+ All Categories
Home > Documents > 放射線化学,85, 11-19 (2008) · 2011. 3. 7. · M%ıł=œ\$Ž "1/k8+§,ˆ 8 ¤h% £”P 0)...

放射線化学,85, 11-19 (2008) · 2011. 3. 7. · M%ıł=œ\$Ž "1/k8+§,ˆ 8 ¤h% £”P 0)...

Date post: 04-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
9
The deterioration of concrete by alkali-silica reac- tion of aggregates (ASR) and the e#ect of nuclear ra- diations on the ASR have been reviewed based on our studies on the mechanism of ASR and the e#ect of nuclear radiations on the resistivity of min- erals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solu- tion in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consump- tion of alkali hydroxide by the aggregates induces the dissolution of Ca 2ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali sil- icate generated afterward is accumulated in the ag- gregate to give an expansive pressure enough for cracking the aggregate and the surrounding con- crete. The e#ect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggre- gates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. Key words: concrete alkali-silica reaction, nuclear ra- diation, amorphization, quartz, plagioclase, nuclear power plant 1. ῎῏῏ῌ῍ 腧膀膓膁膒膻膾腮腧腎腎腼腸腨 1995 腰腹臺臋臏膡臞臯膤膙臃膠臶臥膰臷臠臝 腘腯腐腣腋腌腓腣腦腥腟腜腜腲膱膮臍臭膯臤臒臈腟腜腣腓腻膅膔膃膒腃膍腏膀膓膁膒膻膾膊膐膔膍腧膀膓膁膒腏膅膔膃膒腃膍腧膻膾腘腹腓腣腢膅膔膃膒腃膍腏腪腫腺腹膳臛腖腡腋腹腎腤腌腎腽臜臱腘腹臁臊腽腖腡腋腜臂臸 膬臙膅膔膆膓膋膔膍腧臀膚臣臚臇 膖膵 M 腣腛腏腊腟腜膻膾膝臹腣腧自膨腘腔腰腕腰腥膌腃膋腽腳腟腡腋腹腧腢腓腺腢臃膹 腺腥腋腎腣腧腓腣腝腟腜膅膔膃膒腃膍腨腳腣腶腸 膪膝膤腦腠腋腡腳臨臞腝腟腜腦腣腟腡腨腗腆腛腌腝腟腜腧腢臏膡臞腺腹腓腣 腣腖腜膢臻臯膤腦腴腟腡腐腜 M 膅膔膃膒腃膍腨膶臎腢腙腋腭腾腣腾腢腋腹腓腣腀腐腖腡 腋腹膀膓膁膒膻膾腖腑腨膀膓膁膒膇膒膁腋腋膅膔膃膒腃膍腧膀膓膁膒膻膾腧膇膒膁膀膓膁膒膇膒膄腃膍 膂膑膈腥腟腡腘腹腜腲膅膔膃膒腃膍腏腪腫腺腹腓腣膀膓膁膒膻膾腓腖腜膻膾腑腨腛腧膣臕膒膏腣腩腺腹腹腓腣腥腤膅膔膃膒腃 膍腴膀膓膁膒膻膾腦腠腋腡腋腻腋腻腖腡腑腺腜腰腜膀膓膁膒膻膾腓腖腜膅膔膃膒腃膍腽臦臱 腖腜腚腡腑腺腜M 腋腡腋腹腌腞腦腀腆膀膐腧腶腌腦腎腋膂膑膈腢膅膔膃膒腃膍腏腺腹腧腝腻腌腎腂腇 腋腌腏腼腋腡腐腜膅膔膃膒腃膍腨臮膶臎腝腎腷膂膑膈腏腵腟腑腸腣腢腐腹腧腥腷腰腟腡腖腰腋臵膕腖腥腋膂膑膈腏膣臬腖腱腘腧腽腲腹腷腎腧膐膁膎膉膏腏腊腹腦腋腥 腛腾腥腓腣腽 M 腖腡腋腹腌腞腦腀腆膻膾腧腔膒膏腏膂膑膈腧腲腡腋腹腧 腢腨腥腋腎膒膏腏腍腹腧腨腋腧腢腶腸腷腎腦腥腹腜腲腢腨腥腋腎腋腠腋 膇膒膁腎腷腗腜腷腎腥膂膑膈腨腑腘腧腢腓腺腎腷腗腜膒膏腨腬腟腞腸腣腟腡腎腷臼臬腗腹膂膑膈腧膅膔膃膒腃膍腽腹腧腦臵膕至臥腐腹腏腊腹膂膑膈腎腷膒膏腏腢腐腹膐膁膎膉膏腨 M 85 (2008) 11
Transcript
  • The deterioration of concrete by alkali-silica reac-tion of aggregates (ASR) and the e#ect of nuclear ra-diations on the ASR have been reviewed based onour studies on the mechanism of ASR and thee#ect of nuclear radiations on the resistivity of min-erals to alkaline solution. It has been found thatthe ASR is initiated by the attack of alkaline solu-tion in concrete to silicious aggregates to convertthem into hydrated alkali silicate. The consump-tion of alkali hydroxide by the aggregates inducesthe dissolution of Ca2� ions into the solution. Thealkali silicate surrounding the aggregates thenreacts with Ca2� ions to convert to insoluble tightand rigid reaction rims. The reaction rim allowsthe penetration of alkaline solution but preventsthe leakage of viscous alkali silicate, so that alkali sil-icate generated afterward is accumulated in the ag-gregate to give an expansive pressure enough forcracking the aggregate and the surrounding con-crete. The e#ect of nuclear radiation on thereactivity of quartz and plagioclase, a part of majorminerals composing volcanic rocks as popular aggre-gates, to alkaline solution has been examined forclarifying whether nuclear radiations acceleratesthe ASR. It has been found that the irradiation ofthese minerals converts them into alkali-reactiveamorphous ones. The radiation dose for plagioclaseis as low as 108 Gy, which suggests that the ASR ofconcrete surrounding nuclear reactors is possible tobe accelerated by nuclear radiation.

    Key words: concrete alkali-silica reaction, nuclear ra-diation, amorphization, quartz, plagioclase, nuclearpower plant

    1. �����

    ��������������� 1995������ ���������������� !"�#$%&'()*+(�,-../0 123456�7��89�:-.(+;0 �?@A�������BCD=@������A�?@���EF�G

    F(�%�+(H�?@AIJKL�MNO HPQR)��S*��TU%�VW�QR).0 XYZ[

  • ������ M���� ��������������� �������� [Ca2�][OH�]2�������� ������ �!"#$�� %�%&���������' OH����()*+Ca2�����,%� �-��./01234*� Ca2�

    � 25������ OH�678$��()� �Si�O�3�9��:�1��%� ;������� +�?@��8���A���6BC���, D678$!EF�"%(6#$1%�� � M�GH���IJ�'�KL �&%�� ��'� M()N*K�+OP,67* �-./����IJ�'6QR4ST> +�?UVW=XY10Z[L1%�1)� \)] 1^_ `")�ab�=�624*-./3. D1]+#�@��8��� ��45�� 1)*6�7�c13.4*+ab�=��def)$8g4*� 2)�����19Zhiab�=��j?�8g�k%�� 3):l�&��� 3.678$���������IJ�'1m\%n4�;6&*� �&���+�?@��8�� �\ ��?%���qrs�t

    �/sb@ABC�\+�8�� \�DC �� ua6h])*�/�v�E4*+v�FG����6�wn4Z&*\+1HI%$v�E�61Bx�@A1y4*� ���zJ67�c�K�8$@�L-7?&\+�m!*� �&��+������ �����zJ�-./ M{g%� ���N�|4*> 1}=~=64*\++%��#$$"�8����� ab�=��-./O 9HI()$�*6@��"�� -./PQ6��$��j+&()$�&�� cR�S�$T1#*���@� -./PQ���6&*\+1U4*� � #6���IJ�'6��$24)� �6-./�ST6��$5), 6) V*\+64*�

    2. ��������

    2.1 ��������

    ab�=����+IJ Hn� 4&"o=W7e./0WXzJ�Y 7e���:�()$�*� ���ZZ+[\� ]^�07eZ1_+4*� � ��`6a�� 60CaO, 20 SiO2, 8 Al2O3, 3 Fe2O3, 3CaSO4, 7eNa2O 0.6b������+&*� ����`6� 50 b�,*� \��#IJ1cx i��¡=0��� ����� d

    �()�¢£1@�9£WY+&*����IJ�'+�� ab�=��¢£���������IJ������'zJ+�'4*\+678$� ab�=�4e6¤fgh¥��-� �)�def)1��(¦*\+67x� §�|&�Jig1@��4j1k4� ���IJ�'��IJ��zJ�Xl&67x� |� 2Xl6*m()*���������'¨ ������IJ�6h])*��� (SiO2)�1��%� �./0� 4&"�©n��o�����

  • ��������������� ���� ����������������� !"7)#

    ASR$%&�'(��)&*�+,-.�/� .�#������01,-.23 4��5����6789�:� ��;�?@�#�AB�������?C.# 4Na2ODE*

    0.6F %�������������?C.# 4Na2ODE* 3 kg/m3%��GH�,/�"I�J,� K��L��-�J��:� �M��NO�P�?C;� �����!��5Q���

  • ������������� ����������������������� !"#$%�&��� '(���)*+$,-��� ASR�./0���1���23�� 4�56���7 489�� ��:;�8�?�@AB��CD%�EF�"$,%�� ���EF��� GHBI�?��"��8J�$,./0K�L"� ��M��?��N�O&PQ$�%� �R,�EF������./0����"?���E$,./0 2S.T)U���"V��� ��E�WXY�Z[

  • �����ASR���� ������������������ �������� ������������������ ��!"# ���$%&�'()*"�+ ��� �*,-��� ����������. /01234�5��*6�����

    2.3 ������������*78�9ASR���

    ��$%& :����/01234'(*�;+������ �$%&�?@>2A34*B��C �$%&��+�D����EFGH���$%&"#������=�>?@>2A34IJ�=2)��,�K�� �$%&��+��L EF�5��*6�������M��

    ���N��.�*O������ MP��#�O� ����QR�S"C�� :���T*U �N���O���8�QR� ASR����VC�8�J�=2�� 1.5W *���K� �X�*EF��� 1Y1Y10 cm�Z[\��C]^! 10Y10Y10 cm_�`a04b3&4�c ���� ���40d e� 100W �fgh�i�jk!���< l"# 2 cm���m�&%n&� o"#�p$<

    EPMA q%rs&t�&uv3@��� �Xw*��x'�yz �x'�({|}0~��� :�� 6*U �

    ASR 3)���"* �� :�<**+���� 4

  • ���������ASR���� �������������� ������������������������� ���!"#$%&'���( )*����+�,���!-�.���

    ��/01��+2���3%4 '%01��!�����3�+��� ����/5��+,6��789+�����+ :������/��,��� ASR+)��� ���!�;/�

  • ������������� ������������������������� �!"#$����%&'�#()*+�,-��*'�.',��� �#()����$� �/���)0123.���45,�6 ,! 7���8�*'$9:;<6 , 200 keVAr=>?@�A��,����*B! BC*9:6 ,� ��$ 450nm���D&'*EF! =>?@�AG�*B"#��� 4HIJKL?M*B� JKL?MNO�P 9�Q�! �G��$�HI��$RSJKL?MOD,! 1015=>?/cm2��Ar=>?�G�������$TU�JKL?MO�%F�D�! ��$"#��V�WXYZ��[�B\�]���*,3.� �#()�����^��_�`B.����[3�! �#()�$ b�� g�� 1012 Gy� ab�c (d0.1 MeV)� 1e1020 n/cm2�D�����.',�17)f22)! JKL?Ma�$�#()�%&'�700�gh��!ijWXY�G�*Bkl�$� �V�WXYZ��[�B\�]�$"#kl 1/10�D�! JKL?Ma�`ijWXY��m' 3�ng�D���JKL?M�%&'op�"WXY����V�DB\� qrDs$[3.D,!"#��#()�����G�HI$� tc uv�w`!S�

    x,� yz"{tc"z #|�}��~?���,'`^�$

  • � 2���� ������� ����������������������������� ����� � �!"#$%�&'��(��)��*+,�-.� �������� �/��0ASR��1"�2��3��4�����5!"���

    4. �����

    *+,�-.�6�"��718����1" 9�����8:6��:6!;�?��� !"@1��AB8CDEFGH+I;JK718� 9�#L�MNO$%&P���!8��QRS+.T'�UV��()�*W �XY�AZAZ!"�8����1[!8��+\�,8� Y8-�RS+.T'�.;]�

  • 9) B. T. Kelly and I. Davisson, 2nd Conferenceon Prestressed Concrete Pressure Vessels andTheir Insulation, London, 1969, p. 237.

    10) L. F. Elluch, F. Dubois, and J. Rappeneau, ACISP-34, 1071 (1972).

    11) D. C. McDowall, Proceedings of an Informa-tion Exchange Meeting on Results of Con-crete Radiation Programms, Brussel, 1971, p.55.

    12) H. Nakamura, M. Sagino, K. Yamada, N.Yamada, Y. Murase, and M. Fukushima,Cement Science and Concrete Technology, 37,256 (1983) (in Japanese).

    13) K. Yamada, Y. Murase, and N. Yokota,Cement Science and Concrete Technology, 37,337 (1983) (in Japanese).

    14) M. Kakizaki, Y. Idei, T. Sukegawa, Y. Akutsu,H. Hatano, and H. Kurioka, J. Struct. Constr.Eng. AIJ, 488, 1 (1996) (in Japanese).

    15) V. B. Dubrovskij, Sh. Sh Ibragimov, A. Ya.

    Ladygin, and B. K. Pergamenshckik,Atomnaya Energiya, 21, 108 (1966).

    16) A. Pederson, Proceedings of an InformationExchange Meeting on Results of Concrete Ra-diation Programms, Brussel, April 1971, p. 5(1971).

    17) G. Laermans, in “Structure and Bonding inNoncrysatalline Solids,” ed. by G. E. Walrafenand A. G. Revesz, (Plenum, New York,London, 1986), p. 329.

    18) L. Douillard and J. P. Dyraud, Nucl. Instr.Meth. B, 107, 212 (1996).

    19) F. Harbsmeier and W. Bolse, J. Appl. Phys., 83,4049 (1998).

    20) W. L. Gong, L. M. Wang, and R. C. Ewing, J.Appl. Phys., 84, 4204 (1998).

    21) S. Dhar, W. Bolse, and K-P. Lieb, J. Appl.Phys., 85, 3210 (1999).

    22) S. Dhar, S. W. Bolse, and K-P. Lieb, Nucl. Instr.Meth. B, 148, 683 (1999).

    ������������������

    � 85� (2008) 19


Recommended