+ All Categories
Home > Documents > Collapse mechanism maps for a hollow pyramidal lattice by S. M. Pingle, N. A. Fleck, V. S....

Collapse mechanism maps for a hollow pyramidal lattice by S. M. Pingle, N. A. Fleck, V. S....

Date post: 17-Dec-2015
Category:
Upload: alexander-rice
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
16
Collapse mechanism maps for a hollow pyramidal lattice by S. M. Pingle, N. A. Fleck, V. S. Deshpande, and H. N. G. Wadley Proceedings A Volume 467(2128):985-1011 April 8, 2011 ©2011 by The Royal Society
Transcript

Collapse mechanism maps for a hollow pyramidal lattice

by S. M. Pingle, N. A. Fleck, V. S. Deshpande, and H. N. G. Wadley

Proceedings AVolume 467(2128):985-1011

April 8, 2011

©2011 by The Royal Society

Examples of lattice materials.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

(a) The compressive strength of lattice materials shown on a plot of strength versus density along with other engineering materials.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

(a) Unit cell of the hollow pyramidal core with the four struts touching at the top surface.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

(a) A vertical cylindrical tube of circular cross section undergoing axial compression; (b) The true tensile stress versus logarithmic strain curves of the aluminium alloys used in constructing

the collapse mechanism charts in figure 5.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

Collapse mechanism chart for circular vertical tubes made from (a) annealed aluminium Ht-30 (Andrews et al. 1983) and (b) 6060-T5 aluminium alloy (Guillow et al. 2001).

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

FE predictions of the compressive response of the six representative tube geometries.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The predicted collapse mechanism map for vertical tubes.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The normalized collapse strength and normalized mass of vertical tubes, plotted as a function of geometry (l/d and t/d).

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

(a) The maximum normalized force of the optimal vertical tubes as a function of normalized mass .

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The collapse mechanism chart for inclined tubes.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The compressive response of the six representative inclined tubes (a–f).

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The normalized collapse strength σpk/σY and relative density of a hollow pyramidal core, plotted as a function of tube geometry (l/d and t/d).

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

(a) The maximum collapse strength σmax of the optimal hollow pyramidal core as a function of .

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The normalized energy absorption per unit volume of the pyramidal core as a function of .

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society

The measured and predicted compressive response of two hollow pyramidal cores, with tube geometries defined in figure 10.

S. M. Pingle et al. Proc. R. Soc. A 2011;467:985-1011

©2011 by The Royal Society


Recommended