+ All Categories
Home > Documents > Coastal processes of the Baltic Sea – from ...

Coastal processes of the Baltic Sea – from ...

Date post: 16-Oct-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
67
Coastal processes of the Baltic Sea – from paleoenvironmental reconstruction to future projection Jan Harff 1 , Michael Meyer 2 , Wenyang Zhan 3 , 1 Szczecin University, Poland; IOW Warnemünde, Germany 2 Rostock University, Germany 3 Zhongzhan University, Guangzhou, China
Transcript

Coastal processes of the Baltic Sea –from

paleoenvironmental reconstructionto

future projection

Jan Harff 1, Michael Meyer 2, Wenyang Zhan 3,

1 Szczecin University, Poland; IOW Warnemünde, German y2 Rostock University, Germany3 Zhongzhan University, Guangzhou, China

1. Introduction

2. Driving forces of coastline change at the south ernBaltic Sea

3. Transgression/regression model and future extreme (defense) sea level

4. PRDM-LTMM for the Baltic and model validation

5. Hindcast and future projection for coastal key ar eas

6. New projects: CoPaF, SPLASHCOS

6. Conclusion

The Baltic Area

303710

Å

Sea-Surface Temperatures Reconstructed for LGM Conditions

Douglas and Peltier (2002)

Present-Day Rate of RSL Change due to GIA Predicted by the Toronto Model

Douglas and Peltier (2002)

- -

3 Lampe 2007

6 Uscinowicz 2006

8 Veski et al. In press

10 Miettinen, 2004

13 Linden 2006

14 Berglund 2004

15 Risberg 2005

16 Berglund 1964

Selected RSL curves for the Baltic Sea

modified fromRosentau et al. (2007)

Foto: J. Harff (2003)

Regressive North: Åland –Islands, August 2003

Transgressive South: Eroded Mrze Ŝyno after the Storm of Nov. 4, 1995

≥+<

+=0,

0,0 tifGIAEC

tifRSLDEMDEM

tt

tt

DEM: Regional transgression/regression models

RSL = EC + GIA, relative sea levelEC eustatic componentGIA glacio-isostatic adjustmentt T time

t

≥+<

+=0,

0,0 tifGIAEC

tifRSLDEMDEM

tt

tt

DEM: Regional transgression/regression models

RSL = EC + GIA, relative sea levelEC eustatic componentGIA glacio-isostatic adjustmentt T time

t

RSL Surface for the Baltic area

Meyer and Rosentau (2006)

DEMt: Palaeo-geographic changes of the Baltic Area

Meyer and Rosentau (2006)

RegressionTransgression

Transgression and regression of the Baltic Sea since 8000 y r BP

Factors of influence on coastal processesand their interrelation

geo-system

socio-economic

system

eco-system

climate

Factors of influence on coastal processesand their interrelation

geo-system

socio-economic

system

eco-system

climate

Future ?

≥+<

+=0,

0,0 tifGIAEC

tifRSLDEMDEM

tt

tt

DEM: Regional transgression/regression models

RSL = EC + GIA, relative sea levelEC eustatic componentGIA glacio-isostatic adjustmentt T time

t

RSL = EC + GIA, relative sea level

Glacio-isostatic adjustment

GIA = RSL - EC, isostatic component

EC = 1.0 mm (Ekman 2009)

Last 100 years relative sea level change (mm/y)

Rosentau et al. (2007)

Last 100 Years GIA (vertical crustal movement, mm/y)

Harff and Meyer (in press)

DEM Baltic Area (data: Terrainbase)

5 15 25 35

55

65

10 20 30

70

600

-500

-100

-2000

250

750

1250

2000

longitude [decimal degree]

latit

ude

[dec

imal

degr

ee]

elevation [meter]

Meyer (2000)

DEM2000

data: SEIFERT, T. and KAYSER, B., 1995. A high resolution spherical grid topography of the Baltic Sea. Marine Science Reports, 9, pp. 73-88.

data: Rosentau, A; Meyer, M; Harff, J.; Dietrich, R; Richter, A. (2007): Relative Sea Level Change in the Baltic Sea since the Littorina Transgression. - Zeitschr. f. Geol. Wiss., 35, 1/2: 3 - 16.

Glacio-isostatic adjustment (GIA)

Modeling parameters: future Modeling parameters: future sea level change (yr AD)sea level change (yr AD)

data: data: VoVoßß et al. 1997, ECHAM3/LSGet al. 1997, ECHAM3/LSG

MAXGIAECDEMDEM +++= 2100210002100

DEM: Disaster projection models

RSL = EC + IC, relative sea levelEC eustatic componentGIA isostatic componentMAX maximum sea levelt T time

Tt∈Tt∈Tt∈Tt∈

t

Maximum sea level, November 1872

model: Zirkulationsmodell des BSH Version v4, Modell der Nord- und Ostsee mit integriertem Küstenmodell

Maximalwert des Wasserstand:04.11.1872 00:00 bis 14.11.1872 00:00

MAXGIAECDEMDEM +++= 2100210002100

DEM: Disaster projection models

RSL = EC + IC, relative sea levelEC eustatic componentGIA isostatic componentMAX maximum sea levelt T time

Tt∈Tt∈Tt∈Tt∈

t

Extreme sea level projection: DEM 2100

DEM2000 - 1872 + ISOSTASY * 100 - 0.2

Extreme sea level projection: DEM 2100

DEM2000 - 1872 + ISOSTASY * 100 - 0.2

masl

-20

0

20

Extreme sea level projection DEM 2100 for Darss Zingst Penninsula

DEM2000 - 1872 + ISOSTASY * 100 - 0.2

12.33°E54.25°N

13.01°E54.63°N

DEM Baltic Area (data: Terrainbase)

5 15 25 35

55

65

10 20 30

70

600

-500

-100

-2000

250

750

1250

2000

longitude [decimal degree]

latit

ude

[dec

imal

degr

ee]

elevation [meter]

Meyer (2000)

≥+<

++=0,

0,0 tifGIAEC

tifRSLSEDDEMDEM

tt

tt

DEM: Local coastal morphogenetic models

RSL = EC + IC, relative sea levelEC eustatic componentGIA Glacio Isostatic AdjustmentSED sediment thickness changet T time

t

PRDPRD--LTMMLTMM

parametrization

DEMt

Regional/localdigital elevationmodel (DEM0)wind BBL model

sediment map

eustasy

storms

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

Sediment transport Sediment transport modellingmodelling with PRDwith PRD --LTMM: flow chartLTMM: flow chart

cliff model

vertical crustalmovement

∂∂

∂∂+

∂∂

∂∂

=−−+∂

∂+∂

∂+∂

yCDA

yxCD

Ax

EDy

DvCx

DuCt

DC

hh

sourceφ

Two-dimensional horizontal sediment transport equat ion

A

∂∂

∂∂+

∂∂

∂∂

=−−+∂

∂+∂

∂+∂

yCDA

yxCD

Ax

EDy

DvCx

DuCt

DC

hh

sourceφ

Two-dimensional horizontal sediment transport equat ion

deposition flux resuspension flux

sediment source from lateral boundaryA

horizontal eddy diffusivity

suspended sediment concentration

Regional grid system

water level gauging station

wave seriesgauging station

PRDPRD--LTMMLTMM

parametrization

DEMt

Regional/localdigital elevationmodel (DEM0)wind BBL model

sediment map

eustasy

storms

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

Sediment transport Sediment transport modellingmodelling with PRDwith PRD --LTMM: flow chartLTMM: flow chart

cliff model

vertical crustalmovement

Bathymetry

Modeling parameters: digital elevation modelModeling parameters: digital elevation model

sources:• Land Survey Administration Mecklenburg-Vorpommern• Federal Maritime and Hydrographic Agency• Seifert, Tauber and Kayser 2001

grid resolution: 150x150m2

Sediment map

coarse sand,gravel,hard rock

medium sand

fine sand

silt, clay, mud

Modeling parameters: sediment distributionModeling parameters: sediment distribution

sources:• Heck et al. 1957• Tauber and Lemke 1995• Tauber, Lemke and Endler 1999

grid resolution: 150x150m2

Modeling parameters: Modeling parameters: crustal movementcrustal movement

PRDPRD--LTMMLTMM

parametrization

DEMt

Regional/localdigital elevationmodel (DEM0)wind BBL model

sediment map

eustasy

storms

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

Sediment transport Sediment transport modellingmodelling with PRDwith PRD --LTMM: flow chartLTMM: flow chart

cliff model

vertical crustalmovement

Modeling parameters: Modeling parameters: wave fieldwave field

wave direction(coming from)

gauging station(1958-2002)

data: GKSS/data: GKSS/IfKIfK

PRDPRD--LTMMLTMM

parametrization

DEMt

Regional/localdigital elevationmodel (DEM0)wind BBL model

sediment map

eustasy

storms

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

Sediment transport Sediment transport modellingmodelling with PRDwith PRD --LTMM: flow chartLTMM: flow chart

cliff model

vertical crustalmovement

Active cliff at Fischland (Darss-Peninsula)

STAUN

∆′−

∆′

=sand.for)1(

silt/clayfor

,,

wave

cliffcoh

wave

cliffcoh

source

T

xHRf

T

xHRf

φ

Source term for sediment from cliff erosion

∆′−

∆′

=sand.for)1(

silt/clayfor

,,

wave

cliffcoh

wave

cliffcoh

source

T

xHRf

T

xHRf

φ

Source term for sediment from cliff erosion

erosion ratecliff height

fraction of cohesive sediments

wave period

PRDPRD--LTMMLTMM

parametrization

DEMt

Regional/localdigital elevationmodel (DEM0)wind BBL model

sediment map

eustasy

storms

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

1 1 0.8 2.8 5.4 2 1 0.8 2.8 5.4 3 1 0.8 2.8 5.4 4 1 0.8 2.8 5.4 5 1 0.8 2.8 5.4 6 1 0.8 2.8 5.4 7 1 0.8 2.8 5.4 8 1 0.8 2.8 5.4 9 1 0.8 2.8 5.4 10 1 0.8 2.8 5.4 11 1 0.8 2.8 5.4

Sediment transport Sediment transport modellingmodelling with PRDwith PRD --LTMM: flow chartLTMM: flow chart

cliff model

vertical crustalmovement

Sediment type kb [cm] u*d[cm/s] u*r[cm/s]

Silt/clay/mud 0.185 0.88 3.0

Fine sand 1.203 2.9 2.9

Medium sand 2.3125

Coarse sand5

7.9 7.9

hard rock

Bottom roughness length and critical shear velocity thresholds for the considered sediment types

Model validation: Historical maps / photos

Swedish MatricleMap 1696

Prussian„Messtischblatt“ 1869

GDR „Messtischblatt“ 1970

data: data: TiepoltTiepolt ((StAUNStAUN))

red: 2000red: 2000blueblue: 1696: 1696

Historic scenario: reconstruction of the initial st ateHistoric scenario: reconstruction of the initial st ate

Model results (1696~2000)

Model results (1696~2000)

Model results (1696~2000)

Model results (1696~2000)

12.2 12.4 12.6 12.8 13

54.3

54.4

54.5

Measured coastline in 2000

Modelled coastline in 2000

Model results (1696~2000)

Model results (6000 a BP~250a BP)

Model results (6000 a BP~250a BP)

Model results (6000 a BP~250a BP)

Bathymetry

Model results (2000~2300)

Model results (2000~2300)

Model results (2000~2300)

COPAF (2010-2012):Coastline Changes of the southern Baltic Sea – Past and future projection

Key areas: Western Pomerania. Leba area, Gulf of Gdansk

data: SEIFERT, T. and KAYSER, B., 1995. A high resolution spherical grid topography of the Baltic Sea. Marine Science Reports, 9, pp. 73-88.

RegressionTransgression

Network of co-operation in coastal processes research

Summary

The Baltic Sea serves as a model ocean that allows to study in an exceptional manner the interrelation between geological, climatic and hydrogaphic forcing of the evolution of coastlines.

Driving forces for coastline changes act on different time scales. For defense level scenarios relative sea level models provide useful results. For long-term prediction of coastal scenarios we have to implement morphogenetic models that display the geological parameters as well as the hydrographic pattern of the coast under investigation.

First test confirm that PRDM-LTMM mirrors general dynamic behavior of sandy spit coasts. Additional studies for a wider scale of key areas are needed for practical application of the model.

Understanding the complex processes of interrelation between geo-, eco-, and anthroposphere requires the interdisciplinary and international cooperation between geoscientists, oceanographers, climatologists, and coastal engineers.

Acknowledgement

We thank

Lars Tiepolt (State Agency for Environment and Nature Rostock Mecklenburg-Vorpommern)

for co-operation.


Recommended