+ All Categories
Home > Documents > Collaborators Augusto Franco M. Haridasan Erika Geiger Sybil Gotsch Lucas Silva Davi Rossatto

Collaborators Augusto Franco M. Haridasan Erika Geiger Sybil Gotsch Lucas Silva Davi Rossatto

Date post: 23-Feb-2016
Category:
Upload: moeshe
View: 32 times
Download: 0 times
Share this document with a friend
Description:
Tropical plant trait evolution and the consequences for savanna-forest transitions William A. Hoffmann North Carolina State University. Collaborators Augusto Franco M. Haridasan Erika Geiger Sybil Gotsch Lucas Silva Davi Rossatto. The Cerrado. What determines tree cover in savannas?. - PowerPoint PPT Presentation
58
Tropical plant trait evolution and the consequences for savanna-forest transitions William A. Hoffmann North Carolina State University Collaborator s Augusto Franco M. Haridasan Erika Geiger Sybil Gotsch Lucas Silva Davi Rossatto
Transcript
Page 1: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Tropical plant trait evolution and the consequences for savanna-forest transitions

William A. HoffmannNorth Carolina State University

CollaboratorsAugusto FrancoM. HaridasanErika Geiger

Sybil GotschLucas SilvaDavi Rossatto

Page 2: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The Cerrado

Page 3: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

What determines tree cover in savannas?

Page 4: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

What determines the distribution of

forest and savanna?

Page 5: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

•Dense tree cover•no grass

•Hot, dry, windy microclimate•Frequent fire

•Cool, moist microclimate•Infrequent, mild fire

•Sparse tree cover•Dense grass

Page 6: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto
Page 7: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Miconia cuspidata

Miconia pohliana

(Forest species)

(Savanna species)

Page 8: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Symplocos mosenii(Forest species)

Symplocosrhamnifolia

(Savanna species)

Page 9: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Large areas of the tropics have climates in which either savanna or forest vegetation in possible

Staver et al (2011)

Page 10: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Cerling et al 1997 Nature 389:153-158

C4 grasses became abundant only in the past 8 million years

Page 11: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Simon et al 2009

Savanna trees and shrubs began to arise from forest ancestors approximately 10 million years ago.

Page 12: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

There have been at least 115 independent origins of savanna trees or shrubs

Black = forest taxaRed = savanna taxa

Hoffmann (unpublished)

Page 13: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Main questions

• What selective pressures have shaped the evolution of tree species in savanna?

• What are the consequences of savanna tree adaptations for ecosystem properties and vegetation dynamics?

Page 14: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The multiple, independent origins of savanna lineages is ideal for comparative studies

Black = forest taxaRed = savanna taxa

Page 15: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Savanna Forest

Hei

ght a

t mat

urity

(m)

0

2

4

6

8

10

Savanna Forest

Leaf

Are

a In

dex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Note that this is a comparison of forest and savanna species.Savanna Forest

See

dlin

gro

ot:s

hoot

ratio

0

1

2

3

4

Savanna and forest species differ substantially in traits that have large implications for ecosystem structure and dynamics

Savanna Forest

Bar

k th

ickn

ess:

stem

radi

us

0.0

0.1

0.2

0.3

Savanna ForestDia

met

er g

row

th ra

te (m

m y

r-1)

0

1

2

3

4

5

6

Page 16: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

53% of the evolutionary transitions from forest to savanna were associated with a shift to a smaller growth form.

Page 17: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Question 2:

What are the consequences of these adaptations for ecosystem properties and vegetation dynamics?

Page 18: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Savanna species Forest species

Pos

t-fire

sur

viva

l (%

)

0

20

40

60

80

100

Savanna and forest species survive fire equally well

Page 19: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The fire trap (Bell 1984)

Long time without fire

Fire

Page 20: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The fire trap (Bell 1984)

Short time without fire

Long time without fire

Fire

Page 21: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The fire trap (Bell 1984)

Short time without fire

Long time without fire

FireFire

Page 22: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The fire trap (Bell 1984)

Short time without fire

Long time without fire

Fire

Page 23: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The fire trap (Bell 1984)

Short time without fire

Long time without fire

FireFire

Page 24: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

An analogous threshold exists for ecosystems

Page 25: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

An analogous threshold exists for ecosystems

Short timewithout fire

Page 26: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

An analogous threshold exists for ecosystems

Short timewithout fire

Fire

Page 27: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

An analogous threshold exists for ecosystems

Short timewithout fire

Long timewithout fire

Fire

Page 28: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

An analogous threshold exists for ecosystems

Short timewithout fire

Long timewithout fire

Fire Fire

Page 29: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

CONTROL

WATER

NUTRIENTS

WATER + NUTRIENTS

10m x 70m plots

Resource manipulation experiment

Page 30: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Water availabilityNot irrigated Irrigated

Gro

wth

rate

(mm

yr-1

)

0

1

2

3

4No added nutrientsAdded nutrients

Tree growth is more strongly limited by nutrients than by water

Page 31: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

High-resource sites permit more rapid canopy closure

Time since fire (y)

Cano

py co

ver

High resource site

Low resource site

Page 32: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

At what point is each thresholds reached?

• How big must a tree be to avoid topkill?• How dense must the canopy be to substantially

reduce flammability?

Page 33: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Hoffmann et al (2012) Ecology Letters

Bark thickness (mm)0.1 1 10 100

Ste

m s

urvi

val (

%)

0

20

40

60

80

100Low fire intensity

Page 34: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Hoffmann et al (2012) Ecology Letters

Bark thickness (mm)0.1 1 10 100

Ste

m s

urvi

val (

%)

0

20

40

60

80

100Low fire intensity

Page 35: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

A growing stem becomes fire resistant when its bark thickness exceeds 6 mm

Hoffmann et al (2012) Ecology Letters

Bark thickness (mm)0.1 1 10 100

Ste

m s

urvi

val (

%)

0

20

40

60

80

100Low fire intensity

5.9 mm

Page 36: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

A growing stem becomes fire resistant when its bark thickness exceeds 6 mm

Hoffmann et al (2012) Ecology Letters

Bark thickness (mm)0.1 1 10 100

Ste

m s

urvi

val (

%)

0

20

40

60

80

100Low fire intensityHigh fire intensity

5.9 mm 9.1 mm

Page 37: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

-30 -10 10 30Distance (m)

Microclimate •Wind speed•Relative humidity•Temperature

Fuels •Mass•Moisture•Bulk density

BehavePlus 5(fire behavior model)

Hoffmann et al (2012) Austral Ecology

Page 38: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Win

d sp

eed

(km

hr-1

)

0.0

0.5

1.0

1.5

2.0

2.5

Min

. rel

ativ

e hu

mid

ity (%

)

35

40

45

50

55

Distance (m)-30 -20 -10 0 10 20 30

Max

air

tem

p.(C

)

202122232425262728

Distance (m)-30 -20 -10 0 10 20 30

Fine

fuel

moi

stur

e (%

)

68

1012141618

Page 39: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Flam

e le

ngth

(m

)

0.00.20.40.60.81.01.21.4

Fire

line

inte

nsity

(k

W m

-2)

0

100

200

300

400

Distance (m)-30 -20 -10 0 10 20 30

Rat

e of

spr

ead

(Km

hr-

1)

0.00

0.05

0.10

0.15

0.20

Fire simulations with BehavePlus

Page 40: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Distance along transect (m)-30 -20 -10 0 10 20 30

Fuel

bul

k de

nsity

(kg

m-3

)

0

10

20

30

Page 41: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Flammability of savanna is determined primarily by the presence of grass

Page 42: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

The canopy density at which grasses are excluded is a critical transition between savanna and forest.

Tree LAI0 1 2 3 4 5

Gra

ss L

AI

0

1

2

3

4

Page 43: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Thus we have two critical thresholds

• A tree reaches a fire-resistance threshold when it accumulates a bark thickness of about 6 mm.

• The ecosystem reaches a fire-suppression threshold when it attains a leaf area index of about 3.

Page 44: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Stem diameter (cm)1 10 100

Bar

k th

ickn

ess

(cm

)

0.01

0.1

1

10Savanna speciesForest species

As savanna trees grow, they accumulate bark thickness more quickly than forest species

Page 45: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Stem diameter (cm)1 10 100

Bar

k th

ickn

ess

(cm

)

0.01

0.1

1

10Savanna speciesForest species

As savanna trees grow, they accumulate bark thickness more quickly than forest species

Threshold bark thickness

Page 46: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Stem diameter (cm)1 10 100

Bar

k th

ickn

ess

(cm

)

0.01

0.1

1

10Savanna speciesForest species

As savanna trees grow, they accumulate bark thickness more quickly than forest species

Threshold bark thickness

4.7 cm 10.2 cm

Page 47: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Recall that forest species grow more quickly than savanna species when growing in the same environment

Savanna ForestDia

met

er g

row

th ra

te (m

m y

r-1)

0

1

2

3

4

Page 48: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Savanna species Forest speciesFire interval required to ensure <50% topkill

8 years 14 years

5-year mean return interval

25 years 108 years

2-year mean return interval

510 years 32800 years

Expected total time under stochastic fire regime

Page 49: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Under a typical fire regime a forest tree has little chance of reaching maturity in savanna

But, there is safety in numbers

Page 50: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

•Dense tree cover•no grass

•Hot, dry microclimate•Frequent fire

•Cool, moist microclimate•Infrequent, mild fire

•Sparse tree cover•Dense grass

Page 51: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Forest species have greater leaf area than savanna species when growing in the same environment

Diameter (cm)0.1 1 10

Leaf

are

a (m

2 )

0.0001

0.001

0.01

0.1

1

10

100

Savanna speciesForest species

Page 52: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Forest species permit more rapid canopy closure

0

1

2

3

4

5

6

Time (years)

Leaf

are

a in

dex

Site occupied by forest species

Site occupied by savanna species

Page 53: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Forest species permit more rapid canopy closure

0

1

2

3

4

5

6

Time (years)

Leaf

are

a in

dex

Site occupied by forest species

Site occupied by savanna species

Threshold canopy density

Page 54: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Forest species permit more rapid canopy closure

0

1

2

3

4

5

6

Time (years)

Leaf

are

a in

dex

Site occupied by forest species

Site occupied by savanna species

Threshold canopy density

Page 55: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto
Page 56: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Distance along transect (m)-30 -20 -10 0 10 20 30

Dia

met

er g

row

th ra

te (m

m y

r-1)

0

2

4

6

8

10

12

14

16

Forest species

Savanna species

Page 57: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Conclusions•Many indepedent origins of savanna trees •Fire has exerted strong selection on traits •Nutrients, not water, limits tree growth in these mesic savannas.•Two critical thresholds govern savanna-forest dynamics:

(1) bark thickness at which a stem becomes fire resistant.(2) canopy density at which grasses are excluded

• Reaching a forest state requires forest species, but these are particularly constrained by the high frequency of fire

Page 58: Collaborators Augusto  Franco M.  Haridasan Erika Geiger Sybil  Gotsch Lucas  Silva Davi Rossatto

Vegetation models should

•Represent fire and its feedbacks with vegetation•Represent topkill and reprouting •Represent of savanna and forest tree functional types OR tradeoffs involving bark, carbohydrate storage, shade tolerance, canopy density. •Not assume that tree cover in mesic savannas are water limited.•Robustly simulate savannas over large areas in response to water deficits, multiple nutrient deficiencies, seasonal flooding, and physical soil constraints.


Recommended