+ All Categories
Home > Documents > cmosrf-1

cmosrf-1

Date post: 06-Apr-2018
Category:
Upload: bhanu-partap-sharma
View: 218 times
Download: 0 times
Share this document with a friend
37
1 Fully Integrated Frequency Synthesizers
Transcript
Page 1: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 1/37

Fully Integrated

Frequency Synthesizers

Page 2: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 2/37

Talk outline

• Introduction

 – Frequency synthesizer 

 – Signal quality

 – Full integration

 – Circuit design challenges

Page 3: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 3/37

Talk outline

• Different Synthesizer Architectures

 – Phase-Locked Loop

 – Delay-Locked Loop

 – Direct Digital Synthesis

 – Combinations

• Conclusion

Page 4: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 4/37

A Frequency Synthesizer?

• A versatile circuit for creating the

necessary frequencies in a radio circuit,

employing a reference frequency

Page 5: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 5/37

A Frequency Synthesizer?

• Most radio systems employ channels:

• User must be able to access any of them

• Sometimes fast jumping is necessary

 f   f  1

f  2

f   N-1

f   N 

1 2 ... N-1 N

Page 6: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 6/37

Signal Quality?

• We want ”clean” spectrum

 P(f)

carrier 

 f   f  c

Page 7: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 7/37

Signal Quality?

• In practice:Y O U  C AN ’ T  F I L T E R  T H E M  O U T ! ! 

 P(f)

carrier 

 phase

noise

 f   f  c

spur 

Page 8: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 8/37

Signal Quality:

• To specify acceptable signal quality, most

radio systems specify a spectral mask 

 f   f  c

 P(f)Maximum

allowedsidebandlevel

Page 9: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 9/37

Full Integration?

• Compact radio: Single chip radio:

Page 10: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 10/37

Full Integration?

• System: System-on-a-Chip:

Page 11: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 11/37

Full Integration?

• Reasons for full integration:

 – Minimize power consumpiton

 – Minimize the final product size

 – External components may have too large

 parasitic capacitances

Page 12: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 12/37

Circuit Design Challenges?

 – Available transistors and passive components

are not optimal for RF circuits

 – The PLL VCO inductor and the loop filter 

capacitor are the problem components

 – No RF models available

 – Intra-chip noise sources

Page 13: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 13/37

• Several different principles are known

 – Not all are suitable for full integration

Different Synthesizer Architectures

Page 14: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 14/37

The Phase-Locked Loop

• PLL resembles a classical feedback control

system

 – Only the VCO and the counter operate at the

high frequency

LPF

CTR 

PFD

VCO f ref 

 f out CP

Page 15: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 15/37

The Phase-Locked Loop

• The Phase-Frequency Discriminator (CFD)

and the Charge Pump (CP)

 – Convert phase error to a current pulse

 – Low operating frequency, easy analog design

PFD f 

ref CP

i

Page 16: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 16/37

The Phase-Locked Loop

• The Loop Filter 

 – Usually passive, to reduce noise

 – High density capacitors needed

 – Bandwidth determines the PLL settling time

LPFvi

Page 17: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 17/37

The Phase-Locked Loop

• The VCO

 – Typical: negative-Gm LC

 – Problem: spiral inductor Q

VCO

Supply

voltage

M3 M4

Control

voltage

output

2.4 GHz

output

2.4 GHz

Page 18: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 18/37

The Phase-Locked Loop

• Many important VCO parameters...

 – Tuning range

 – Phase noise

 – VCO constant

 – Linear  f/V response?

 – Tail current

 – Noise immunity

 – ...

VCO

Page 19: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 19/37

The Phase-Locked Loop

• The frequency counter 

 – Several alternatives

LPF

CTR 

PFD

VCO

 f ref   f out CP

Page 20: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 20/37

The Phase-Locked Loop

• The frequency counter: integer-N

 – Simple and popular 

 – The PLL multiplies  f ref  by integer numbers:

 f out = ( NP + S ) f ref 

CTR 

From

VCOSwallow

counter Reset

Channel

selection

Program

counter 

Dual-

modulus

 prescaler 

P(N+1)/N

Modulus

control S

To PDF

Page 21: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 21/37

The Phase-Locked Loop

• The frequency counter: integer-N

 – Reference frequency = channel separation

 – Problem: spurs at  f =  f c ±  f ref 

 – Slow PLL settling because of narrow BW

 f   f  c

 P(f)

Page 22: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 22/37

The Phase-Locked Loop

• The frequency counter: fractional-N

Page 23: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 23/37

The Phase-Locked Loop

• The frequency counter: fractional-N

 –  f out =  f ref (N + a ), where a is rational number 

 – Frequency step smaller than  f ref 

 – Allows higher  f ref and wider loop BW

 – Faster PLL settling time

 – Wide BW helps suppressing phase noise skirt

Page 24: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 24/37

The Phase-Locked Loop

• The frequency counter: fractional-N

 – ”Fractional spurs” typically –30 dBc

 f   f  c

 P(f)

Page 25: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 25/37

The Phase-Locked Loop

• The frequency counter: fractional-N

 – Suppressing fractional spurs:

 – Randomizing the modulus control

 – Noise shaping by Σ∆−modulator 

Page 26: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 26/37

The Phase-Locked Loop

• The frequency counter: phase switching

 – Fast prescaler 

 – Long analog RF path, challenging design

Page 27: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 27/37

The Phase-Locked Loop

• How about NO frequency counter?

 – we can just pick the correct edge

LPFAPD

VCO f ref 

 f out CP

Page 28: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 28/37

The Phase-Locked Loop

• How about NO frequency counter?

 – simple circuit, small C in

 – Aperture Phase Detector (APD)

Page 29: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 29/37

The Delay-Locked Loop

 No oscillator!

Page 30: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 30/37

The Delay-Locked Loop

• DLL properties:

 – Noise spectrum fundamentally different: no

 phase error accumulation

 – Noise spectrum does not directly depend on the

quality of the on-chip inductors

 – Many active circuits, power hungry?

Page 31: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 31/37

Direct Digital Synthesis

Page 32: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 32/37

Direct Digital Synthesis

• DDS is very versatile:

 – No settling time, the output frequency

change is immediate

 – The output signal phase is also knownimmediately after a frequency jump

Page 33: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 33/37

Direct Digital Synthesis

• However, there are penalties:

 – Accumulator clock frequency higher than

the synthesized frequency

 – High dynamic power consumption – Spurious frequency components

Page 34: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 34/37

Combinations

  – Dual loop SSB mixer inside the PLL

Page 35: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 35/37

Other methods

 – Previously described methods can be

combined

 – Methods like direct analog synthesis are

not suitable for full integration

Page 36: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 36/37

Conclusions

 – Full integration is desireable

 –Reducing size of the end product

 –Reducing price of the end product

 – Full integration = new problems

 –process compatibility –noise coupling

 – Fully integrated synthesizers already

exist for several applications

Page 37: cmosrf-1

8/2/2019 cmosrf-1

http://slidepdf.com/reader/full/cmosrf-1 37/37

References:

B. Razavi: "Challenges in the Design of Frequency Synthesizers for Wireless Applications", IEEE Custom Integrated

Circuit Conference 1997

G. Chien, P.R. Gray: "A 900-MHz Local Oscillator Using a DLL-Based Frequency Multiplier Technique for PCS

Applications", IEEE Journal of Solid-State Circuits, VOL.35, NO.12, DECEMBER 2000

A.R. Shanani et al.: "Low-Power Dividerless Frequency Synthesis Using Aperture Phase Detection", IEEE Journal of 

Solid-State Circuits, VOL.33, NO.12, DECEMBER 1998

 N. Krishnapura, P. R. Kinget: ”A 5.3-GHz Programmable Divider for HiPerLAN in 0.25-µm CMOS”, ", IEEE Journal of 

Solid-State Circuits, VOL.35, NO.7, JULY 2000

B. Razavi: "RF Microelectronics", Prentice Hall 1998, ISBN 0-13-887571-5

J. Craninckx, M. Steyaert: "Wireless CMOS Frequency Synthesizer Design", Kluwer Academic Publishers 1998, ISBN 0-

7923-8138-6

T.H. Lee: "The Design of CMOS Radio Frequency Integrated Circuits", Cambridge University Press 1998, ISBN 0-521-

63922-0


Recommended