 – common-gate configurationIT/2 IT/2

VB3 & VB4 are such that M9(10)

& M5(6) operate on the edge

of saturation

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 55

IT

ioM1 M2

M3 M4

M5 M6

M7 M8

M9 M10

M11

+ -

IT IT

VDD

GND

to VB3

+

vo

-

CL

vi1 vi2

to VB2

to VB1

to VB4

VDD

IRE

F

M16

M1

2

GND

M1

3

M1

4 M1

5

VB

1

VB2

VB3

VB4

M17 M18

0.5 µµµµm CMOS

ISHN ≅≅≅≅ 40 nA, ISHP ≅≅≅≅ 16 nA, nN ≅≅≅≅ nP ≅≅≅≅ 1.2,

VEN=VEP=10 V/µµµµm, VT0N=0.7 V, VT0P=-0.9 V,

. =2.5 fF/µµµµm2

oxC′

CL=1 pF, VDD=5 V, IREF=0.6 µµµµA.

Transistor W

(µm)

L

(µm)

ID

(µA)

if

M1,M2, M5-M8 12.5 1 3 15

M3,M4 5 1 3 15

M9,M10 10 1 6 15

M11 25 1 6 15

M12-M14 10 4 0.6 15

M15 6 16 0.6 100

M17, M18 4 4 0.6 15

M16 7.5 50 0.6 100

A FOLDED CASCODE AMPLIFIER - 2

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 56

IT

ioM1 M2

M3 M4

M5 M6

M7 M8

M9 M10

M11

+ -

IT IT

VDD

GND

to VB3

+

vo

-

CL

vi1 vi2

to VB2

to VB1

to VB4

ISHN ≅≅≅≅ 40 nA, ISHP ≅≅≅≅ 16 nA, nN ≅≅≅≅ nP ≅≅≅≅ 1.2,

VEN=VEP=10 V/µµµµm, =2.5 fF/µµµµm2, CL=1 pFoxC′

Transistor W

(µµµµm)

L

(µµµµm)

ID

(µµµµA)

if

M1,M2, M5-M8 12.5 1 3 15

M3,M4 5 1 3 15

M9,M10 10 1 6 15

( ) ( )11 1

2 /1 1

SHP

m f

t

I W Lg i

nφ= + − =40 µA/V

Amplifier transconductance

Output conductance

Voltage gain

0 1 / 5,330 V/VV m oA g G= ≅

A FOLDED CASCODE AMPLIFIER - 3

10 2 6

4 4 8 8

0.6 0.3 0.3

/ / 48 / 0.3 48 / 0.3

7.5 nA/V

ds ds ds

o

ms ds ms ds

o

g g gG

g g g g

G

+ +≅ + = +

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 57

IT

ioM1 M2

M3 M4

M5 M6

M7 M8

M9 M10

M11

+ -

IT IT

VDD

GND

to VB3

+

vo

-

CL

vi1 vi2

to VB2

to VB1

to VB4

Transistor W

(µµµµm)

L

(µµµµm)

ID

(µµµµA)

if

M1,M2, M5-M8 12.5 1 3 15

M3,M4 5 1 3 15

M9,M10 10 1 6 15

1 / 40 /1 A/V/pF

= 40 Mrad/s

m LGB g C µ= =

ISHN ≅≅≅≅ 40 nA, ISHP ≅≅≅≅ 16 nA, nN ≅≅≅≅ nP ≅≅≅≅ 1.2,

VEN=VEP=10 V/µµµµm, . =2.5 fF/µµµµm2, CL=1 pFoxC′

Gain-bandwidth product

Slew rate

max

6 V/ so T

L

V ISR

t Cµ

∆= = =

Offset voltage

( ) ( ) ( ) ( )2 2

2 2 2 25 9

01 05 09

1 1

m m

OS T T T

m m

g gV V V V

g gσ σ σ σ

≅ + +

( )

( ) ( )

2 2

0

5 1 9 1

2 2

01,5,9

/ ; 10 mV m

/ 1 / 2

8, 8, 10 mV 7.5 mV

T VT VT

m m m m

T OS

V A WL A

g g g g

V V

σ µ

σ σ

= = ⋅

= =

= → ≅

Pairs M3-M4 & M7-M8 contribute negligibly to the offset voltage

A FOLDED CASCODE AMPLIFIER - 4

(*)

(*) : For this design IT=2.5*ITmin

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 58

IT

ioM1 M2

M3 M4

M5 M6

M7 M8

M9 M10

M11

+ -

IT IT

VDD

GND

to VB3

vi1 vi2

to VB2

to VB1

to VB4

NOISE ANALYSIS

2 2 2 2

1 5 92no n n ni i i i

f f f f

≅ + + ∆ ∆ ∆ ∆

PSD of the output noise current

Pairs M3-M4 & M7-M8 contribute negligibly to amplifier noise

A FOLDED CASCODE AMPLIFIER - 5

2/

(pA/ Hz)

noi f∆

(kHz)f

2.5

10

ISCAS 2010 CMOS Analog Design Using All-Region MOSFET Modeling 59

59


Recommended