+ All Categories
Home > Documents > Collection of Formulas in Signal Processing

Collection of Formulas in Signal Processing

Date post: 30-May-2018
Category:
Upload: sberisha
View: 212 times
Download: 0 times
Share this document with a friend

of 21

Transcript
  • 8/14/2019 Collection of Formulas in Signal Processing

    1/21

    Collection of Formulas in Signal Processing

    Stockholm October 6, 2006

    Kungliga Tekniska Hogskolan

    Signal Processing LabElectrical Engineering

    SE-100 44 Stockholm

  • 8/14/2019 Collection of Formulas in Signal Processing

    2/21

  • 8/14/2019 Collection of Formulas in Signal Processing

    3/21

    1

    Contents

    1 Deterministic Signals 2

    2 Wide-sense stationary processes 4

    3 Some common distributions 6

    4 Continuous Fourier transform 8

    5 The Laplace transform 10

    6 z-Transform 14

    7 Discrete Time Fourier Transform 17

    8 Discrete Fourier Transform (DFT) 19

  • 8/14/2019 Collection of Formulas in Signal Processing

    4/21

    2 1 Deterministic Signals

    1 Definitions and Relations for DeterministicSignals

    Time continuous Time discreteFundamentals

    Spectrum X(f) =

    x(t)ej2f tdt Xd() =

    n=

    x[n]ej2n

    Inverse x(t) =

    X(f)ej2ftdf x[n] =

    1/21/2

    Xd()ej2nd

    EnergySpectrum

    SX

    (f) =|X(f)

    |2 S

    X() =

    |X

    d()

    |2

    Total Energy

    |x(t)|2dt =

    |X(f)|2df

    n=

    |x[n]|2 =1/21/2

    |Xd()|2d

    Linear FilteringOutputSignal

    y(t) = h(t) x(t) y[n] = h[n] x[n]

    =

    h(u)x(t u)du =

    m=

    h[m]x[n m]

    Output

    Spectrum

    Y(f) = H(f)X(f) Yd() = Hd()Xd()

    Frequencyresponse

    H(f) =

    h(t)ej2f tdt Hd() =

    n=

    h[n]ej2n

    Transfer function (causal systems)

    H(s) =

    0

    h(t)estdt H(z) =n=0

    h[n]zn

    Transfer function (non-causal systems)

    H(s) =

    h(t)estdt H(z) =

    n=

    h[n]zn

  • 8/14/2019 Collection of Formulas in Signal Processing

    5/21

    1 Deterministic Signals 3

    Sampling

    x(t)

    X(f)

    y[n]

    Yd()nT

    y[n] = x(nT) = Yd() = 1T

    m

    X

    m

    T

    Pulse amplitude modulation

    z(t)

    Z(f)

    y[n]

    Yd()

    PAM

    p(t)

    z(t) =n

    y[n]p(t nT) = Z(f) = P(f)Yd(f T)

    Reconstruction continuous time

    x(t) =n

    x(nT)h(t nT) E =

    |x(t) x(t)|2 dt

    E =

    H(f)

    T 1

    X(f) +

    m=0

    H(f)

    TX(f m/T)

    2

    df

    The sampling theorem

    If X(f) = 0 for

    |f

    | 12T

    , then

    x(t) =

    n=

    x(nT)sin((t nT)/T)

    (t nT)/T

  • 8/14/2019 Collection of Formulas in Signal Processing

    6/21

    4 2 Wide-sense stationary processes

    2 Definitions and relations for wide-sense sta-tionary processes

    Continuous time Discrete timeFundamentals

    acf rX() = E[X(t + )X(t)] rX(k) = E[X(n + k)X(n)]

    PSD RX(f) =

    rX()ej2fd RX() =

    k=

    rX(k)ej2k

    Inverse rX() =

    RX(f)ej2ftdf rX(k) =

    1/2

    1/2

    RX()ej2kd

    Total power

    RX(f)df = E[X(t)2]

    1/21/2

    RX()d = E[X(n)2]

    Linear filteringFiltered signal Y(t) = h(t) X(t) Y(n) = h(n) X(n)

    =

    h(u)X(t u)du =

    m=

    h(m)X(n m)

    Expected value mY = mX

    h(u)du mY = mX

    m=

    h(m)

    = mXH(0) = mXH(0)

    acf rY() =

    h(u)h(v) rY(k) =

    =

    m=

    h()h(m)

    rX( u + v)dudv rX(k + m)PSD RY(f) = |H(f)|2RX(f) RY() = |H()|2RX()

  • 8/14/2019 Collection of Formulas in Signal Processing

    7/21

    2 Wide-sense stationary processes 5

    Sampling

    X(t)

    RX(f)

    Y[n]

    RY()nT

    Y[n] = X(nT) = RY() = 1T

    m

    RX

    m

    T

    Pulse amplitude modulation

    Z(t)

    RZ(f)

    Y[n]

    RY()

    PAM

    p(t )

    Z(t) =n

    Y[n]p(t nT ) =

    RZ(f) =1T|P(f)|2RY(f T)

    E[Z(t)] = 1T

    P(0)E[Y(n)]

    Reconstruction contionuous time

    X(t) =n

    X(nT + )h(t nT ) P = E[(X(t) X(t))2]

    P =

    H(f)

    T 1

    2

    RX(f) +m=0

    H(f)T2

    RX(f m/T) df

  • 8/14/2019 Collection of Formulas in Signal Processing

    8/21

    6 3 Some common distributions

    3 Some common distributions

    Uniform distribution Re(a, b)

    fX(x) =

    1b a a < x < b0 otherwise

    mX = E[X] =a + b

    2

    2 = E[(X mX)2] = (b a)2

    12

    Rayleigh distribution

    fX(x) =

    xa2

    ex2

    2a2 x 00 x < 0

    mX = E[X] = a

    2

    2 = E[(X mX)2] = a2 (2 /2)

    One-sided exponential distribution

    fX(x) =

    aeax x 00 x < 0

    mX = =1

    a

    Two-sided exponential distribution

    fX(x) =a

    2ea|x|

    mX = 0, 2 =

    2

    a2

    Poisson distribution Discrete integer distribution

    P(X = k)= pk = e

    a ak

    k!for k = 0, 1, 2, . . .

    mX = 2 = a

  • 8/14/2019 Collection of Formulas in Signal Processing

    9/21

    3 Some common distributions 7

    Normal distribution One-dimensional, N(mX , )

    fX(x) =1

    2e

    (xmX)2

    22

    Two-dimensional, N(mX , mY, X , Y, )

    fX,Y(x, y) =1

    2XY

    1 2e

    g(x,y)

    2(12)

    where

    g(x, y) =

    x mX

    X

    2 2x mX

    X

    y mYY

    +

    y mY

    Y

    2

    and

    = (X, Y) =E[XY] mXmY

    XY

    If A,B,C and D are all Normal distributed, then

    E[ABCD] = E[AB] E[CD]+E[AC] E[BD]+E[AD] E[BC]2 E[A] E[B] E[C] E[D]

    The so-called Q-function can also be convenient to use. If X is N(mX , ),then Pr[X > a] = Q

    amX

    where

    Q(x) =12

    x

    eu2/2du

    For x > 1,

    1 x2x

    2ex

    2/2 < Q(x) 0 X(f), ( = 2f)

    (t) 1 (4.15)

    1 (f) (4.16)

    rectP(t) =

    1 for |t| P

    2

    0 for |t| > P2

    Psinc(f P) =sin(f P)

    f(4.17)

    Bsinc(Bt) = sin(Bt)t

    rectB(f) =

    1 for |f| B20 for |f| > B

    2

    (4.18)

    ej2f0t (f f0) (4.19)sin(2f0t)

    1

    2j((f f0) (f + f0)) (4.20)

    cos(2f0t)1

    2((f f0) + (f + f0)) (4.21)

    u(t) =

    1, t > 0

    1/2, t = 0

    0, t < 0

    1

    j2f

    +1

    2

    (f) (4.22)

    eatu(t)1

    a + j2f(4.23)

    eatu(t) 1a j2f (4.24)

    ea|t|2a

    a2 + (2f)2(4.25)

    eat sin(2f0t)u(t)0

    (j + a)2 + 20(0 = 2f0) (4.26)

    eat cos(2f0t)u(t)j + a

    (j + a)2 + 20(4.27)

    ea|t| sin(2f0|t|) 20(a2 + 20 2)

    (a2 + 20 2)2 + (2a)2(4.28)

    ea|t| cos(2f0t)2a(a2 + 20 +

    2)

    (a2 + 20 2)2 + (2a)2(4.29)

  • 8/14/2019 Collection of Formulas in Signal Processing

    12/21

    10 5 The Laplace transform

    5 The Laplace transform

    Properties of the two-sided Laplace transform

    x(t) X(s)

    x(t)

    x(t)est dt (5.1)

    12j

    +jj

    X(s)est ds X(s) (5.2)

    cx(t) + dy(t) cX(s) + dY(s) (5.3)

    x(ct)1

    cX(

    s

    c), c > 0 (5.4)

    x(t P) esPX(s) (5.5)

    eatx(t) X(s + a) (5.6)

    tnx(t) (1)n nX(s)

    sn(5.7)

    nx(t)

    tnsnX(s) (5.8)

    t

    x()d1

    sX(s) (5.9)

    x(t) y(t) X(s)Y(s) (5.10)

  • 8/14/2019 Collection of Formulas in Signal Processing

    13/21

    5 The Laplace transform 11

    Properties of the one-sided Laplace transform

    x(t) X(s)

    x(t)

    0

    x(t)est dt (5.11)

    1

    2j

    +jj

    X(s)est ds X(s) (5.12)

    cx(t) + dy(t) cX(s) + dY(s) (5.13)

    x(ct)1

    cX(

    s

    c), c > 0 (5.14)

    x(t P) esPX(s) (5.15)

    eatx(t) X(s + a) (5.16)

    tnx(t) (1)n nX(s)

    sn(5.17)

    nx(t)

    tnsnX(s)

    n1i=0

    sn1iix(t)

    ti

    t=0

    (5.18)

    t0

    x()d1

    sX(s) (5.19)

    x(t) y(t) X(s)Y(s) (5.20)

    Initial-value theoremIf X(s) is rational, i.e., X(s) = P(s)

    Q(s), where order P(s) < order Q(s), then

    limt0+

    x(t) = lims

    sX(s) (5.21)

    Final-value theoremIf sX(s) has all poles in the left halfplane, then

    limt+

    x(t) = lims0

    sX(s) (5.22)

  • 8/14/2019 Collection of Formulas in Signal Processing

    14/21

    12 5 The Laplace transform

    Common transform pairs (one-/two-sided Laplace transfrom)x(t) X(s) ROC

    (t) 1 s (5.23)

    u(t) =

    1, t > 0

    1/2, t = 0

    0, t < 0

    1

    sRe{s} 0 (5.24)

    tu(t) 1s2

    Re{s} > 0 (5.25)tn

    n!u(t)

    1

    sn+1Re{s} > 0 (5.26)

    eatu(t)1

    s + aRe{s} > a (5.27)

    tneat

    n!u(t)

    1

    (s + a)n+1Re{s} > a (5.28)

    sin(0t)u(t)0

    s2 + 20Re{s} > 0 (5.29)

    cos(0t)u(t)

    s

    s2 + 20 Re{s} > 0 (5.30)eat sin(0t)u(t)

    0(s + a)2 + 20

    Re{s} > a (5.31)

    eat cos(0t)u(t)s + a

    (s + a)2 + 20Re{s} > a (5.32)

    eat

    cos 0t a0

    sin 0t

    u(t)

    s

    (s + a)2 + 20Re{s} > a (5.33)

    1 eat

    cos 0t +a

    0sin 0t

    u(t)

    a2 + 20s [(s + a)2 + 20 ]

    Re{s} > a (5.34)

  • 8/14/2019 Collection of Formulas in Signal Processing

    15/21

    5 The Laplace transform 13

    Common transform pairs (two-sided Laplace transform)x(t) X(s) ROC

    u(t) 1s

    Re{s} 0 (5.35)

    tu(t) 1s2

    Re{s} < 0 (5.36)

    tn

    n!u(t) 1

    sn+1Re{s} < 0 (5.37)

    eatu(

    t)

    1

    s + a

    Re

    {s

    } 0 zkX(z) +k

    m=1

    x[m]zmk (6.14)

    x[n + k], k > 0 zkX(z) k1m=0

    x[m]zkm (6.15)

    anx[n] X(z/a) (6.16)

    x[n] y[n] X(z)Y(z) (6.17)nx[n] z X(z)

    z(6.18)

    Initial-value theoremIf X(z) is rational, i.e., X(z) = P(z)

    Q(z)where order P(z) order Q(z), then

    x[0] = limz

    X(z) (6.19)

    Final-value theoremIf (z 1)X(z) has all poles strictly inside the unit circle, then

    limn

    x[n] = limz1

    (z 1)X(z) (6.20)

  • 8/14/2019 Collection of Formulas in Signal Processing

    18/21

    16 6 z-Transform

    Common transform pairs (one-/two-sided z-transform)x[n] X(z) ROC

    [n] 1 (6.21)

    u[n] =

    1, n 00, n < 0

    z

    z 1 |z| > 1 (6.22)

    nu[n]z

    (z

    1)2|z| > 1 (6.23)

    n2u[n]z(z + 1)

    (z 1)3 |z| > 1 (6.24)

    anu[n]z

    z a |z| > |a| (6.25)

    nanu[n]za

    (z a)2 |z| > |a| (6.26)

    n2anu[n]z(z + a)a

    (z a)3 |z| > |a| (6.27)

    an sin(n)u[n]za sin()

    z2

    2za cos() + a2

    |z

    |>

    |a

    |(6.28)

    an cos(n)u[n]z(z a cos())

    z2 2za cos() + a2 |z| > |a| (6.29)

    Common transform pairs (two-sided z-transform)

    x[n] X(z) ROC

    anu[n] 11 az |z| < 1|a| (6.30)

    a|n|(a2 1)z

    az2 (1 + a2)z + a |a| < |z| K

    1,(2K+1)() =sin((2K+ 1))

    sin()(7.15)

    u[n] =

    1, n 00, n < 0

    1

    1 ej2 +1

    2() (7.16)

    ej20n ( 0) (7.17)

    anu[n]1

    1 aej2 (7.18)

    anu[n] 11 aej2 (7.19)

    a|n|1 a2

    1 + a2

    2a cos(2)(7.20)

    an sin(20n)u[n]a sin(20)ej2

    1 2a cos(20)ej2 + a2ej4 (7.21)

    an cos(20n)u[n]1 a cos(20)ej2

    1 2a cos(20)ej2 + a2ej4 (7.22)

  • 8/14/2019 Collection of Formulas in Signal Processing

    21/21

    8 Discrete Fourier Transform (DFT) 19

    8 Discrete Fourier Transform (DFT)Properties N = circular convolution with N values

    x[n] X[m]

    x[n]N1n=0

    x[n]ej2mn/N (8.1)

    1N

    N1m=0

    X[m]ej2mn/N X[m] (8.2)

    cx[n] + dy[n] cX[m] + dY[m] (8.3)

    x[N n] X[m] (8.4)x[n] X[N m] (8.5)x[n k] ej2km/NX[m] (8.6)ej2nk/Nx[n] X[m k] (8.7)N1X[n] x[m] (8.8)x[n] N y[n] X[m]Y[m] (8.9)x[n]y[n] N1X[m] N Y[m] (8.10)

    Parsevals theorem

    N1n=0

    |x[n]|2 = 1N

    N1m=0

    |X[m]|2 (8.11)


Recommended