+ All Categories
Home > Documents > Coastal protection Rubble mound breakwaters...

Coastal protection Rubble mound breakwaters...

Date post: 04-Apr-2018
Category:
Upload: dangxuyen
View: 220 times
Download: 3 times
Share this document with a friend
45
Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé [email protected] M2C, Caen
Transcript
Page 1: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Coastal protectionRubble mound breakwaters

Physical modelling

Dominique Mouazé[email protected], Caen

Page 2: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé
Page 3: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Design flow diagram

Identify need

Existing coastal information

Problem definition Environmentalconsiderations

DesignRequirementsOptions

DataCollection

Sources of materials

Soils, geologymorphology

Wind, waves,Tide, currents

DESIGN

Page 4: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Rear armortoe

UnderlayerCore

Core below water

Main armor

antiscour

Rear armortoe

UnderlayerCore

Core below water

Main armor

antiscour

Page 5: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

enroc hements

Port Talbot, GB

Tetrapodes

Cresc ent c ity, USA

Sines, Portugalfiltre

c ouronnement enbéton

blocs d ’Antifer

Page 6: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Wave deformations

-Shoaling-Refraction-Diffraction-Reflection-Breaking-Transmission

cap baie

Ombre de la jetée

Ligne d ’ombre

vagues diffractéeshoule inc identehoule r fl chieé é

Deep water (H, T, L, c, d)

Shallow water

( )kdkgc tanh2 =

⎟⎠⎞

⎜⎝⎛=

LdgTL π

π2tanh

2

2

d < L/20

d < L/2

Page 7: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Significant wave height from ‘Fetch’

Page 8: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

0 1 2 3 4 5 6 70

5

10

15

20

25

Nom

bre

de v

ague

s, n

Hauteur de houle, H(m)

0 1 2 3 40

2

4

6

8

Fréquencen/N

H (m)

Statistics of waves

Fréquence de houle (Hz)

dens

ité s

pect

rale

S(f)

en

ms

2.

JONSWAP

-Probability distribution P(x) :P(x) = Prob [ x(t) ≤ x ]P(x=-∞) = 0 et P(x=∞) = 1

- Q = 1 - P

Hs = 4 x (under curve area)^(1/2)

Design wave = Hs = H1/3

Page 9: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Hmax (m) N P Q 1.75 1019 0.37217 0.62783 2 549 0.57268 0.42732 2.25 382 0.7122 0.2878 2.5 254 0.805 0.195 2.75 174 0.86852 0.13148 3 113 0.90979 0.09021 3.25 81 0.93937 0.06063 3.5 60 0.96129 0.03871 3.75 40 0.97589 0.02411 4 27 0.98576 0.01424 4.25 19 0.9927 0.0073 4.5 10 0.99635 0.00365 4.75 4 0.99781 0.00219 5 2 0.99854 0.00146 5.25 1 0.9989 0.0011 5.5 2 0.99963 3.65E-04 5.75 0 0.99963 3.65E-04 6 1 1 0 total 2738

‘Long term’ design

probability distribution

P(H<1.75)=1019/2738=0.37217

P(H<2)=(1019+549)/2738=0.57268

probability of a wave greater than 2m

Q(H>2)=1-P(H<2)=1-0.57268 =0.42732

1 0.1 0.01 1E-3 1E-4 1E-51

2

3

4

5

6

7

8

houl

e ce

nten

aire

houl

e an

nuel

le

houl

e dé

cenn

ale

Probabilité cumulée d'occurrence

Hmax(m)

365.n1Q =

Cumulative occurrence probability

For ten years Q=1/(365x10)=2.7.10-4

Hs = -α log(Q)

Page 10: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

-Significant wave heightHs

-Extreme wavesHmax

-Run-up / Run-downOvertopping

Page 11: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Construction

Page 12: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

From the ‘earth’

Page 13: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

From a ‘pier’ / from the ‘sea’

Page 14: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Placement (Armour layer)

Page 15: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Placement (Armour layer)

Page 16: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

HgDF nwhoule2ρ= 3)( nwr gDBW ρρ −=− 3

nr gDW ρ=

33

3

)sincos( ααμρ

+Δ≥

gHNW r Irribaren

αρ

cot3

3

D

r

KHgW

Δ≥ Hudson

Kd Stability coefficientΔ=(ρb – ρw)/ ρw

Design formula

Page 17: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Interlude

Page 18: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

SPM 1984

SPM 1977

Stability coefficient KD

Page 19: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Natural rocks

Filter rules

Page 20: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Artificial blocks (Armour layer)

Page 21: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Concrete breakwater armour unit classification (1/2)

Page 22: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Concrete breakwater armour unit classification (2/2)

Page 23: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

TETRAPODE

Artificial blocks (Armour layer)

C.

Page 24: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Artificial blocks (Armour layer)

Page 25: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

CUBE ANTIFERArtificial blocks (Armour layer)

Page 26: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

DOLOS

Artificial blocks (Armour layer)

Page 27: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

ACCROPODE

Artificial blocks (Armour layer)

Page 28: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

ACCROPODE II

Artificial blocks (Armour layer)

Page 29: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

CORELOCX-BLOC

Artificial blocks (Armour layer)

Page 30: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Stability performance

Musoir

Page 31: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Overtoppingwww.overtopping-manual.com HR Wallingford

Page 32: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Physical modelling

Page 33: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Physical modelling

“When dealing with water, first experiment then use judgment”Leonardo da Vinci

Page 34: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Physical modelling / numerical modelling

Advantages1. cost effective2. physical processes without simplification3. large number of tests with controlled parameters4. turbulence 5. advanced experimental techniques

Disadvantages1. scale effects2. laboratory effects3. missing conditions4. more expensive than numerical models

“A physical model is a physical system reproduced (reduced size) so that the major dominant forces are represented in the correct proportion”

(Hughes, 1993)

Page 35: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Wave bassin (3D)

Page 36: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Wave bassin (3D)

Page 37: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Modèles numériquesModèle physique

4,75 m4,75 m1,9 m1,9 mDistance Distance MontMont--barragebarrage

256 m256 m22 mm41 km41 km22Surface zone Surface zone

12,5 12,5 àà 37 cm/s37 cm/s1 1 àà 3 m/s3 m/sVitesse Vitesse courantscourants

20,7 cm20,7 cm13,5 m13,5 mAmplitude Amplitude marmarééee

15 15 mnmn12h25 12h25 mnmnDurDuréée mare marééee

modmodèèlelenaturenature

Wave bassin (3D)Mobile bed

Page 38: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Wave Flume (2D)

Length L = 22mWater depth d = 0.3m to 0.7mMaximum significant wave height Hs ~ 0.25m

Regular and Irregular wave generationFocused wave generationPiston type wavemaker ( Edinburgh Designs) ‏

Dynamical wave absorptionPVC and glass flume bottomGlass walls

Wave generation area Wave field Reflection areaAbsorption area

Page 39: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

020

40

60

80

100

120

140

160180

200

220

240

260

280

300

320

340

V

U

r

(en degrés)θ

D

e

0,000

0,002

0,004

0,006

0,008

-0,15 -0,10 -0,05 0,00 0,05 0,10 0,15 0,20

phasesπ 3π/4 5π/8 π/2 3π/8 π/4 0

U (m/s)

z (m)

Applications (1/4)

Fluid Mechanics

Page 40: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Applications (2/4)

Sediment transport / Scour

Page 41: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Applications (3/4)

Fluid-Structure Interaction

Page 42: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Applications (4/4)

Coastal Engineering

Page 43: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Physical modelling

“Theorem 1”

If there is a discrepancy between a theory and the experiment carriedout to verify it, it is likely to be due to inaccuracies in the experiment

“Theorem 2”

It is so far difficult to make good experiments than it is to make good theorie

Similitude / Similarity

Dimensional analysisL LengthT TimeM Mass

physical process = f( L

geometric α ≠ 0 β = 0 γ = 0kinematic α ≠ 0 β ≠ 0 γ = 0dynamic α ≠ 0 β ≠ 0 γ ≠ 0

Page 44: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Criteria of similitude“scale laws”

Dimensional analysis

Scale ratio NX = Xp / Xm = X in prototype / X

NL = Lp / Lm = 25m/1m =

Hydraulic similitude

Froude criterion Fr = inertial force / gravity force = U / (gL)1

Reynolds criterionRe = inertial force / visc

Shields criterion

Froude time scale

Nt = NL1/2

Real wave of 12.3s peri

Tmodel = 12.3 / (100)1/2 =

Page 45: Coastal protection Rubble mound breakwaters …eost.u-strasbg.fr/omiv/Cerg_documents/19_FORMOSE-June11...Coastal protection Rubble mound breakwaters Physical modelling Dominique Mouazé

Thank you for attention!


Recommended