+ All Categories
Home > Documents > Collective Molecular Dynamics in Proteins and Membranes · Molecular Motions in Membranes and...

Collective Molecular Dynamics in Proteins and Membranes · Molecular Motions in Membranes and...

Date post: 10-May-2018
Category:
Upload: ngodan
View: 216 times
Download: 2 times
Share this document with a friend
35
Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 1 Maikel C. Rheinstädter Laboratory for Membrane and Protein Dynamics McMaster University, Hamilton ON and Canadian Neutron Beam Centre, Chalk River ON Pontificia Universidad Catolica de Chile Facultad de Fisica Santiago de Chile, October 2009 Collective Molecular Dynamics in Proteins and Membranes Mini Curso I/III, Red Nacional de Postgrado en Ciencias Físicas: “Dynamics in Soft-Matter and Biology Studied by Coherent Scattering Probes”
Transcript

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 1

Maikel C. RheinstädterLaboratory for Membrane and Protein Dynamics

McMaster University, Hamilton ONand

Canadian Neutron Beam Centre, Chalk River ON

Pontificia Universidad Catolica de ChileFacultad de Fisica

Santiago de Chile, October 2009

Collective Molecular Dynamics

in Proteins and Membranes

Mini Curso I/III,Red Nacional de Postgrado en

Ciencias Físicas:“Dynamics in Soft-Matter and Biology Studied by Coherent

Scattering Probes”

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 2

Course Outline

Introduction: Membranes and Proteins

Properties of Neutrons and X-rays

Basic Scattering Theory: Elastic and Inelastic Scattering, Coherent and Incoherent Scattering

Scattering Experiments in Biological Materials, Practical Aspects

Molecular Motions in Membranes and Proteins as seen by Neutrons and X-rays

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 3

Course Goals

• Scattering jargon, explain concepts

(coherent, incoherent, elastic, quasi-elastic, inelastic, selective deuteration)

• Better understand scattering papers if you need them for your

work

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 4

Biological Physics is…

Aims and Scope, European Biophysical Journal:

“Although living systems obey the laws of physics and chemistry, the notion of function or purpose differentiates biology from other natural sciences” (Hartwell et al.)

OrganismOrgan

CellOrganelle

CytoskeletonFunctional Module

Biological MacromoleculeMolecule

Atom

Hierarchy of biological systems:

“… a distinctively biophysical approach at all levels of biological organization will be considered, as will both experimental and theoretical studies”

“the study of biological phenomena using physical methods and concepts … the primary goal …is to advance the understanding of biological structure and function by application of the principles of physical science”

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 5

Length Scales

1 nanometer = 10-9 m = 0.000000001 m

NanoBiology

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 6

The Cell

10 μm

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 7

Applications:

Bioengineering:tailor membranes with

specific properties

Understanding of physiological and biological functionalities:

Drug transport

D. Neumann, Saarbrücken, Germany

Membrane is the primary site of (inter)action

The Cell Membrane

Mariana RuizVillarreal (http://commons.wikimedia.org/)

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 8

Membrane Dynamics

Bert L. de Groot, Rainer A. Böckmann, and Helmut Gruber

‘multi-scale’: relevant dynamics in a large range of

length and time scales

How can we study dynamics in membranes and proteins?

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 9

Optical Techniques

Optical MicroscopeMagnifying Glass

Why can’t we see atoms or molecules?

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 10

Light is waves

Visible Light Wavelength700 nm (10-9m)

550 nm

450 nm

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 11

Waves Interfere

Wave character becomes important when things get

‘small’

Green Laser: 532 nm

Grating: 13,500 lines/inch

d=1,800 nm

Ripple Tank Diffraction grating

‘Diffraction limit’ when wavelength meets object size:Limit for optical techniques

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 12

Particles can be waves

Nobel Prize Albert Einstein 1921‘Photoelectric Effect’

Quantum Particle collides with obstacle

Wave-Particle Duality

Nobel Prize Louis de Broglie, 1929‘Wave nature of electrons’

Wavelength=quantum constant/(Mass x velocity)

Use particle waves to come to smaller

wave lengths

Metal

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 13

Electron Microscopy

Red blood cell (8000 nm)

Nobel Prize Ernst Ruska, 1986‘Design of the first electron microscope’

•Sample must be in vacuum•Sample damage•Complex sample preparation

λe<0.1 nm

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 14

A different Approach: Atomic Force Microscopy

Nobel Prize Gerd Binnig, Heinrich Rohrer, 1986‘for their design of the scanning tunneling microscope ’

Size of the tip: ~40 nm

Si(111)-(7x7) surface

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 15

A different Approach: Atomic Force Microscopy

•Surface sensitive•No dynamics

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 16

Neutron Scattering

Reactor SourcesProduction

The Institut Laue-Langevin (ILL) in Grenoble, France, operates the world’s most powerful neutron reactor

Cold moderator(liquid H)

Beam tubes

Neutron guides(total reflection by Ni coating)58

Production of slow (cold) neutrons

235U enriched fuel elements

DO moderator tank(300K)

2

Thermal power 58MW, peak core flux >10 neutrons cm s15-2-1

Spallation Sources

The Spallation Neutron Source (SNS) in Oakridge, USA, is the world’s most powerful neutron spallati on source

Production of H ions(2.5MeV)

-

Linear accelerator(1GeV)

Accumulator ring

Liquid mercury target

Neutron instruments

p+

2 MW spallation neutron source

Proton stripper

Neutron part of the nucleus λn<1 nm

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 17

Scattering-Reciprocal Space

Scattering laws

momentum energy( )21 vvmq −= ( )21

222

1 vvm −=ω

dq π

λθπ 2sin4 ==

Scattering vector

‘real space’ ‘reciprocal space’Fourier Transformation

diffraction

“…where the atoms are and

how they move.”

Nobel Prize Bertram Brockhouse, Clifford

Shull, 1994‘for pioneering

contributions to the development of neutron scattering techniques for

studies of condensed matter ’

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 18

Reciprocal Space of a Membrane

q|| [A

-1]

q⊥ [

A-1

]

g

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 19

Complex Membrane

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

-0,2 -0,1 0,0 0,1 0,2

DMPC / Alamethicin = 1:25T = 22,5°C

q z [Å-1

]

qy [Å-1]

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 20

Biological Physics and Techniques

OrganismOrgan

CellOrganelle

CytoskeletonFunctional Module

Biological MacromoleculeMolecule

Atom

Hierarchy of biological systems:

Optical Techniques

Electron Microscope

Atomic Force MicroscopeNeutron, X-ray Scattering

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 21

Part II

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 22

Membrane Dynamics

Bert L. de Groot, Rainer A. Böckmann, and Helmut Gruber

missing or not well developed periodic structure

(BZ concept)

‘multi-scale’: relevant dynamics in a large range of

length and time scales

high ‘intrinsic’background

• different molecular components

• single and collective molecular motions

Membrane is the primary site of (inter)action

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 23

Membrane Dynamics

Local modes in bilayers

Correlated molecular motions drive “functionalities” of membranes and proteins and structural changes

Incoherent, single molecule Coherent, interactions

Collective excitations

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 24

Coherence in Biology

Coherence is a fundamental property of biological materials

D2Oprotonated

H2Opartially (chain) deuterated

H2Oprotonated

D2Opartially (chain) deuterated

HydrationBilayerExperiment

Simulation

Fluid lipid bilayer at T=30°C

Coherent structural relaxation“Motional Coherence”

τ=10 ns

ξ=30 Å

Access to coherent properties

PRL 101, 248106 (2008)

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 25

Dynamics - Function

length scale

time scale

small large

fast

slow

Membrane Permeability

Membrane Elasticity47Å

intra-protein

inter-protein

picoseconds

0.1 nanometer 100 nanometers

nano -microsecond

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 26

Membrane and Protein Spectroscopy

Inelastic neutron scattering gives wave vector resolved access to

dynamics

Spin-Echo (IN11/IN15)

10-2 10-1 100 101

10-5

10-4

10-3

10-2

10-1

100

101

102

Q (Å-1)

E (m

eV)

102 101 100

106

105

104

103

102

101

100

10-1

R (Å)

t (p

s)

Triple-Axis (IN12/IN8)

Backscattering IN10/IN16

Time-of-Flight (IN5)

Spin-Echo (IN11/IN15)

10-2 10-1 100 101

10-5

10-4

10-3

10-2

10-1

100

101

102

Q (Å-1)

E (m

eV)

102 101 100

106

105

104

103

102

101

100

10-1

R (Å)

t (p

s)

Triple-Axis (IN12/IN8)

Backscattering IN10/IN16

Time-of-Flight (IN5)

excitationsrelaxations

specific motions

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 27

InelasticScattering

Experiments

Membrane PropertiesElasticity

Permeability

Inter and IntraProtein Dynamics

How does membrane composition and properties determine

protein dynamics and function?

Ethanol

Cholesterol

Solvent interaction

Road Map

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 28

Interdisciplinary Approach

Simulations

System S2: 48,880 atoms(256 lipids + 6224 waters)

Analytical Theory

2

3

4||

24||2

||3

||1

)(1))/((/)(

Dq

Dqqdq

πμη

πη

κτ+

Λ+=−

Experiments

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 29

Elementaryexcitations

Mesoscopic Membrane Fluctuations

Propagating Oscillating Relaxating

Mode

+ +

Thermal membrane fluctuations

q-dependence of excitation frequencies

and relaxation rates

Dispersion relation

Contains ‘dynamic’ information

τ-1

(ns-

1 )

q (Å-1)

100 Å

40 Å

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 30

Membrane Elasticity

[ ]3/ mJd

dB ⎟⎠⎞

⎜⎝⎛

∂Π∂−=[ ]mJ

dK /⎟

⎠⎞

⎜⎝⎛= κ

∫ ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

∇+⎥⎦⎤

⎢⎣⎡

∂∂= 22

2

][ uKzuBdVH

Mesoscopic membrane fluctuations

Bending modulus Compressional modulus

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 31

Romanov and Ul’yanov, PRE 66, 061701 (2002)

Undulations

Si-wafer

Mesoscopic Membrane Dynamics

Surface mode

Bary-Soroker and Diamant, Europhys. Lett., 73, 871 (2006), March 15, 2006

Fit to smectic hydrodynamic theoryRibotta, PRL 32, 6, (1974).

2

3

4||

24||2

||3

||1

)(1))/((/)(

Dq

Dqqdq

πμη

πη

κτ+

Λ+=−

Relaxation

filmbulk-elasticity

ρη3

3ηB

3ηκ

Quantitative access to membrane properties

Softening close to Tc

PRL 97, 048103 (2006)

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 32

Cooperative Protein Dynamics

Bacteriorhodopsin in Purple Membrane

47Å

Sample: Dieter Oesterhelt, MPI Munich

intra protein dynamics

inter protein dynamics Karin Schmalzl, Dieter Strauch, ILL+U Regensburg

a=62 Å

PRL 103, 128104 (2009)

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 33

Cooperative Protein Dynamics

2 2(3 ) 6BRM l t lω = + ≈( ) (longitudinal)k l t l= + ≈

Protein-Protein interaction in biological membranes

~1 nNInteraction Force0.2 ÅAmplitude

52 N/mk

Equipartition theorem:

½k<r2>= ½kBT

phonons}acoustical

optical

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 34

Protein “Communication”

kinter~0.1 N/m

kC-C~10,000 N/m

graphite

Photocycle

kPM~50 N/m

H. Luecke, Science, 1999

BR} 1.7 Å Organized Proteins may work

more efficiently

Maikel Rheinstädter, Mini Curso Red Nacional de Postgrado en Ciencias Físicas, October 2009 35

Diffusive vs. Collective Dynamics

How “soft” is a Protein?

Diffusive Motion of Proteins in PM Collective Motion-Protein Interactions

How interactive is a membrane?

KPM=0.1 N/m kPM=50 N/mAMP=2-3 Å Amp=0.2 Å

Thermal Fluctuation Spectrum Interactions: 1.7 Å ~ 9 nN

G. Zaccai, Science, 2000

restoringforce

interactionforce


Recommended