+ All Categories
Home > Documents > CMS-0320-13 Educ STEM

CMS-0320-13 Educ STEM

Date post: 19-Nov-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
7
Music education overlaps with many other curricular areas, including science, technology, engineering and math — otherwise known as the “S.T.E.M.” curriculum. S.T.E.M. is getting a great deal of attention and focus by local, state and national curricular decision makers. S.T.E.M. educational standards include the teaching of musical elements and principles through the science of sound. These standards cover concepts often taught informally in the music classroom. Classical MPR can help classroom teachers cover these standards by thoughtfully including these lessons and concepts at a time that coincides with the teacher’s curricular sequence. Music teachers need not add anything to their very full curricula, but if they are thoughtful about how and when these standards are taught, they will make valuable connections to the students’ regular education classes and teachers. This also helps solidify the value of music education as part of the school day. Below you will find science standards as presented in Minnesota, along with a number of music lessons that help bring these standards to life. 3 rd Grade: Minnesota Science Standards: http://education.state.mn.us/MDE/EdExc/StanCurri/K 12AcademicStandards/index.htm Synopsis of Standard: Scientific inquiry pose questions about the natural world and investigate phenomena (e.g. Investigate the sounds produced by striking various objects). Activity: Play a variety of instruments while the students guess what instrument they are hearing. Have the students describe the sound as a means to help the identification process. They should talk in terms of musical elements: pitch, volume, timbre and duration. Sound sources could include any instruments that you have in your classroom — Orff instruments (metal & wood), pitched and nonpitched percussion, string, woodwind, brass, found sounds (keys, water glass, trash can). The point of this activity is to get students listening to and identifying sounds using the principles of sound and musical terminology, such as sustain and decay, articulation, volume, duration, pitched vs. nonpitched, etc. The students can then match the sound with an image as well as a name. You can project the images or have the sound sources on display from which students can choose. This is a good time to define timbre (tone quality) — which lets us hear the difference between a flute, violin, trumpet, and the human voice, etc. Next, you can change the pitch, duration, articulation or volume of one of the sound sources and ask students to investigate how these changes are done.
Transcript
Page 1: CMS-0320-13 Educ STEM

 

 

Music  education  overlaps  with  many  other  curricular  areas,  including  science,  technology,  engineering  and  math  —  otherwise  known  as  the  “S.T.E.M.”  curriculum.  S.T.E.M.  is  getting  a  great  deal  of  attention  and  focus  by  local,  state  and  national  curricular  decision  makers.  S.T.E.M.  educational  standards  include  the  teaching  of  musical  elements  and  principles  through  the  science  of  sound.  These  standards  cover  concepts  often  taught  informally  in  the  music  classroom.  Classical  MPR  can  help  classroom  teachers  cover  these  standards  by  thoughtfully  including  these  lessons  and  concepts  at  a  time  that  coincides  with  the  teacher’s  curricular  sequence.  Music  teachers  need  not  add  anything  to  their  very  full  curricula,  but  if  they  are  thoughtful  about  how  and  when  these  standards  are  taught,  they  will  make  valuable  connections  to  the  students’  regular  education  classes  and  teachers.  This  also  helps  solidify  the  value  of  music  education  as  part  of  the  school  day.    

Below  you  will  find  science  standards  as  presented  in  Minnesota,  along  with  a  number  of  music  lessons  that  help  bring  these  standards  to  life.  

3rd  Grade:  Minnesota  Science  Standards:  http://education.state.mn.us/MDE/EdExc/StanCurri/K-­‐12AcademicStandards/index.htm  

 

Synopsis  of  Standard:  Scientific  inquiry  –  pose  questions  about  the  natural  world  and  investigate  phenomena  (e.g.  Investigate  the  sounds  produced  by  striking  various  objects).  

Activity:  Play  a  variety  of  instruments  while  the  students  guess  what  instrument  they  are  hearing.  Have  the  students  describe  the  sound  as  a  means  to  help  the  identification  process.  They  should  talk  in  terms  of  musical  elements:  pitch,  volume,  timbre  and  duration.  Sound  sources  could  include  any  instruments  that  you  have  in  your  classroom  —  Orff  instruments  (metal  &  wood),  pitched  and  non-­‐pitched  percussion,  string,  woodwind,  brass,  found  sounds  (keys,  water  glass,  trash  can).  The  point  of  this  activity  is  to  get  students  listening  to  and  identifying  sounds  using  the  principles  of  sound  and  musical  terminology,  such  as  sustain  and  decay,  articulation,  volume,  duration,  pitched  vs.  non-­‐pitched,  etc.  

The  students  can  then  match  the  sound  with  an  image  as  well  as  a  name.  You  can  project  the  images  or  have  the  sound  sources  on  display  from  which  students  can  choose.  This  is  a  good  time  to  define  timbre  (tone  quality)  —  which  lets  us  hear  the  difference  between  a  flute,  violin,  trumpet,  and  the  human  voice,  etc.      

Next,  you  can  change  the  pitch,  duration,  articulation  or  volume  of  one  of  the  sound  sources  and  ask  students  to  investigate  how  these  changes  are  done.  

Page 2: CMS-0320-13 Educ STEM

 

 

Minnesota  Science  Standards:  http://education.state.mn.us/MDE/EdExc/StanCurri/K-­‐12AcademicStandards/index.htm  

 

 

Synopsis  of  Standard:  Energy  –  sound  as  energy  –  explain  the  relationship  between  pitch  and  physical  properties  of  the  sound  source.  

Definitions:  

• Sound  as  energy  moves  though  space  that  is  then  picked  up  by  the  ear.  

• Cycles  per  second  or  Hertz  (Hz)  is  a  measure  to  quantify  pitch.  The  more  cycles  per  second,  the  higher  the  pitch  (A  440  has  440  cycles  per  second).  An  octave  has  a  2:1  ratio;  2  x  440  would  be  an  octave  higher  at  880.  A  visual  representation  of  this  would  be  a  string  vibrating  slowly,  creating  a  lower  sound  than  a  string  vibrating  fast  with  a  higher  pitch.  The  more  mass  an  object  has,  the  slower  it  vibrates  (bass  notes  on  the  piano  are  thicker  and  longer).  

• Sympathetic  vibration  occurs  when  one  sound  source  creating  sound  causes  a  silent  sound  source  to  start  to  vibrate  because  it  is  tuned  to  a  similar  frequency.  Common  examples  might  be  the  vibration  of  snare  drum,  or  a  pitched  instrument  playing  the  same  pitch  of  an  open  string  on  a  guitar  that  starts  to  resonate  in  turn.  

Orff  Activity:  Set  up  a  classroom  set  of  Orff  instruments  that  have  the  root,  5th  and  octave  isolated,  making  sure  the  notes  all  have  the  same  width  and  depth.  Have  the  students  play  the  three  notes  individually  in  a  call-­‐and-­‐response  pattern  from  your  direction.  Ask  students  if  they  notice  any  relationship  between  the  length  of  the  notes  and  the  pitch.  Taking  a  ruler,  measure  the  note  lengths  in  order  to  discover  the  2:1  ratio  of  the  octave  and  the  3:2  ratio  of  the  fifth  which  is  50%  longer  than  the  root.  

String  Activity:  The  above  activity  can  also  be  taught  using  a  fretted  guitar.  Play  an  open  string.  Measure  the  halfway  point  (12th  fret)  and  play  the  string  at  that  fret.  This  sounds  the  octave.  Then  find  the  7th  fret  to  play  the  fifth.  This  demonstration  should  help  to  visualize  the  concept  of  length  and  pitch.  A  string  can  also  change  pitch  by  tightening  or  loosening  the  tuning  peg.  Notice  that  each  fret  gets  shorter  as  it  goes  up  the  neck.  Half  steps  are  a  fraction  of  the  octave;  thus,  the  shorter  the  string,  the  smaller  interval.  Students  can  experience  this  first  hand  by  stretching  a  rubber  band  and  strumming  it  while  changing  the  tension.  

Page 3: CMS-0320-13 Educ STEM

 

 

Bottle  Activity:  Find  three,  plastic,  liter  soda  bottles.  Blow  across  the  top  of  each  bottle  to  confirm  the  fundamental  pitch  of  each  bottle  is  the  same.  Leave  one  bottle  empty  (the  fundamental  pitch).  Fill  the  remaining  two  bottles  halfway  (the  octave).  Empty  one  of  the  two  bottles  approximately  halfway.  Add  or  subtract  water  and  then  test  the  pitch  until  you  find  the  5th.  You  can  demonstrate  the  same  principles  as  the  activities  above,  ask  the  same  questions  and  come  to  the  same  conclusions.      

YouTube  Examples:  Beer  Bottle  Orchestra:  http://www.youtube.com/watch?v=qwK8aTDI73U    

Glass  harp-­‐Toccata  and  fugue  in  D  minor-­‐Bach  http://www.youtube.com/watch?v=XKRj-­‐T4l-­‐e8&feature=related    

Water  Drum  Activity:  (Note:  If  you  don’t  have  a  water  drum,  find  a  set  of  five  aluminum  graduated  mixing  bowls.)  For  this  activity,  you  will  only  use  the  largest  and  second  to  smallest.  Fill  the  largest  bowl  ⅔  to  ¾  full.  Take  the  smaller  bowl  and  float  it  upside  down  in  the  water  of  the  larger  bowl.  You  should  have  a  nice  drum  sound  by  hitting  the  top  of  the  smaller  bowl  with  a  rubber-­‐headed  Orff  mallet  or  a  wooden  spoon.  Now  change  the  pitch  by  gradually  letting  small  amounts  of  air  out  of  the  smaller  bowl,  striking  the  top  after  each  adjustment.  Again  you  can  ask  the  students  to  explain  what  changes  the  pitch  and  if  there  might  be  a  similar  ratio  of  air  in  the  bowl  chamber  to  pitch.  It  should  be  the  same  2:1  and  3:2  as  above.  This  is  something  students  love  to  experiment  with  in  the  kitchen  sink  at  home.  

YouTube  Example:  How  to  make  a  Gourd  Water  Drum:  http://www.youtube.com/watch?v=wul-­‐CiPN5vk    

Minnesota  Science  Standards:  http://education.state.mn.us/MDE/EdExc/StanCurri/K-­‐12AcademicStandards/index.htm  

 

Synopsis  of  Standard:  Energy  –  sound  waves  transferring  energy  –  Explain  how  sound  waves  transfer  energy.  

Definitions:  

• Wavelength  of  a  sine  wave,  λ,  is  the  distance  or  time  between  two  peaks  or  two  valleys  as  shown.  Higher  pitches  have  shorter  distances,  and  lower  pitches  have  longer  distances.    

• Speed  –  the  faster  the  speed  of  the  sine  wave  or  closer  the  distance  of  the  sine  wave,  the  higher  the  pitch.  

• Frequency  is  measured  in  hertz  (Hz)  and  determines  pitch.  The  average  human  ear  can  hear  from  20  to  20,000  Hz.  

Page 4: CMS-0320-13 Educ STEM

 

 

• Amplitude  determines  how  loud  a  sound  will  be.  In  this  diagram,  the  blue  sound  wave  is  twice  as  loud  as  the  pink  wave.  A  player  increases  amplitude  by  blowing  the  instrument  with  more  air  or  striking  the  drum  harder.  This,  in  turn,  increases  the  air  pressure  between  the  sound  waves  or  amplitude.    

• Decibel  (dB)  is  a  measurement  that  quantifies  how  loud  or  soft  something  is.  Here  are  some  examples  of  common  decibel  levels:  

Our  students  need  to  know  that  if  we  listen  to  loud  sounds  for  an  extended  period  of  time,  we  will  suffer  hearing  loss,  damage,  or  painful  tinnitus.  This  damage  is  affected  by  how  loud  the  sound  is  and  for  how  long  we  listen.  Government  research  suggests  that  we  keep  our  extended  listening  below  85  decibels.    tinnitusdx.com    

Demonstration:  Many  computer  programs  or  iPad  applications  give  us  the  opportunity  to  make  sound  waves  visible.  Audacity,  a  computer  program  available  as  a  free  download  to  your  desktop  computer,  is  great  for  recording  and  editing  sound  files.    http://audacity.sourceforge.net/  As  sound  is  recorded,  it  is  visually  graphed  to  show  amplitude  and  frequency.  This  could  be  projected  for  student  observation.  A  better  visual  representation  is  on  the  free  iPad  application  Tone  Generator  Ultra.  If  you  are  able  to  hook  an  iPad  into  a  projection  system,  this  program  shows  the  sine  wave  of  any  pitch  while  showing  the  Hertz.  You  can  vary  the  waveform,  sweep  the  auditory  range  to  test  your  listening  range.  While  projecting  this  program,  prompt  student  inquiry  by  asking  the  following  questions:  

• What  do  you  notice  about  the  Hertz  number  when  moving  octaves?  

• What  happens  to  the  size  of  the  sound  wave  when  pitch  goes  up?  

• Healthy  human  hearing  has  a  range  of  20  to  20,000  Hz.  What  is  your  range?  

Activity:  A  decimeter  is  a  great  tool  to  help  students  understand  the  relationship  between  volume,  decibel  ratings  and  healthy  listening.  Handheld  sound-­‐level  meters  vary  in  price,  but  can  be  purchased  for  as  little  as  $27.  A  free  application  for  the  iPad  which  shows  the  current,  average  and  peak  decibel  readings  is  dB  Meter  Pro.  With  either  device,  students  can  take  readings  of  different  sound  sources.  They  can  then  make  their  own  classroom  poster  for  auditory  awareness  and  safe  listening.  Possible  acoustic  tests  could  include  silence  in  the  room,  varied  hand  percussion,  classroom  recorder  playing,  classroom  singing,  various  levels  of  stereo  sound-­‐system  listening,  the  gym  during  a  phys  ed  class,  the  lunchroom,  an  all-­‐school  assembly  or  the  school  bus  trip  home.  

Page 5: CMS-0320-13 Educ STEM

 

Minnesota Science Standards: http://education.state.mn.us/MDE/EdExc/StanCurri/K-12AcademicStandards/index.htm

Synopsis  of  Standard:  Energy  is  transferred  from  its  source  through  space  and  is  then  perceived  by  the  human  ear.      

YouTube  Example:  http://www.youtube.com/watch?v=dCyz8-­‐eAs1I  Sound  goes  from  the  outer  ear  through  the  ear  canal  to  the  middle  ear  where  it  meets  the  eardrum.  The  sound  makes  the  eardrum  vibrate,  which  connects  to  three  tiny  bones  —  the  hammer,  anvil  and  stirrup.  These  bones  connect  the  eardrum  to  the  inner  ear,  amplifying  the  sound  before  it  reaches  the  snail-­‐shaped  cochlea.  Little  hairs  in  the  cochlea  are  vibrated  by  the  sound  relaying  information  to  the  brain  indicating  what  sounds  are  heard.  Higher  frequencies  are  heard  at  the  beginning  of  the  cochlea  and  lower  frequencies  are  at  the  furthest  point  inside  the  coil.  When  we  listen  to  loud  sounds  for  too  long,  these  little  hairs  are  permanently  damaged,  causing  hearing  loss.  Higher  frequency  hearing  loss  is  more  common  because  the  higher  frequency  hair  receptors  are  at  the  beginning  of  the  cochlea.  

Demonstration:  Students  can  realize  how  sound  waves  travel  through  the  air  by  experiencing  sympathetic  vibration.  Kids  can  easily  imagine  a  stone  being  dropped  in  water  and  the  way  it  creates  rings  of  waves  that  move  away  from  the  point  of  impact.  You  can  describe  sound  in  the  same  way  with  the  addition  of  three-­‐  vs.  two-­‐dimensional  movement.  If  a  toy  boat  were  floating  near  the  point  where  the  stone  landed,  it  would  move  in  the  water  from  the  waves  created  by  the  stone.  Sympathetic  vibration  works  the  same  way.  Just  as  the  toy  boat  is  moved  by  the  stone’s  waves,  sound  waves  can  initiate  vibration  and  sound  in  surrounding  things  that  vibrate.  Some  ways  to  demonstrate  this  are:    

• Singing  near  a  snare  drum,  altering  pitch  until  the  snare  begins  to  rattle.      • Silently  depress  a  piano  key.    Then  play  a  variety  of  other  notes  including  

those  of  the  overtone  series  (octave,  fifth,  fourth  etc.).  When  you  stop  playing  the  other  notes,  the  open  string  should  be  sounding.      

• Create  a  sustained  pitch  by  singing  or  playing  a  wind  instrument  at  the  same  pitch  of  an  open  guitar  string.  When  the  sustained  tone  is  stopped,  the  string  should  be  ringing  clearly.      

Page 6: CMS-0320-13 Educ STEM

 

   YouTube  example:    Spoon  or  coat  hanger  experiment  http://www.exploratorium.edu/science_explorer/secret_bells.html    Strobe  on  piano  to  see  strings  vibrate  http://www.youtube.com/watch?v=pZFfBzG4JWU    Sympathetic  Vibration  on  piano  http://www.youtube.com/watch?v=Rab6-­‐bIC47A&feature=related    Tuning  Fork  Demo  http://www.youtube.com/watch?v=722ev4GqArY&feature=related      

Minnesota  Science  Standards:  http://education.state.mn.us/MDE/EdExc/StanCurri/K-­‐12AcademicStandards/index.htm  

 

Definitions:  

• Transverse  waves  –  “A  transverse  wave  is  a  moving  wave  that  consists  of  oscillations  occurring  perpendicular  (at  a  right  angle)  to  the  direction  of  energy  transfer.  If  a  transverse  wave  is  moving  in  the  positive  x-­‐direction,  its  oscillations  are  in  up  and  down  directions  that  lie  in  the  y–z  plane.  Light  is  an  example  of  a  transverse  wave.”  Sound  waves  are  transverse  or  longitudinal  waves.  A  string  vibrating  is  a  good  example  of  how  sound  travels  away  from  the  string  through  the  moving  air  on  either  side  of  the  string.  http://en.wikipedia.org/wiki/Transverse_wave    

• Interference  –  If  two  sound  waves  of  the  same  frequency  or  in-­‐phase  collide,  they  will  combine  to  a  louder  sound.  Two  sound  waves  that  are  out  of  phase  or  the  same  pitch  can  cancel  each  other  out,  thus  reducing  or  quieting  the  sound.  

• Resonance  occurs  when  a  sound  source  (guitar  string,  marimba  bar,  etc.)  has  a  sympathetic  vibration  with  a  vibrating  object  (guitar  body,  resonating  tube  on  marimba,  etc.).  

• Refraction  is  the  bending  or  changing  direction  of  sound  waves  when  they  encounter  varied  spaces.  For  instance,  when  sound  travels  through  areas  of  differing  temperature,  it  travels  faster  in  warm  air  than  cold.  A  good  example  of  this  is  at  dusk  near  a  lake  when  the  air  temperature  near  the  water  is  cool  and  warmer  above.  This  effect  refracts  the  sound  across  the  water  so  that  it  is  possible  to  hear  a  conversation  of  people  across  a  lake  at  a  significant  distance.  

Page 7: CMS-0320-13 Educ STEM

 

 

 

• Reflection  of  sound  happens  when  sound  strikes  a  flat  surface.  Hard  surfaces  (concrete  or  wood  wall)  can  amplify  sound  while  soft  surfaces  (fabric  or  carpeted  walls)  will  reduce  sound.  Concert  halls  are  designed  to  amplify  sound  while  choirs  often  sing  with  acoustic  shells  behind  them  to  reflect  their  sound  toward  the  audience.  

• Doppler  Effect  is  heard  as  we  listen  to  a  train  or  a  siren  that  passes.  The  pitch  is  higher  than  its  source  as  it  approaches,  in  tune  at  the  moment  is  meets  us,  and  lower  as  it  travels  away.  The  waves  are  compressed  as  each  wave  progressively  has  a  shorter  distance  to  travel  to  our  ear.  As  the  source  travels  away  from  us,  the  waves  have  a  further  distance  to  travel,  thus  stretching  out  and  lowering  the  pitch.  Visual  animated  graphics  can  be  found  on  this  page:  http://en.wikipedia.org/wiki/Doppler_effect    

Math  

Playing  fraction  pie  http://www.philtulga.com/pie.html    

Other  Resources  

Minnesota  Science  Standards:  http://education.state.mn.us/MDE/EdExc/StanCurri/K-­‐12AcademicStandards/index.htm    

National  Science  Standards:  http://www.csun.edu/science/ref/curriculum/reforms/nses/nses-­‐complete.pdf  

Science  Museum  of  Minnesota  http://www.wildmusic.org/en/aboutsound    

Construct  a  vocal  chord  model  http://www.mn-­‐stem.com/    

 

 

 

 

 

Minnesota  Public  Radio  thanks  The  Sunup  Foundation  for  generous  support  of  this  music  education  initiative.  


Recommended