+ All Categories
Home > Documents > CMS: stato e programmi futuri - pd.infn.it · la presa dati tracking performance ad alto pile-up...

CMS: stato e programmi futuri - pd.infn.it · la presa dati tracking performance ad alto pile-up...

Date post: 21-Sep-2018
Category:
Upload: nguyendien
View: 212 times
Download: 0 times
Share this document with a friend
41
1 Sommario: - LHC & CMS, 10 fb-1 di dati: ~2 anni meravigliosi- Performance & running: DT & Tracker CMS: stato e programmi futuri pp→m+m-e+e- + X -“Highlights” di Fisica (Higgs e non solo), attivitapadovane di analisi : T.Dorigo, 35’ - Prospettive: “Long Shutdown 1” (2013/14) e oltre Tracker ( N.Bacchetta,) DT - richieste 2013 U.Gasparini, CdS 10/7/2012
Transcript

1

Sommario:

- LHC & CMS, 10 fb-1 di dati: ~2 anni “meravigliosi”

- Performance & running: DT & Tracker

CMS: stato e programmi futuri

pp→m+m-e+e- + X

-“Highlights” di Fisica (Higgs e non solo),

attivita’ padovane di analisi : T.Dorigo, 35’

- Prospettive: “Long Shutdown 1” (2013/14) e oltre

Tracker ( N.Bacchetta,)

DT

- richieste 2013

U.Gasparini, CdS 10/7/2012

2

LHC @ 7 + 8 TeV (2012 vs 2010/11)

Nei primi 2 mesi di run nel 2012 LHC ha fornito ~6 pb -1 di luminosita’ integrata

( > Ltot(2011)) per collisioni pp con 4 TeV/fascio (max inst. lumi ~7∙1033cm-2s-1 ;

~1400 bunches, 50 ns bunch spacing )

-il run verra’ prolungato di ~2 mesi (fine anno) rispetto alla schedula iniziale

-run heavy-ions postposto a inizio 2013

attesi: ~30 fb-1 in totale

prima del “long

shutdown” (2013/14)

<Nvtx>~25 : “ambiente”

non facile…

3

Prestazioni globali

L’ apparato ha funzionato egregiamente

in tutte le sue componenti… Ottima efficienza di ricostruzione

& identificazione degli “oggetti fisici”

- prestazioni stabili

in funzione del pile-up

4

DT: prestazioni rivelatore

-Il rivelatore ha operato stabilmente; < 1% canali morti,

> 99.5% DAQ “live time”; ottime prestazioni di trigger, timing dei muoni

e ricostruzione

(piu’ che soddisfacente ottimizzazione di calibrazioni, configurazioni

di trigger, allineamenti)

-Detector Control System affidabile, tools di data quality monitoring

ben sviluppati e integrati nel software generale dell’ esperimento

-sistema consolidato di shifts+ expert on-call ( man-power al Cern

ragionevolmente limitato)

efficienza del L1 local trigger nelle camere a mu r.m.s. of Rec.hit residuals distributions

~220 mm

problemi noti

(e risolti)

DT trigger turn-on curves

5

Cfr.

Incandela’s talk 4th July:

H->ZZ(*) muon spectra

pTthres=16 GeV/c

6

Muon reconstruction

A pT>100 GeV, le camere

migliorano sensibilmente la

risoluzione in momento del

sistema globale di

tracciamento

(importante e.g. per ricerche

di risonanze nella regione di

alta massa )

Allineamento:

geometria

“ideale”

7

Running & operations

7

powerful Web-based monitoring tools +

DB interfaces developed

- Continous upgrade of cross-DAQ applications +

Tracker: prestazioni

moduli operanti

tutti i moduli

8

fraction of alive channels:

97.75%

- la qualita’ dei dati presi e’ molto buona:

solo una minima parte viene esclusa

dalla certificazione per le analisi di fisica (1.6%) [principalmente periodi di transizione HV ON OFF ]

CMS Preliminary

- il rivelatore sta funzionando molto bene

- il numero di canali non operativi e’ < 2.5%

- i canali operanti sono efficienti e stabili

rispetto al 2011

99.5%

M. Tosi

9 9

• Le prestazioni della

ricostruzione vengono

monitorate sia online che

offline.

• In particolare si sono

sviluppati nuovi strumenti

per poter monitorare le

prestazioni in funzione della

luminosita’ e del PU durante

la presa dati

tracking performance ad alto pile-up

L’algoritmo di ricostruzione delle tracce e’ stato ottimizzato

in previsione del run 2012 a piu’ alta luminosita’ e Pileup

Evento con PU ~ 50

<PUpeak>~27

<PUpeak>~22

<PUpeak>~10

10

Physics Performance &Dataset (PPD)

New project in 2012 to coordinate:

Data Certification

Data Quality Monitoring

Calibration/Conditions/Database

Physics Validation

MonteCarlo production & data

reprocessing (also for Upgrades)

2012 certified

‘Golden’: 5.19 fb-1 (85%)

Muon: 5.62 fb-1 (92%)

Responsible also for Daily

Offline Operations

Coordination with Trigger,

Offline, Run coordination,

Physics and Computing

Regular reprocessings to have the

best ECAL calibration for H->gg

P. Azzi

11

PPD (II)

Evolution and extension to the Upgrade of the Particle Flow

Optimal combination of information from all subdetectors

Returns a list of reconstructed particles e,μ,γ, charged and neutral hadrons

Used in the analysis as if it came from a list of generated particles

Used as building blocks for jets, taus , missing transverse energy , isolation and PU particle identification

Vast majority of CMS analyses (e.g. Higgs) using GED. Task force helps the coordination/training/code developments so that this number becomes 100%.

11

Made possible by CMS

granularity

and high magnetic field

New “Global Event Description” (evoluzione del Particle Flow)

PPD(III): “Pileup” task force

12

Started Dec 2011 in preparation

for high PileUp of 2012 run.

Obtained:

A factor 2.5 in reconstruction

speed

below ~15” per event on

average

Much reduced memory use

Well under 2 GB

Physics performance unchanged

E.g. no explicit pT threshold

on tracks Reconstruction time/mem without any

output module on a very pessimistic data

sample to show maximum improvements.

Not average performance.

Nel 2012, e’ stata fondamentale un’ottimizzazione del codice

di ricostruzione, per far fronte all’ aumentato pile-up e stare in tempi ragionevoli, a parita’ di

prestazioni della ricostruzione stessa.

13

Attivita’ padovane & responsabilita’

-Commissioning/controllo rivelatore DT :

- local trigger sync., time calibrations,

on-line / off-line DataQualityMonitoring

-Sviluppi / maintenance DT DAQ / DCS

-Physics Performance, data certification

-DT & Tracker offline Databases

-Tier2 operations, data management

- attivita’ per “Long Shutdown”

- simulazioni per upgrade/SLHC

- Analisi di fisica :

Presentazione

di T.Dorigo

Responsabilita’ di Padova in CMS: R.Carlin L1 trigger coordinator

P.Azzi Physics Performance & Dataset coord.

T.Dorigo chair CMS stat. committee

N.Bacchetta Tracker phase1 upgrade techn.coord.

M.Tosi Tracker/DQM resp.

P.Zotto deputy DT upgrade coord.& mu-tk trg.contact

S.Ventura DT/DAQ resp.

F.Montecassiano DT electronic coord.

A.Branca DT /DQM resp.

A.Meneguzzo DT prompt-offline analysis resp.

A.Gozzelino DT L1 emulator sw.

I.Lazzizzera DT upgrade simul.

E.Torassa CMS simulation prod. coord.

Upgrade CMS projects

14

- Technical Proposal being published

end of 2011

-Dealing with “Phase-1” (up to 2020)

- Substantial contributions from Padua

- pixel upgrade

- muon trigger upgrade

LHC Performance Projections

CDS, 10 JULY 2012 Nicola Bacchetta 15

Phase 1 : 13/14 TeV - 500fb-1 Phase 2 : 13/14 TeV - 3000fb-1

LS1 13-14

713/14 TeV

Injection upgrade

PS batch compression

SPS scrubbing

LS2 18 (19?)

Injection upgrade

Linac4 (H-)

PSB-PS 1.42GeV

RF upgrades PS - SPS

aC coating SPS (?)

LS3 22-23

>30

LHC Interaction region upgrade

Triplets (lower β*)

Crab cavities (beam crossing leveling)

b-b compensation (lower beam loss)

Lpeak 1035 Hz/cm2

Lleveled 5 1034 Hz/cm2

2 1034

1034

o Goal is 25ns, 50ns not ruled out

o Performance projection and

schedule will likely not be well known

before restarting in 2015

o Leveling mitigates pile-up but

integrated luminosity could be limited

due to SEE & UFOs effects

12

7 1033Hz/cm2

à 50 ns

30fb-1

25 ns

2e34 likely before LS2

?

N.Bacchetta

CMS Upgrade Strategy

CDS, 10 JULY 2012 Nicola Bacchetta 16

Phase 1 : 13/14 TeV - 500fb-1 Phase 2 : 13/14 TeV - 3000fb-1

LS1 13-14 LS2 18 (19?) 12

20fb-1

LS3 22-23 >30

Assume 25ns operation, or lumi-leveling at 50ns as a fall-back

For Phase 1 (up to LS3)

Design to operate at <PU>=100 (eg Pixel BandWidth)

Simulate performance for <PU>=50 as a “baseline” and degradation for <PU>=100

For Phase 2

Simulate and design for <PU>=100 as a “baseline” and degradation for <PU>=200

Prepare for significant peak luminosity and pile-up even before LS2

Pixels – HF – L1-Trigger ready before LS2

New beam-pipe – Pixel cooling system – Pixel pilot blade installation in LS1

Optical splitting for ECAL installation in LS1 for L1-Trigger

Need an extended TS in 2016 for Pixels installation, not in current LHC schedule

Maintain flexibility to adjust to evolving performance, schedules and funding

Develop a consolidated schedule and model for the funding to allow the right strategic

decisions (subset included in the TDR)

LS1 projects 2013 - 2014

In production

Critical-path construction milestone-series to feed into TC global

planning

Pixels and HCAL TDRs

Conceptual Design Reviews have been held

Submit to LHCC 2012 for endorsement before next RRB - request for

physics motivation and for summary documents provided with TDRs

in advance

July: internal referee-readers, August: Collaboration review

Second half of July: review physics case – CADI lines created for TDR

chapters

(plus AN) – ARCs assignment in progress

July: review of cost estimates (FB sub-committee)

L1-Trigger TDR

CDR (two parts) in September / November

Submit to LHCC early 2013

Phase 2 TP end 2014 – TDR in 2016

CDS, 10 JULY 2012 Nicola Bacchetta 17

CMS Upgrade Strategy

Data rates:

Zero suppression means data rates depend on occupancy.

Above design data rates & pileup now due to 50ns bunch

spacing

6E33 @ 50ns ~30 pileup

Several bottlenecks:

Buffer space in ROC

Layer 1: 16% Loss at 2E34 (25 ns)

Optical readout of modules

Saturates at 1.3E34 (50ns)

or 2.6E34 (25 ns)

FED to event builder

S-Link/Myrinet replacement

All Addressed in upgrade

CDS, 10 JULY 2012 Nicola Bacchetta 18

Present Pixel Limitations

CDS, 10 JULY 2012 Nicola Bacchetta 19

Pixel Upgrade: main improvements

Performance Enhancements

CDS, 10 JULY 2012 Nicola Bacchetta 20

New geometry:

o Improved resolution at low pT and high η

o Reduced degradation from inefficiencies

o Vertex resolution benefits from both

o Improved efficiency

on all η ranges at high

pileup.

o Improvement at 100

pileup even more

striking

New ROC chip

CDS, 10 JULY 2012 Nicola Bacchetta 21

TBM

digital

LCDS

convert

Digital

Logic

Translator

Te

st s

tructs

ture

s

Step 1 (Jan. 2012, 250nm CMOS)

ROC for Layers 2-4 (PSI46dig)

pixel rates < 250 MHz/cm2

DC level changes

DB buffer 3280

TS buffers 12 26

ROC level changes

readout buffer with data throttling

ADC (8bit) for pixel pulse heights

160Mbit/sec serial digital out

6th metal less power droop

reduced X-talk lower thresholds

no changes to PUC & CD architecture

Step 2 (Oct. 2012, 250nm CMOS)

ROC for Layer 1 (PSI46dig+)

pixel rates < 600 MHz/cm2

Improved Column Drain Cluster (CDC)

architecture & dead time free DB

Testing new ROCs in Padova

CDS, 10 JULY 2012 Nicola Bacchetta 22

Testing ROCs:

o Necessary before committing chips to

modules as failure rate after dicing non

negligible.

o x-ray, rate characterization/calibration

Support module qualification:

o test a few sample modules in details for

quality assurance and ROC testing procedures

verification.

Testing new ROCs

CDS, 10 JULY 2012 Nicola Bacchetta 23

Testing (2012-13):

o New probe-card designed and

delivered

o Finish setting up the probe station in

Padova

o complete the debugging of the new

probe-card

o Start gaining experience testing chips,

improve on quality and setup

o support testing early module production

Phase II: Full Tracker Upgrade

CDS, 10 JULY 2012 Nicola Bacchetta 24

Radiation hardness

Ultimate integrated luminosity considered ~ 3000 fb-1

To be compared with original ~ 500 fb-1

Granularity

Resolve up to 200÷250 collisions per bunch crossing

Nominal figure of 5×1034 cm-2 s-1 @ 40 MHz corresponds to ≥ 100

collisions

Keep 20 MHz as worst-case limit

Maintain occupancy at the few % level

Requires much shorter strips!

Improve tracking performance

Reduce material in the tracking volume

Improve performance @ low pT

Reduce rates of nuclear interaction, g conversions, bremsstrahlung…

Reduce average pitch

Improve performance @ high pT

Phase II Full Tracker Upgrade

CDS, 10 JULY 2012 Nicola Bacchetta 25

Designing an Outer Tracker with:

Higher granularity

Enhanced radiation hardness

Improved Tracking performance (.l. lighter!)

L1 Track finding capability

Reconstruct tracks above ~ 2.5 GeV

With ~ 1mm z0 resolution

All the necessary R&D activities are ongoing

Still far from a fully defined concept

But a lot of progress has been made already

Encouraging indications that the goals could be met

Need to converge on an optimal design in the next ~ 2 years

Draft schedule developed for delivery in LS3

Phase 2 TP end 2014 – TDR in 2016

Key new feature

Tracker Input to L1

CDS, 10 JULY 2012 Nicola Bacchetta 26

Silicon modules provide at the same time “Level-1 data” (@ 40

MHZ), and “readout data” (@ 100 kHz, upon Level-1 trigger)

The whole tracker sends out data at each BX: “push path”

Level-1 data require local rejection of low-pT tracks

To reduce the data volume, and simplify track finding @ Level-1

Threshold of ~ 1÷2 GeV data reduction of one order of magnitude

or more

Design modules with pT discrimination (“pT modules”)

Correlate signals in two closely-spaced sensors

Exploit the strong magnetic field of CMS

Level-1 “stubs” are processed in the

back-end

Form Level-1 tracks, pT above 2÷2.5 GeV

To be used to improve different trigger channels

m

m

mx

y z

“stub”

Tracker Input to L1

CDS, 10 JULY 2012 Nicola Bacchetta 27

Hierarchical logic to find L1 tracks

Within double-stack, each lower module is combined with two

upper modules to form Tracklets

Geometry helps to keep problem “local”

Tracklets in each layer are extrapolated to the other two

layers

Possible to find a track if there is at least one tracklet

N.B. in this layout also the outermost layer is

pixellated!

Impact on power and cost!

Remove duplicates

Concept appears to be feasible

Only defined strategy to deliver L1 tracks so far

A possible layout: long barrel

CDS, 10 JULY 2012 Nicola Bacchetta 28

Pairs of stubs are combined to form “tracklets”

Self-contained f sectors.

Each sector needs to be combined with

the two neighbouring sectors (left and

right) to “contain” ~2.5 GeV tracks.

May 25, 2012 28

6

• Outer&tracker&completely&built&with&pT3modules&

• Par7cularly&flexible&in&simula7on&studies&of&tracking&trigger:&• informa7on&from&several&layers&of&the&tracker&can&be&combined&in&a&projec7ve&geometry&

• tes7ng&ground&to&compare&the&performance&of&different&designs&and&configura7ons&

• 100#μm#×#1#mm#pixels#(in#r"φ#×#z)#• 1#mm#lever#arm#in#stacks#• trigger#layers#arranged#in#double#stacks#with#4#cm#separa?on#

Hermetic azimuthal coverage to

keep data flow local within a ladder

6 long layers = 3 Super layers

Very challenging design

6

• Outer&tracker&completely&built&with&pT3modules&

• Par7cularly&flexible&in&simula7on&studies&of&tracking&trigger:&• informa7on&from&several&layers&of&the&tracker&can&be&combined&in&a&projec7ve&geometry&

• tes7ng&ground&to&compare&the&performance&of&different&designs&and&configura7ons&

• 100#μm#×#1#mm#pixels#(in#r"φ#×#z)#• 1#mm#lever#arm#in#stacks#• trigger#layers#arranged#in#double#stacks#with#4#cm#separa?on#

Hermetic azimuthal coverage to

keep data flow local within a ladder

6 long layers = 3 Super layers

Very challenging design 15 degree sector

f arrangement within double-stack layer

Common supporting mechanics

CMSSW simulation results (work in progress)

CDS, 10 JULY 2012 Nicola Bacchetta 29

9

Stub%produc+on%efficiency%in%stacks%at%32%cm,%36%cm,%and%in%both%of%them%within%same%ladder%(product%in%gray,%measured%in%red)%• pixel%pitch%allows%sharp%threshold%at%2%GeV/c%in%simula+ons%of%single%muon%tracks%[L]%

• 5%GeV/c%threshold%is%smeared%%

pT thresh = 2 GeV/ c pT thresh = 5 GeV/ c

Generated muons with flat 0<pT<100 GeV/ c

Stub finding efficiency in layer 1

18

• Stubs&can&be&used&like&“hits&from&tracks&with&pT&above&threshold”&

• Stubs&can&be&associated&with&each&other&in&opportunely&paired&trigger&layers&to&form&tracklets&

• Associa<on&within&same&ladder&and&double&stack!&

Assuming(the(vertex(in(the(transverse(plane,(the(trajectory(can(be(fully(constrained:(simple(trigonometry(to(get(R,(pT(and(φ(

• Vertex&is&assumed&in&(x,y)=(0,0)&• Track&is&backprojected&to&vertex&with&a&straight&line&in&r&×&z%

At#least#1#tracklet#At#least#2#tracklets#At#least#3#tracklets#

“digi hit”

Tracklet finding efficiency in L1 and L3

DT upgrade plans

30

- “manutenzione

straordinaria” in LS1:

nuove FPGA boards

in trigger q-view

- Riallocazione

& nuovo trigger

sector collector

- Preparazione

per L1 con Tracker (fase 2)

- Nuovo RO

- Nuovo DT

Track Finder

(in discussione)

FPGA in Trigger q view

31

Progetto completamente padovano:

- Prototipi finali FPGA prodotti &

estensivamente testati

-Tests di radiation hardness

eseguiti con successo (PSI, LNL)

sostituzione moduli trigger BTIM (assemblaggio ASIC tecnologia ATMEL 0.5 mm)

con FPGA nella vista theta del DT local trigger

FPGA in Trigger q view (II)

32

- Gara per produzione di massa FPGA conclusa

(200 kCHF su MOFB)

- delivering time in Autunno

- on schedule per installazione durante LS1

Test di funzionalita’:

“timebox” con nuove/vecchie

schede di trigger

DT upgrade: spostamento trigger Sector Collector

33

Oggi:

Dopo shutdown:

Attivita’ principale: gruppi Torino/Bologna: sviluppo traslatori OFCu, CuOF

Padova: contributo su upgrade slow-control

Slow control upgrade

34

S. Ventura

Inheriting the

solution

developed for the

upgraded

secondary links to

control to CUOF

boards and the

OFCU-TSC

Not needed for

commissioning of

the CUOF-OFCU

chain, can arrive

later

35

Studi nuovo Sector Collector

36

DT Upgrade : oltre fase 1

Sviluppo simulazioni dettagliate per SLHC (High luminosity):

studi di nuovi algoritmi per L1 trigger di muoni DT+Tracker

Tracker-upgrade

geometry used (see Bacchetta’s slides)

50 GeV muons

Fraction of

muons passing

L1 trigger

present CMS

Muon trigger

new

algos

Detailed pile-up studies performed

<Npileup>=200

( → L~ 1035 cm-2 s-1)

37

Calcolo: T2 Pd-LNL + local cluster

- Esperienza consolidata su un notevole carico di lavoro

- sia simulazioni (scheduled processing) che

job di analisi (random CPU usage)

~1000 CPU’s,

~100% usage

~last 24 h

EVO, web-mon

outreach,

student’s demo

CMS center & local

cluster

(analisi interattiva)

I principali contributi di Fisica

38

CMS ha pubblicato dal 2010 ~140 lavori di Fisica (+ ~30 su performance

rivelatori)

Maggiori contributi padovani ad articoli pubblicati:

-Low PT physics: Bose Einstein correlation a 2 e 7 TeV

-B-physics: Misura di produzione inclusiva di quark utilizzando pp->mu X

-Exotica: ricerca di Heavy Stable Charged Particles

In cantiere:

- Higgs: search di MSSM Higgs nel processo di produzione associata bbH, H->bb

(Physics Analysis Summary (PAS) pubblicato per ICHEP2012)

- Exotica: Heavy Top Partners (PAS imminente), Heavy lepton partners of neutrinos

in Type III seesaw model (PAS imminente)

39

Personale gruppo CMS

DT: Tracker:

Le attivita’ di analisi fisica

sono comuni

Tecnologi

Percentuale CMS

Azzi 100

Bacchetta 100

Bisello 70

Dorigo 100

Giubilato 70

Paccagnella 30

Pozzobon 100

Tosi 100

Zucchetta 100

TOTALE 7.7 FTE

Percentuale CMS

Branca 100

Carlin 100

Checchia 100

Dosselli 90

Gasparini U. 100

Kanishcev (TN) 70

Lacaprara 100

Lazzizzera (TN) 70

Margoni 70

Meneguzzo 100

Pazzini 100

Ronchese 100

Simonetto 70

Torassa 100

Zotto 100

Zumerle 100

TOTALE 14.7 FTE

Percentuale CMS

Bellato 40

Benettoni 30

Gonella 80

Michelotto 20

Montecassiano 70

Passaseo 100

Pegoraro 70

Sgaravatto 70

Ventura 50

TOTALE 5.3 FTE

40

Richieste servizi

Richieste Servizi 2013

mesi/uomo Note

operatore per tests dei chips

5

tecnico in sede 6 di cui 3 m/u da D.Pantano

officina meccanica 1 Parti meccaniche: chip holder

Off. Elettronica:

12 m.u. test funzionale e di produzione TRB-theta e spare TRB-phi

4 m.u. Installazione nuove schede sul rivelatore

2 m.u. riparazione schede recuperate dal rivelatore

6 m.u. manutenzione camere durante LS1 & preparazione sist.test

minicrates

Off. Mecc. 2 m.u. attrezzi/supporti per test TRB

0,5 m.u. realizzazione secondo sistema portatile di test minicrates

Uff.Tecn. 1 m.u disegno attrezzi/supporti DT TRB tests

Serv. Calcolo : 24 m.u. Supporto cluster locale CMS, supporto CMS center,

maintenance/operations/sviluppi T2 Pd-Legnaro

Tracker:

DT:

41

Richieste finanziarie 2013

41

Richieste Finanziare 2013

Keuro Note

Missione Interne 7.7

Missioni Estere 136.4

5.9 m/u metabolismo

9 m/u responsabilita' tracker

9 m/u responsabilita' non tracker

9 m/u presa dati / servizi @Cern

3 m/u tecnici

Consumo 18.6

11.6Keuro metabolismo

4.0Keuro auto

3.0Keuro clear room

Totale 162.7

Richieste Finanziare 2013

Keuro Note

Missione Interne 20.0

Missioni Estere 273.6

13 m/u metabolismo

13 m/u responsabilita' DT

6 m/u responsabilita' non DT

20 m/u presa dati/servizi @Cern

20 m/u tecnici

Consumo 39.0

30 Keuro metabolismo

9.0Keuro auto

Totale 332.6

Tracker:

DT:

Dal Gennaio 2013: prossimo responsabile locale sara’ Paolo Checchia;

auguri a Paolo di buon lavoro: saranno anni impegnativi,

ma certamente di grande interesse…


Recommended