+ All Categories
Home > Documents > Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Date post: 07-Jan-2016
Category:
Upload: ryder
View: 27 times
Download: 1 times
Share this document with a friend
Description:
Wavy Vortex Flow A tale of chaos, symmetry and serendipity in a steady world Greg King University of Warwick (UK). Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean) Katie Coughlin (LLNL) Igor Mezic (UCSB). - PowerPoint PPT Presentation
Popular Tags:
40
Wavy Vortex Flow A tale of chaos, symmetry and serendipity in a steady world Greg King University of Warwick (UK) Collaborators: •Murray Rudman (CSIRO) •George Rowlands (Warwick) •Thanasis Yannacopoulos (Aegean) •Katie Coughlin (LLNL) •Igor Mezic (UCSB)
Transcript
Page 1: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Wavy Vortex Flow A tale of

chaos, symmetry and serendipity in a steady world

Greg KingUniversity of Warwick (UK)

Collaborators:•Murray Rudman (CSIRO)•George Rowlands (Warwick)•Thanasis Yannacopoulos (Aegean)•Katie Coughlin (LLNL)•Igor Mezic (UCSB)

Page 2: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

To understand this lecture you need to know

• Some fluid dynamics• Some Hamiltonian dynamics• Something about phase space• Poincare sections• Need > 2D phase space to get chaos • Symmetry can reduce the dimensionality of phase

space• Some knowledge of diffusion• A “friendly” applied mathematician !!

Page 3: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Phase Space

Page 4: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Dynamical Systems and Phase Space

Dissipative Systems

0 F

11 1

22 1

1

( , , )

( , , )

( , , )

n

n

nn n

dxf x x

dtdx

f x xdt

dxf x x

dt

1( , , )

nf f

div

F

F F

Hamiltonian Systems

0 F

Page 5: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Classical Mechanics and Phase Space

22

20

d xx

dt

2

dxv

dtdv

xdt

0 F

Hamiltonian

Dissipative

22

20

d x dxx

dt dt

2

dxv

dtdv

v xdt

F

Page 6: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Fluid Dynamics and Phase Space

2D incompressible fluid

dxu

dtdy

vdt

0

0

u v

x y

u

3D incompressible fluid

dxu

dtdy

vdtdz

wdt

0

0

u v w

x y z

u

Phase Space

2D

( , )x yu

3D

( , , )

( , , )

x y t

x y z

u

u

4D

( , , , )x y z tu

No chaos here

Symmetries -- can reduce phase space

Page 7: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Poincare Sections(Experimental – i.e., light

sheet)

Page 8: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Eccentric Couette FlowChaiken, Chevray, Tabor and Tan, Proc Roy Soc 1984 ??

Illustrates “Significance” of KAM theory

3D Phase Space

( , , )x y tu

Page 9: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

3D Phase Space

( , , )x y zu

Stirring createsdeformed vortex

Fountain et al, JFM 417, 265-301 (2000)

Page 10: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)
Page 11: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Fountain et al, JFM 417, 265-301 (2000)

Experiment(light sheet)

NumericalParticle Tracking(“light sheet”)

Page 12: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

a

b

Taylor-Couette

Radius Ratio:

= a/b

Reynolds Number:

Re = a(b-a)/

Page 13: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Engineering Applications

• Chemical reactors

• Bioreactors

• Blood – Plasma separation

• etc

Page 14: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Reout

Rein

Taylor-Couette regime diagram(Andereck et al)

Page 15: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Some Possible Flows

Taylor vortices

Twisted vortices

Wavy vortices

Spiral vortices

Page 16: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Taylor Vortex Flow

TVF --

– Centrifugal instability of circular Couette flow.

– Periodic cellular structure.

– Three-dimensional, rotationally symmetric:

u = u(r,z)

Flat inflow and outflow boundaries are barriers to inter-vortex transport.

Page 17: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Radius

Z

0

/2

inner cylinder

outercylinder

nestedstreamtubes

Rotational Symmetry3D 2D Phase Space

“Light Sheet”

Page 18: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Wavy Vortex Flow

wavy vortex flowTaylor vortex flow

Rec

Page 19: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

The Leaky Transport BarrierWavy vortex flow is a deformation of rotationally symmetric Taylor vortex flow.

Dividing stream surface breaks up => particles can migrate from vortex to vortex

Dividing stream surface

Poincare Sections

IncreaseRe ( , , )r zu u

Flow is steady in co-moving frame

Page 20: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Methods

• Solve Navier-Stokes equations numerically to obtain wavy vortex flow.

• Finite differences (MAC method);

• Pseudo-spectral (P.S. Marcus)

2. Integrate particle path equations (20,000 particles) in a frame rotating with the wave (4th order Runge-Kutta).

, / , dr d dz

u v r wdt dt dt

( , , ) ( , , )r z u v w u

Page 21: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Wavy Vortex Flow

Poincare Section near onset of waves

r 1

2

1

2

Z

0 2

inner cylinder

outer cylinder

6 vortices

1

2

3

4

5

6

Page 22: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

At larger Reynolds numbers(Rudman, Metcalfe, Graham: 1998)

Page 23: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

)(lim

2

)()(

20

tDD

t

ztztD

zt

z

z

Effective Diffusion CoefficientCharacterize the migration of particles from vortex to vortex

Taylor vortices Wavy vortices

Rudman, AIChE J 44 (1998) 1015-26.

(dimensionless)Initialization:Uniformly distribute20,000 particles

Page 24: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Dz

Size of mixing region

(dimensionless)

Page 25: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Dz

Page 26: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

An Eulerian ApproachSymmetry Measures

Theoretical Fact

A three dimensional phase space is necessary for chaotic trajectories.

The Idea (Mezic):

Deviation from certain continuous symmetries can be used to measure the local deviation from 2D

For Wavy Vortex Flow

rotational symmetry

and dynamical symmetry :

• If either is zero, then flow is locally integrable, so as a diagnostic we consider the product

222wvu

)(

x

Reux 2)(

( ) ( ) ( )D x x x

Page 27: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Dynamical Symmetry

Steady incompressible Navier-Stokes equations in the form

Equation of motion for B

2

2

1

2 is the vorticity, is the Bernoulli function

0

pB

B

uω u

u ω u

2

2

0dB B

Bdt t

u u u ω u

u u

B is a constant of the motion if 0 2or 0 u

Page 28: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

155 162 324 486 648Reynolds Number

Page 29: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

155 162 324 486 648Reynolds Number

Page 30: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

155 162 324 486 648Reynolds Number Looks interesting, but

correlation does not look strong !

Page 31: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

AveragedAveraged Symmetry Measures Symmetry Measures

d1

d1

d1

VV

VV

VV

D

andand partialpartial averagesaverages

)(

)(

),(

z

r

rd

rdzr

Page 32: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

D

Dz

Size of chaotic region

Page 33: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

King, Rudman, Rowlands and YannacopoulosPhysics of Fluids 2000

Serendipity !

1.15zD

Page 34: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Effect of Radius Ratio (Mind the Gap)

5 10 150

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Re/Rec

Dz ,

c

= 0.875

cD

z

5 10 150

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

= 0.830

5 10 150

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

= 0.784

5 10 150

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

= 0.700

5 10 151

1.5

2

2.5

3

3.5

Re/Rec

Dz/

5 10 151

1.5

2

2.5

3

3.5

5 10 151

1.5

2

2.5

3

3.5

5 10 151

1.5

2

2.5

3

3.5

Dz/

Re/Rec

Page 35: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Effect of Flow State: Axial wavelength

m: Number of waves

2 4 6 82

4

6

8

10

12

14

16x 10

-3

m = 4

/d = 2.33/d = 3.0/d = 3.5

2 4 6 82

4

6

8

10

12

14

16x 10

-3

m = 5

2 4 6 82

4

6

8

10

12

14

16x 10

-3

m = 6

2 4 6 82

4

6

8

10

12

14

16x 10

-3

/d = 2.33

Re/Rec

m = 4m = 5m = 6

2 4 6 82

4

6

8

10

12

14

16x 10

-3

/d = 3.0

2 4 6 82

4

6

8

10

12

14

16x 10

-3

/d = 3.5

Re/Rec

Page 36: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

2 4 6 80

0.005

0.01

0.015

0.02

0.025

0.03

m = 4

/d = 2.33/d = 2.6/d = 3.0/d = 3.5

2 4 6 80

0.005

0.01

0.015

0.02

0.025

0.03

m = 5

2 4 6 80

0.005

0.01

0.015

0.02

0.025

0.03

m = 6

2 4 6 80

0.005

0.01

0.015

0.02

0.025

0.03

Re/Rec

Dz

/d = 2.33

m = 4m = 5m = 6

2 4 6 80

0.005

0.01

0.015

0.02

0.025

0.03

/d = 3.0

2 4 6 80

0.005

0.01

0.015

0.02

0.025

0.03

/d = 3.5

Effect of Flow State

Dz

Re/Rec

Page 37: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Summary

• Dz is highly correlated with <><>

• The correlation is not perfect.

• The symmetry arguments are general

• Yannacopoulos et al (Phys Fluids 14 2002) show that Melnikov function,

M ~ <><>.

222wvu

)(

x

Reux 2)(

Is it good for anything else?

Page 38: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

2D Rotating Annulus u(r,z,t)

Richard Keane’s results (see poster)Symmetry measure:

FSLELog(FSLE)

Log(<|d/dt|>)

Page 39: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Prandtl-Batchelor Flows(Batchelor, JFM 1, 177 (1956)

Steady Navier-Stokes equations in the form

Integrating N-S equation around a closed streamline s yields

21

2 is the vorticity, is the Bernoulli function

0

pB

B

uω u

u ω ω

( ) 0 is parallel to a streamline

( ) 0 since streamline is closed

( ) 0 Integral constraint

d

B d

d

s

s

s

u ω s u

s

ω s

Page 40: Collaborators : Murray Rudman (CSIRO) George Rowlands (Warwick) Thanasis Yannacopoulos (Aegean)

Break-up of Closed StreamlinesYannacopoulos et al, Phys Fluids 14 2002

(see also Mezic JFM 2001)

Expand0 1

0 1

0 1B B B

u u u

ω ω ω2

0 ( )O ω

0 1 1 0( ) 0 existence criterionB dt dt b b

a a

u ω u

This is the Melnikov function


Recommended