+ All Categories
Home > Documents > Combinatorial Approaches in Heterogeneous Catalysis day 2...6. Chemical catalyst deactivation 2 µm...

Combinatorial Approaches in Heterogeneous Catalysis day 2...6. Chemical catalyst deactivation 2 µm...

Date post: 27-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
100
Combinatorial Approaches in Heterogeneous Catalysis Jochen Lauterbach University of South Carolina 1 Department of Chemical Engineering SmartState Center for Strategic Approaches to the Generation of Electricity [email protected]
Transcript
  • Combinatorial Approaches in

    Heterogeneous Catalysis

    Jochen Lauterbach

    University of South Carolina

    1

    Department of Chemical EngineeringSmartState Center for Strategic Approaches to the

    Generation of [email protected]

  • Day of examples!

    • Metallic glasses & machine learning (not

    catalysis)

    • Flexible fuel reforming catalyst

    • NOx SCR catalysts for power plants

    • Mixed oxide catalysts for partial oxidation

    of ethane

    • (NH3 decomposition)

    2

  • Metallic Glass Formation Prediction via

    Machine Learning

    – Material Selection

    – Machine Learning

    – High Throughput Synthesis

    – Results and Iterative Learning

    x

    Example 1: Metallic Glasses

  • Metallic Glasses4

    Schroers, J. Phys. Today 2013, February, 32.

  • Metallic Glasses5

    Küchemann, S.; Samwer, K. Acta Mater. 2016, 104, 119. Chen, M. NPG Asia Mater. 2011, 3 (September), 82.

  • Machine Learning

    Theories(Thermodynamic,

    Geometric, etc.)

    Experimental

    Datasets(Prior known material

    compositions)

    (Landolt–Börnstein)_

    Elemental

    Properties(atomic size, number,

    etc.)

    Machine

    Learning1Prediction

    Training

    Data

    Features

    61) Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. arXiv preprint arXiv:1606.09551 (2016)

  • Machine Learning Predictions

    indicates experimental data

    7

  • Compositional Gradient Film

    8

  • Characterization – XRDLinear Accelerator

    9

  • Metric for Determination of Glass Formation

    10

    “sharp” diffraction peak is an indication for metallic glass formation

  • Metric for Determination of Glass Formation

    11

  • Metric for Determination of Glass Formation

    12

  • Metric for Determination of Glass Formation

    Full Width at Half Max

    13

  • Machine Learning Predictions

    indicates experimental data

    14

  • XRD Results

    15

  • Amorphous Silica as a Threshold for FWHM

    Gla

    s

    s

    Cry

    sta

    l

    FWHM FSDP

    Silica

    (0.57 Q)

    16

  • Results of First Generation Machine Learning

    19

  • Machine Learning Generation 2

    20

  • 21

    Glass

    Cry

    sta

    l

    FWHM FSDP

    Silica

    (0.57 Q)

    Machine Learning Generation 2

  • 221000˚C

    Combinatorial Cycle

    Rapid Synthesis

    Parallel Screening

    Data Minimizationand Analysis

    Hypothesis Generation

    0 10 20 30 40 50 60 70

    0

    10

    20

    30

    40

    50

    60

    70

    Model P

    redic

    ted N

    Ox s

    tora

    ge

    Experimental NOx storage

    Design Points

    Validation Points

    Hattrick-Simpers, J. R., Wen, C., and Lauterbach, J. “The Materials Super Highway: Integrating High-Throughput Experimentation into Mapping the Catalysis Materials Genome” Catalysis Letters145, no. 1 (2014): 290–298.

  • Factors Influencing Yield of a Catalyst

    J. Bisquert, Journal of Physical Chemistry Letters 2 (2011) 270

  • Portable power applications:

    • Unmanned aerial vehicles powered by LPG fuel cells

    – Weight and charge advantages over batteries

    • Auxiliary power applications

    – Increase stationary efficiency

    • Trucks during idle time

    • RVs, boats

    • Emergency responders

    Example II: LPG Fuel Cell Technology

    24

  • Why JP-8? Availability

    • JP-8 is the single battlefield fuel of NATO

    • Widespread existing supply infrastructure

    and distribution network

    Liquid Fuels as Feedstock

    Challenge – Obtain LPG from JP-8 /

    Diesel / gasoline

    25

    Process options:

    1. Steam Reforming – cannot add water

    2. Partial Oxidation – high temperature load, yields syngas

    3. Catalytic Cracking

  • Challenges:

    • Target specific C2-C4 product distribution

    • High sulfur content

    – JP-8 may contain up to 3,000 ppmw sulfur

    • Significant concentration of aromatics

    – Typically precursors to carbon coking

    Hydrocarbon Type JP-8 (%)

    Paraffins 71

    Alkylbenzenes 19

    Naphthalenes 6.2

    Olefins 3.5

    Balance 0.3

    SS

    Benzothiophenes

    Dibenzothiophenes

    Dodecane C12H26 22.5%

    Tetradecane C14H30 16.9%

    Decane C10H22 16.1%

    Hexadecane C16H34 12.2%

    Source: Air Force, 1991.

    Most prevalent constituents:

    JP-8 Composition

    26

  • 27

    Discovery Approach

    Theory inputPrimary

    screen thin film libraries

    Screening of “real”

    catalysts

    Process optimization & scale-up

    Catalyst Parameter Space

    Preparation:

    Synthesis

    Weight loading

    Calcination

    Materials:

    Active metal

    Precursor

    Support

    Testing:

    Temperature

    Concentration

    Time on Stream

  • Primary Optical Screen

    Expose to JP-8

    Darkening Carbon coating

    Activity

    Optical measurements

    Al2O3 SiO2

    Substrate

    Sample Synthesis

    J. Hattrick-Simpers, K. Yang, J. Bedenbaugh, M. Peralta, K.Bunn, J.Lauterbach, ACS Combinatorial Science, 2013

  • Al2O3-SiO2 Thin Film at 450oC

    Raw Image

    1 hr Video (accelerated)

    Ni

    referenceSubstrate

    heater

    SiO2 Al2O3

    29

  • 5% Rh/Al2O3 T = 650oC

    CH4

    Hydrocarbons

  • GC-MS Analysis

    31

    Compound Formula Ret. time

    (min)

    BP

    (oC)

    Gas density (20oC, 1

    atm)

    Methane CH4 8.7 -164 0.67 kg/m3

    Ethylene C2H4 12.3 -104 1.17 kg/m3

    Ethane C2H6 13.6 -89 1.26 kg/m3

    Propylene C3H6 19.0 -47 1.78 kg/m3

    Propane C3H8 19.5 -42 1.87 kg/m3

    1-Butene C4H8 23.4 -6.3 2.40 kg/m3

    Butane C4H10 23.8 -0.5 2.50 kg/m3

    JP-8 Conversion to LPG (mass basis)

    = kg C2-C4 out / kg JP-8 in (%)

  • Reaction Conditions:

    • 5% JP-8

    • Balance He

    • 100 sccm total flow

    per reactor channel

    • Catalyst pretreatment

    for ~3 hours at 450oC

    32

    Metals Supported on γ-Al2O3

    Activity Screen

    550 600 6500

    2

    4

    6

    8

    10

    kg C

    2-C

    4 o

    ut / kg J

    P-8

    in (

    %)

    Temperature (oC)

    La-doped Al2O

    3

    1% Pt / Al2O

    3

    -Al2O

    3

    1% Ir / Al2O

    3

    1% Pd / Al2O

    3

    1% Ru / Al2O

    3

    1% Rh / Al2O

    3

  • Methane Ethylene Ethane Propylene Propane 1-Butene Butane0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    kg o

    ut

    / kg J

    P-8

    in (

    %)

    -Al2O

    3

    1% Pt/Al2O

    3

    La-Al2O

    3

    -Al2O

    3

    Product Distribution – Al2O3

    Sample Conv.

    γ-Al2O3 7.3%

    1% Pt / Al2O3 7.7%

    La-Al2O3 9.7%

    α-Al2O3 4.2%

    33

    T = 650oC

  • Temp. Conv.

    MFI 8.7%

    γ-Al2O3 7.3%

    MFI at 350oC

    γ-Al2O3 at 650oC

    34

    MFI Zeolites

    Product Comparison – γ-Al2O3 vs. MFI

    C1 C2 C3 C40.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    kg o

    ut

    / kg J

    P-8

    in (

    %)

    MFI

    -Al2O

    3

  • JP-8 Cracking on ZSM-5

    35

    350400

    450500

    550

    0

    5

    10

    15

    20

    25

    20

    30

    40

    50607080

    LP

    G Y

    ield

    (M

    ass%

    )

    SiO

    2:A

    l 2O

    3 R

    atio

    Temperature ( oC)

  • 5 10 15 200

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    kg

    C2-C

    4 o

    ut

    / kg

    JP

    -8 in

    (%

    )

    Time on Stream (hr)

    ZSM-5, 30:1

    ZSM-5, 50:1

    36

    Catalyst Deactivation

    Fresh

    sample

    Spent

    sample

    T= 550oC Reaction Conditions:• 5% JP-8

    • Balance He

    • 100 sccm total flow

    per reactor channel

    • Catalyst pretreatment

    for ~3 hours at 450oC

  • 1 2 3 4 5 6 7 8 9 10 11 12 13 140

    5

    10

    15

    20

    25

    kg C

    2-C

    4 o

    ut / kg J

    P-8

    in (

    %)

    Reaction Cycle

    Pt-Gd-ZSM-5, 50:1

    ZSM-5, 50:1

    37

    Cyclic Regeneration

    T = 450oC

    Reaction Conditions:

    • ~5% JP-8

    • Balance He

    • 100 sccm total flow

    per reactor channel

    • Catalyst pretreatment

    for ~3 hours at 450oC

    • Regeneration with

    air for 1 hour at

    450oC between each

    successive 5 hour

    reaction cycle

  • TPO • 10 sccm total flow

    • 10% O2 Balanced with He

    • Ramp rate: 20oC/min

    • Oxidation Temperature:

    25oC~800oC

    400 500 600 700 800 900 1000 1100

    Temperature (K)

    ZSM-5

    Gd/ZSM-5

    Pt/ZSM-5

    Pt-Gd/ZSM-5

  • 39

    Summary JP-8 Cracking

    0

    5

    10

    15

    20

    25 Zeolites

    Ion-exchaged zeolites

    Impregnated zeolites

    Impregnated oxides

    Oxides

    kg

    C2-C

    4 o

    ut

    / kg

    JP

    -8 in

    (%

    )

    Sample - Worst to Best

  • 68.3%

    64.4%

    62.8%

    52.6%

    39.8%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    450 400 450 500 550

    Temperature (°C)

    Product distribution

    Butane

    1-butene

    Propane

    Propylene

    Ethane

    Ethylene

    Diesel Cracking

    JP-8

    • Reaction T: 400oC~550C

    • Catalyst: HZSM-5 3g

    • No Carrier gas, No recycling

    • WHSV=10h-1,

    Diesel

    30.8%

    15.7%

    21.6%

    24.1%26.1%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    350 400 450 500 550

    kg

    C2

    -C4 o

    ut

    / kg

    JP

    -8 i

    n (

    %)

    Temperature (°C)

    Diesel cracking

    JP-8

    Diesel

  • • HT helped to systematically study complex a

    parameter space in a reasonable time

    • Synthesized and screened ~ 800 catalysts at a

    variety of conditions in less than 10 months

    • Keep an open mind and don’t always trust prior

    “knowledge”

    • Computation did not generate any useful leads

    41

    Conclusions

  • Example II: NOx SCR

    42

    4NH3 + 4NO + O2 ----> 4N2 + 6H2O

    4NH3 + 2NO2 + O2 ----> 3N2 + 6H2O

    http://upload.wikimedia.org/wikipedia/en/5/5c/SCR2.GIF

  • Typical SCR Unit for Coal Fired Power Plant

    43http://ect.jmcatalysts.com/diesel-emission-control-coal-power-plants

    http://www.alliantenergy.com/AboutAlliantEnergy/EnvironmentalCommi

    tment/PerformanceAndCompliance/030357

  • Current Commercial SCR Catalysts

    1. Selectivity

    SO2 Oxidation:

    2SO2 + O2 ----> 2SO3

    Ammonium Sulfates (T 4N2O + 6H2O

    T > 400 ˚C

    2. Ammonia Slip

    3. Operating Temperature Window

    4. Fly-ash plugging20 µm

    EDAX

    44

    Carbon, Silica (20-60 wt%)

    CaO(5-30 wt%)

    Fe2O3 (10-40 wt%)

    Alumina (5-35 wt%)

    5. Low mechanical endurance

    6. Chemical catalyst deactivation

    2 µm

    Substrate: Cordierite (2MgO•2Al2O3•5SiO2)

    Fresh V2O5+WO3/TiO2 Catalyst

    CaSO4 can formed from the reaction

    between SO3 and CaO on the catalyst

    Decrease in Bronsted acidity

  • Multi-pollutant SCR Catalysts

    ▪ NOx reduction >90%

    ▪ < 5ppm NH3 slip

    ▪ Wide operating temperature

    ▪ Long-term stability

    ▪ Lower SO2 conversion

    ▪ Hg˚ oxidation

    45

    Small-pore3-4 Å

    SSZ-13, SAPO-34

    Large-pore7.4-15 Å

    Zeolite Y, Beta

    Meso-pore5.5-7 Å

    ZSM-5, MOR

  • Primary Screen in HT Reactor

    46

    Reactan

    t

    Reaction Conditions•Atmospheric pressure•150oC to 500oC, 50oC increments•500ppm NO, 500ppm NH3, 10% O2, and

    balance N2•GHSV = 42,500 mL/(hr*gcat) 16-way Flow split

    Effluen

    t

    Individual temperature monitoring

    16 stainless steel reactor tubes

    Capillaries

    Carrier gas

    Heated mixer with high internal

    surface area

    H2O Dosing Cell

  • • 500 ppm NO, 500 ppm NH3, 10% O2 and bal N2

    D.W. Fickel et al./Applied Catalysis B: Environmental 102 (2011) 441-448

    47

    Primary Screen – Representative Results

    Acid forms of zeolites vs. Cu exchanged zeolites

  • • Hydrothermal aging - de-alumination occurs above 700˚C:

    – Loss of Al(OH)3 = loss of Bronsted acid sites = loss in activity

    – Copper migration and formation of clusters

    D.W. Fickel et al./Applied Catalysis B: Environmental 102 (2011) 441-448

    48

    Hydrothermal Stability

  • Cu-ZSM-5 / Cu-SSZ-13 SCR Deactivation

    49

    Cu-ZSM-5 before (a) and after (b) hydrothermal treatment,

    Cu-SSZ-13 before (c) and after (d) hydrothermal treatment

    D.W. Fickel et al. Applied Catalysis B: Environmental 102 (2011) 441.

    (a) (b)

    (c) (d)

  • Secondary Screen - 8 Sample HT Reactor

    50

    NH3/N2

    NO/N2

    NO2/N2

    O2/N2

    CO2/N2

    SO2/N2

    Argon

    HCl/N2

    H2O

    Stream

    Selector

    Capillary

    Furnace

    Mass

    Spec

    Heater / Mixer

    Reactors

    Sample

    Exhaust

    Peristalti

    c

    Pump

    T >150˚C

    N2

    T>120˚C

    Component NO NH3 O2 CO2 H2O SO2

    Concentration

    500

    ppmv

    500

    ppmv

    5

    vol%

    5

    vol%

    8

    vol%

    500

    ppmv

    Detection limit: < 25 ppm of NO

    Both powder and

    honeycomb

    monolith samples

    can be tested

    GHSV: 40,000 hr-1

  • 8-Channel High-throughput Reactor

    Switching

    Valve

    Capillary

    Furnace

    Mixer

    Peristaltic Pump

    Mass Spec

    Reactors

    MFCs

    51

  • 52

    Effective Metals for SCR

    J. Am. Chem. Soc. 1999, 121, 5595-5596

    • 1000 ppm NO, and NH3, 2%

    O2 and balance He

    • GHSV=4.6E5 1/h

    • * detonates addition of 500

    ppm SO2

    Test Conditions

    Activity

    • Both Fe and Ce showed high

    NO conversion at

    temperatures above 400 ᵒC

    • Ce-Fe-ZSM-5 did not get

    poisoned by SO2 and

    showed a lower activity for

    SO2 oxidation to SO3

  • 53

    Morphology - SSZ-13

    Si/Al = 7

  • Ion-exchanged SSZ-13

    10 20 30 40

    H-SSZ-13

    Fe-SSZ-13

    Ce-SSZ-13

    Fe-Ce-SSZ-13

    (401)

    (220)

    (104)

    (211)

    (003)

    (021)(110)

    Inte

    nsi

    ty (

    a. u

    .)

    2

    (101)

    8.5 9.0 9.5 10.0 10.5

    (10

    1)

    H-SSZ-13

    Fe-SSZ-13

    Ce-SSZ-13

    Fe-Ce-SSZ-13

    Inte

    nsity a

    .u.

    2

    54

    Si/Al = 7

  • SCR of NOx - without H2O and SO2

    150 200 250 300 350 400 450

    0

    20

    40

    60

    80

    100

    Temperature (oC)

    NO

    Conver

    sion (

    %)

    Cu-SSZ-13

    Fe-SSZ-13

    Ce-SSZ-13

    Fe-Ce-SSZ-13

    H-SSZ-13

    • Cu-SSZ-13 shows the

    best SCR activity over a

    wide temperature window

    • Fe-Ce-SSZ-13 has good

    catalytic activity at high

    temperature

    55

    NO NH3 O2 CO2

    500

    ppmv

    500

    ppmv

    5

    vol%

    5

    vol%

  • 150 200 250 300 350 400 450

    0

    20

    40

    60

    80

    100

    NO

    Co

    nv

    ersi

    on

    (%

    )

    Temperature (oC)

    Cu-SSZ-13

    Fe-SSZ-13

    Ce-SSZ-13

    Fe-Ce-SSZ-13

    Effect of H2O

    • Cu-SSZ-13 still shows

    the best SCR activity in a

    wide temperature window

    • Catalytic activity of

    Fe/Ce-SSZ-13

    decreased with water

    addition

    NO NH3 O2 CO2 H2O

    500

    ppmv

    500

    ppmv

    5

    vol%

    5

    vol%

    8

    vol%

  • Effect of H2O and SO2

    150 200 250 300 350 400 450

    0

    20

    40

    60

    80

    100

    NO

    Co

    nv

    ersi

    on

    (%

    )

    Temperature (oC)

    Cu-SSZ-13

    Fe-SSZ-13

    Ce-SSZ-13

    Fe-Ce-SSZ-13

    Commercial

    • Catalysts are deactivated

    possibly due to ammonium

    sulfate under 250oC ζ

    • Cu-SSZ-13 shows the best

    sulfur resistance at 250oC

    57ζEnviron. Sci. Technol., 47, 5294–5301(2013), J. Catal. 186, 254–268 (1999), J. Catal. 188, 332 (1999)

    NO NH3 O2 CO2 H2O SO2

    500

    ppmv

    500

    ppmv

    5

    vol%

    5

    vol%

    8

    vol%

    500

    ppmv

  • Conversion Comparison

    250 C Just CO2 + H2O + H2O and SO2

    Cu 100 100 71

    Fe 82 78 30

    Ce 20 11 0

    Fe/Ce 97 48 22

    58

    450 C Just CO2 + H2O + H2O and SO2

    Cu 100 100 100

    Fe 94 98 100

    Ce 100 62 9

    Fe/Ce 100 80 88

  • XPS of S 2p

    173 172 171 170 169 168 1670

    60

    120

    180

    Counts

    (a.

    u.)

    Binding Energy (eV)406 405 404 403 402 401 400 399 3980

    90

    180

    270

    360

    Counts

    (a.

    u.)

    Binding Energy (eV)

    XPS of N 1s

    62%38%

    • 0.39% S and 1.38% N (atomic conc. %) are detected

    • SO42- (shifted above 168 eV)

    • NH4+ form on the surface of the catalyst, possible compounds:

    • (NH4)2SO4 at around 400.5 eV

    • NH3 absorbed on the Bronsted acid site at around 402.7 eV

    XPS Analysis of S Deactivated Catalysts

    59

    NIST X-ray Photoelectron

    Spectroscopy Database, NIST

    Standard Reference Database

    20, Version 4.1

  • Conclusions

    • HTE has led to the discovery & optimization of

    new stable SCR catalysts not based on Ti, Va,

    and W

    • Both Cu and Fe-SSZ-13 have excellent

    resistance to H2O + SO2 above ~350oC

    • Cu-SSZ-13 shows similar SCR activity in

    comparison to the current commercial catalyst

    • All catalysts are deactivated by SO2 at 250oC

    and below

    • NH4+ and SO4

    2- form on the Cu-SSZ-13;

    evidence for (NH4)2SO4 formation60

  • Example III: Catalyst performance via high-throughput /

    statistical design methods:

    ▪ Tailoring of reactivity requires detailed understanding of the

    interplay between synthesis parameters

    ▪ Employing high-throughput experimentation with data mining

    tools permits mapping of the synthesis space onto

    hydrogenation performance

    Catalyst

    performance

    Activity

    Selectivity

    Stability

    Catalyst

    structureCatalyst

    preparation

    Method

    Heating regimen

    Pre-treatment

    Reagents

  • Explore synthesis strategies for on-demand mixed-oxide catalyst reactivity for ethane to acidic acid and/or ethylene

    Technical Information: prescriptive synthesis relationships for desired partial oxidation properties

    Controlled nanomaterial synthesis improves catalyst performance

    Requires detailed understanding of the synthesis parameter space

  • Background

    Acid/base and redox properties:

    • Acid/base sites for the

    activation of ethane;

    • Redox sites for the oxidation to

    acetic acid;

    Ruth, K., et al. (1998). Journal of Catalysis

    175(1): 16-26.

  • Research Methods / Techniques

    Data Mining AlgorithmsIn-situ FTIR, EXAFS, XRD,…

    30 40 50 60 70 80

    Theta(deg)

    0

    500

    1000

    1500

    2000

    2500

    3000

    Inte

    nsity(C

    ou

    nts

    )

    71-1178> CoO - Cobalt Oxide(Major)

    89-2803> CoO - Cobalt Oxide(Major)

    (1

    00

    )

    (0

    0

    2)

    (2

    0

    0)

    (2

    2

    0)

    (1

    0

    1)

    (1

    02

    )

    (1

    03

    )

    (1

    10

    )

    71-1178 CoO hcp

    89-2803 CoO cubic

    TEMHT synthesis and screening

  • Cs2SO4-or- K2SO4

    -or- Te(OH)6

    (NH4)2PdCl4-or- Ti2(SO4)3

    -or- NiSO4

    (NH4)6Mo7O24C4H4NNbO9

    VOSO4

    Base Catalyst Composition

    Synthesis Gel Composition

    [Mo8V2Nb1]x[RrAa]z

    Redox-Acid/Base Dopants

    Hydrothermal Synthesis

    5 Autoclaves

    simultaneously

    Hydrothermal Synthesis

    175oC for 48hr

    Dry-120oC

    2hr

    Calcine-

    400oC 4hr

    Dry/Calcine

    Wash

    H2O

    Anderson-type heteropoly

    molybdate1

    • (NH4)3NbMo6H6O24 reacts with VOSO4forming Mo-V-Nb-O

    • Dopants incorporate

    into Mo-V-Nb-O

    framework

    1. Chen, N. F.; Oshihara, K.; Ueda, W.

    Catalysis today 2001, 64 (1), 121-128

  • Base catalyst composition:

    Mo8-V2-Nb1

    Mo8-V2-Nb1 From Ruth

    Mo8-V2-Nb0.75Te1.4 From Bergh

    Mo8-V2-Nb0.96Pd0.004 From Linke

    Mo8-V3.18-Nb1 From Roussel

    • Ruth, K., et al. (1998). Journal of Catalysis 175(1): 16-26.

    • Bergh, S., et al. (2003). Applied Catalysis A: General 254(1): 67-76.

    • Linke, D., et al. (2002). Journal of Catalysis 205(1): 32-43.

    • Roussel, M., et al. (2005). Catalysis Today 99(1–2): 77-87.

  • Design of Experiments - OutlineResearch hypotheses:

    • Identify correlations between the elemental loadings of redox and

    acid elements on a base Mo8-V2-Nb1 catalyst on product

    distribution in ethane PO through the development of response

    surface

    • Elucidate multifactor correlations between catalyst composition,

    structural parameters, and ethane PO by completing DOE/ANOVA

    over multiple responses

    Parameter space for 3 level – 4 factor full factorial design (34)

    Factor Variable Type Low Center Point High

    A: Redox element (R) Categorical Pd Ni Ti

    B: Acid/base element (A) Categorical K Cs Te

    C: Dopant to host ratio (y/x) Numerical 0.005 0.5 1

    D: Redox to acid ratio (r/a) Numerical 0.005 0.5 1

    Catalyst composition: [Mo8V2Nb1]x[RrAa]y

  • PdK PdCs PdTe NiK NiCs NiTe TiK TiCs TiK

    R/A=0.005

    D/H=0.0051 10 19 28 37 46 55 64 73

    R/A=0.005

    D/H=0.52 11 20 29 38 47 56 65 74

    R/A=0.005

    D/H=13 12 21 30 39 48 57 66 75

    R/A=0.5

    D/H=0.0054 13 22 31 40 49 58 67 76

    R/A=0.5

    D/H=0.55 14 23 32 41 50 59 68 77

    R/A=0.5

    D/H=16 15 24 33 42 51 60 69 78

    R/A=1

    D/H=0.0057 16 25 34 43 52 61 70 79

    R/A=1

    D/H=0.58 17 26 35 44 53 62 71 80

    R/A=1

    D/H=19 18 27 36 45 54 63 72 81

    Design of Experiments Standard Orders: [Mo8V2Nb1]H[RRAA]D

  • EDS – Catalyst Composition • 81 samples x 3 scans each• Scaled to Mo and error analyzed

    EDS composition of Mo8V2Nb1R0.25A0.25samples

    Target loading

  • XRD

    • Responses analyzed (based on 22° peak):

    • Crystallite size

    • D-spacing, indicative of MoVNb lattice doping

    • Abundance of secondary phases

  • XRD of Mo8V2Nb1R0.25A0.25 samples

  • XRD Grain Size DOE Analysis

    Summary

    Model p-value 0.000

    R-squared 91.73%

    A: Redox element

    B: Acid/base

    element

    C: Dopant to host

    ratio

    D: Redox to acid

    ratio

  • Redox Element NiAcid/Base Element K

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – < 280

    280 290290 300300 310

    310

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratioGrain Size - MoVNbNiK

    Redox Element NiAcid/Base Element K

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – < 280

    280 290290 300300 310

    310

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratio

    Redox Element PdAcid/Base Element K

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – < 240

    240 250250 260260 270

    270

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratio

    Redox Element PdAcid/Base Element K

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – < 240

    240 250250 260260 270

    270

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratioGrain Size - MoVNbPdK

    Redox Element TiAcid/Base Element K

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – – < 180

    180 210210 240240 270270 300

    300

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratio

    Redox Element TiAcid/Base Element K

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – – < 180

    180 210210 240240 270270 300

    300

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratioGrain Size - MoVNbTiK

    Redox Element PdAcid/Base Element Te

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – – – – < 220

    220 230230 240240 250250 260260 270270 280

    280

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratio

    Redox Element PdAcid/Base Element Te

    Hold Values

    Redox/Acid ratio

    Do

    pan

    t/H

    ost

    rati

    o

    1.00.90.80.70.60.50.40.30.20.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    > – – – – – – < 220

    220 230230 240240 250250 260260 270270 280

    280

    XS22deg

    Contour Plot of XS22deg vs Dopant/Host ratio, Redox/Acid ratioGrain Size - MoVNbPdTe

  • Ethane Partial Oxidation T=450oC

    78

    2023

    26

    36

    118

    11

    20

    2935

    38

    8

    30 2923

    26

    3632

    2722

    28

    39 38

    1821

    2935

    20 19 18 18

    2522 20

    23

    8

    10

    1

    14

    11

    3212

    1

    1

    9

    31

    11 14 26 21

    8

    924

    16

    16

    1111

    2312

    13

    13

    27

    15 16 15

    1923 27 19

    36

    3

    15

    3 26

    23

    16

    23

    2

    2

    314

    169

    18

    8

    2 10

    12

    21

    16

    11

    7 23

    26 6

    4

    18

    25 2321

    2318

    20

    19

    26

    1

    2

    4

    3

    2

    3

    1

    2

    2

    2

    2

    5

    2

    2

    2

    4

    1

    2

    7 6

    5

    26

    11

    2

    1 2

    2

    6

    2

    2

    1

    1

    Base5 10 17 31 34 35 45 13 14 6 19 21 26 27 24 9 22 20 46 73 4 1 41 42 2 23 29 28 37 38 36 33 30 32

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Yie

    ld (

    %)

    Sample

    CH4 Yield

    AA Yield

    CO Yield

    Ethylene Yield

    CO2 Yield

    GHSV: 1200 h-1

    Pressure: 1 bar

    Temperature 450 ±10oC

    Catalyst: 2.0 g

    Flow rate: 40 ml min-1

    Ethane to O2 ratio: 4:5

  • EPO Temperature Optimization

    79

    0

    31

    212525

    3432

    21

    51

    12

    39

    1 001 20 10

    17

    11

    17

    2024 6924

    21

    13

    15

    11

    52

    915

    17

    4710

    0

    10 15

    2011

    2

    10

    20

    9

    2

    9

    11

    11

    1

    2

    4

    0

    11

    4 2

    2

    2

    2

    4

    4

    2

    2

    2

    5

    5

    3

    2

    2

    2

    7

    72

    1 19 20 21 22 24 26 27 28 29 30 33 36 37 4 41 42 46 73 9

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Yie

    ld (

    %)

    Sample

    AA Yield

    CH4 Yield

    CO Yield

    Ethylene Yield

    CO2 Yield

    GHSV: 1200 h-1

    Pressure: 1 bar

    Catalyst: 2.0 g

    Flow rate: 40 ml min-1

    Ethane to O2 ratio: 4:5

  • EPO Temperature Optimization

    80

    1

    54

    38 3740

    78

    58

    31

    15

    6

    33

    59

    23 3 2 47 5 6

    97

    20

    31 30

    39

    14

    17

    35

    58 73

    39

    17

    7277 76

    33

    45

    71

    4436

    2

    18 28 30

    18

    5

    1729

    24 1024 16

    8

    98

    4

    7

    16

    10

    11

    83 33 4

    864

    125

    8

    1911 13

    61

    44

    6

    4147

    1 19 20 21 22 24 26 27 28 29 30 33 36 37 4 41 42 46 73 9

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100S

    ele

    ctivity (

    %)

    Sample

    AA

    CH4

    CO

    C2H

    4

    CO2

  • 81

  • Example - NH3 Decomposition

    82

    250 300 350 400 450 500 550 600

    40

    60

    80

    100

    % N

    H3 C

    on

    vers

    ion

    T[oC]

    Equilibrium, P=1atm

    Current catalyst1

    1. S. Yin, et al. App. Catal. A: General, 2006

    NH3 (g) 1/2 N2 (g) + 3/2 H2 (g)

    ∆Hrxn = 46 kJ/mol

  • 83

    Effect of Metal

    100 200 300 400 500 600

    0

    20

    40

    60

    80

    100%

    NH

    3 C

    on

    ve

    rsio

    n

    Temperature [oC]

    Ru

    Ir

    Rh

    Pd

    Pt

  • 84

    Promotional Effect of Alkaline Metals

    200 250 300 350 400 450 500

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Catalysts Prepared using H2O

    Inlet Feed: 100 sccm of 10% NH3 in He

    % N

    H3 C

    on

    vers

    ion

    T[C]

    4 wt Ru/12 wt% K

    4 wt% Ru/12 wt% Rb

    4 wt% Ru/12 wt% Na

    4 wt% Ru/12 wt% Cs

    4 wt% Ru

  • 200 250 300 350 400 450 500

    0

    20

    40

    60

    80

    100

    NH

    3 C

    on

    vers

    ion

    T[oC]

    0%

    6%

    12%

    18%

    24%

    30%

    Optimizing K-Promotion

    • SVNH3=4000

    mL/(gcat*hr)

    • 12% is optimal

    K loading for

    4wt% Ru.

    85

  • K-Promotion: Effect on Morphology

    0

    20

    40

    60

    80

    % N

    H3 C

    on

    vers

    ion

    4Ru

    4Ru/12K

    4Ru / γ-Al2O3

    W. Pyrz, R. Vijay, J. Binz, J. Lauterbach, and D. Buttrey, Topics in Catalysis (2008)

    T = 350oC

    1 μm

    4Ru-12K / γ-Al2O3

    86

  • Structural Analysis of Nanowhiskers

    87

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

    0

    100

    200

    300

    400

    500

    600

    O

    C

    AlCu

    K

    Ru

    RuCo

    un

    ts

    Energy (keV)

    Ru

  • Alkali Ru Hollandite

    • Electron diffraction

    shows that whiskers

    are KRu4O8.

    • K large tunnel ions.

    • Ru cations located in

    oxygen-octahedron.

    K O Ru

    9.880 A

    88

  • 4Ru/12K, after 1 hour reaction

    1 μm

    Active Catalyst in the SEM

  • Post-Reaction Analysis

    9030 40 50 60

    Inte

    nsi

    ty (

    a.u

    .)

    2

    -Al2O3

    KRu4O8 (040)

    KCl, associated with the promoter

    Ruo (101)

    4Ru/12K, after reaction

    4Ru/12K, after 1 hour

    H2 treatment, 450oC

    4Ru/12K, after 3 hour

    Calcination, 550oC

  • TEM Analysis

    (a) Catalyst after 15 min in H2,

    (b) interplanar spacing corresponding to Ru(100)

    (c) Ru particle residing on Ru nanowire

    (d) polycrystalline Ru nanoparticles on catalyst after 45 min

    (e) crystalline Ru nanowire on catalyst after 60 min in H2(f) FFT of (e) showing crystallinity

  • Structure Sensitivity of NH3 Decomposition

    92

    nanoparticle catalysts (1-10 nm)1 < Ru crystallites (~20 nm)

    nanowiresliterature

    1Yin, et al., J. Catal., 2004

    Li, et al., Carbon, 2007

    Karim, et al., JACS, 2009

    Simulated Ru particle2

    Reaction type Catalyst design goal

    Structure Insensitive Maximize surface atoms

    Structure Sensitive Maximize active sites

    up to 1x109 times

    faster reaction rate

    on steps3

    Step atoms

    High Resolution TEM investigation of nanowire structure

    2Honkala, et al., Science, 2005

    Step edges giving rise

    to B5-sites in red

    3Dahl, et al., Phys. Rev. Lett., 1999

    Grain boundary

    between crystallites

    2Honkala, et al., Science, 2005

    20 nm

  • 9393

    0 1 2 3 4 5

    260

    280

    300

    320

    340

    360

    380

    400

    420

    440

    % Co Loading

    T [C

    ] 0

    5.000

    10.00

    15.00

    20.00

    25.00

    30.00

    35.00

    Dependence on Co and T

    Model Predictions - Long Cycle NOx Storage

    NOx storage = f(Pt,Ba,Co,Rh,T)

    Rxn. conditions

    NO = 0.15%

    O2 = 6% or 0%

    CO = 0.9 %

    C2H4=0.15%

    0% Pt,15% Ba and 0% Rh

    NOx Storage

  • 9494

    Term Coefficient

    Constant 44.68

    Pt 3.72

    Rh 2.97

    Ba 30.6

    Co -1.05

    T -2.69

    Pt*Pt -12.63

    Rh*Rh -7.93

    Ba*Ba 9.34

    Co*Co -14.38

    T*T -24.06

    Pt*Ba 13.19

    Pt*T -7.12

    Rh*Ba 9.54

    0 20 40 60 80 100

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Model P

    redic

    ted N

    Ox s

    tora

    ge [10

    -6 m

    ole

    s N

    Ox]

    Experimental NOx Storage [10

    -6 moles NO

    x]

    Model development points

    Validation points

    Model Prediction vs. Experimental Values

    Optimum Catalyst Composition 1.4Pt/0.9Rh/4Co/23Ba

    All catalyst loadings are actual loadings

  • 9595

    Traditional Materials - Pt/Ba

    0 2 4 6 8 10 12 14

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Ba [% w/w]

    Pt [%

    w/w

    ]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    [* 1

    0-6 m

    ole

    s N

    Ox]

    Reaction

    Conditions:

    0.14% - NO

    6.0 % - O2

    0.9 % - CO

    0.15% - C2H4

    648 K

    Fe = 2.5 % w/w

    Optimize

    loadings

    L. Castoldi, I. Nova, L. Lietti, P. Forzatti, Catal. Today 96 (2004) 43

    * * **

  • 9696

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    300

    320

    340

    360

    380

    40015%Ba, 0% Co and Rh

    Pt Loading

    Tem

    pe

    ratu

    re [oC

    ]

    10.0015.0020.0025.0030.0035.0040.0045.0050.0055.0060.0065.0070.0075.00

    NOx storage

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    300

    320

    340

    360

    380

    400

    Pt Loading

    Te

    mp

    era

    ture

    [oC

    ]

    10.0015.0020.0025.0030.0035.0040.0045.0050.0055.0060.0065.0070.0075.00

    1%Co, 15%Ba and 0%Rh

    NOx storage

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    300

    320

    340

    360

    380

    400

    Pt Loading

    Te

    mp

    era

    ture

    [oC

    ]

    10.00

    15.00

    20.00

    25.00

    30.00

    35.00

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    75.00

    NOx storage

    2.5%Co, 15%Ba and 0%Rh

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    300

    320

    340

    360

    380

    400

    Pt Loading

    Te

    mp

    era

    ture

    [oC

    ]

    10.0015.0020.0025.0030.0035.0040.0045.0050.0055.0060.0065.0070.0075.00

    5%Co, 15%Ba and 0%Rh

    NOx Storage: effect of Co loading

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    300

    320

    340

    360

    380

    400

    Pt Loading

    Te

    mp

    era

    ture

    [oC

    ]

    10.00

    15.00

    20.00

    25.00

    30.00

    35.00

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    75.00

    NOx storage

    4%Co, 15%Ba and 0%Rh

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    300

    320

    340

    360

    380

    400

    Pt Loading

    Tem

    pe

    ratu

    re [oC

    ]

    10.0015.0020.0025.0030.0035.0040.0045.0050.0055.0060.0065.0070.0075.00

    5%Co, 15%Ba and 0%Rh

  • TST

    DFT

    BOC

    Elementary Reaction Mechanism

    Reactor Model

    Quantitative, Parallel HTE

    Design of Experiments Model Optimization

    Model Validation

    HTE – Kinetic Modeling

    97

  • Ammonia Decomposition

    • Synthesis Model1

    – Developed for Ammonia Synthesis

    • No Interaction Model2

    – Developed for Ammonia Decomposition

    – Utilizes Bond Order Conservation (BOC) to calculate activation energies

    • Interaction Model2

    – Incorporates N* - N* interactions

    – Incorporates coverage depended activation energies

    1Hinrichsen, O. Catalysis Today 53 (1999) 1772Mhadeshwar, et al., D.G. Catalysis Letters 96 (2004) 13

    **

    2

    *

    3 * HNHNH

    ***

    2 * HNHNH

    *** * HNNH

    *2)(2 2* gHH

    *2)(2 2* gNN

    *

    33 *)( NHgNH

    98

  • 0 20 40 60 80 100

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0Co

    vera

    ge F

    ract

    ion

    Predicted Ammonia Conversion

    Synthesis H*

    Synthesis N*

    Interaction H*

    Interaction N*

    No N-N Interaction H*

    No N-N Interaction N*

    Predicted Surface Coverages

    Kinetic parameters from

    literature and DFT

    • Two models predict low H* and very high N* coverages– H2 adsorption blocked

    • Interaction model– Repulsive N*-N* interactions decrease N* coverage

    – Increased H* coverage – favors NH*+H* -> NH2– Hydrogen inhibition effect 99

  • Catalyst Preparation & Characterization

    • Synthesized via incipient wetness– RuCl3 xH20 (Strem Chemical)

    – γ-Al2O3 (Catalox Sba-200, 200 m2/g)

    • Calcination at 823 K in dry air

    • Oxidized and reduced in situ prior to reaction

    • Dispersion and surface area measured with CO pulse chemisorption

    • Reactor model parameters experimentally measured

    Nominal (w/w) Dispersion Surface Area

    1% Ru/Al2O3 6.59% 0.37 m2/g

    2% Ru/Al2O3 9.08% 1.08 ± 0.45 m2/g

    3% Ru/Al2O3 7.55% 1.34 ± 0.19 m2/g

    4% Ru/Al2O3 5.89% 1.40 ± 0.35 m2/g

    6% Ru/Al2O3 4.42% 1.57 ± 0.57 m2/g 100

  • Experiments – Hydrogen Addition

    3%(w/w) Ru / γ-Al2O3

    10/90 NH3/He

    10/20/70 NH3/H2/He

    P = 1.05 bar

    SA/g = 1.34 m2/g

    GHSV = 30,000 mL/h/gcat

    620 640 660 680 700 720 740 760 780 8000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Convers

    ion (

    %)

    Temperature (K)

    101

  • Synthesis Model – Hydrogen Addition

    3%(w/w) Ru / γ-Al2O3

    10/90 NH3/He

    10/20/70 NH3/H2/He

    P = 1.05 bar

    SA/g = 1.34 m2/g

    GHSV = 30,000 mL/h/gcat

    620 640 660 680 700 720 740 760 780 8000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Convers

    ion (

    %)

    Temperature (K)

    102

  • No Interaction Model – Hydrogen Addition

    3%(w/w) Ru / γ-Al2O3

    10/90 NH3/He

    10/20/70 NH3/H2/He

    P = 1.05 bar

    SA/g = 1.34 m2/g

    GHSV = 30,000 mL/h/gcat

    620 640 660 680 700 720 740 760 780 8000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Convers

    ion (

    %)

    Temperature (K)

    103

  • Interaction Model – Hydrogen Addition

    3%(w/w) Ru / γ-Al2O3

    10/90 NH3/He

    10/20/70 NH3/H2/He

    P = 1.05 bar

    SA/g = 1.34 m2/g

    GHSV = 30,000 mL/h/gcat

    620 640 660 680 700 720 740 760 780 8000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Convers

    ion (

    %)

    Temperature (K)

    104

  • Weight Loading

    620 640 660 680 700 720 740 760 780

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Am

    mo

    nia

    Co

    nver

    sio

    n (

    %)

    Temperature (K)

    620 640 660 680 700 720 740 760 780

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Am

    mo

    nia

    Co

    nver

    sio

    n (

    %)

    Temperature (K)

    620 640 660 680 700 720 740 760 780

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Am

    mon

    ia C

    on

    ve

    rsio

    n (

    %)

    Temperature (K)

    6% Ru4% Ru

    2% Ru 1% Ru

    10 v/v%

    NH3/He620 640 660 680 700 720 740 760 780

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Am

    monia

    Convers

    ion (

    %)

    Temperature (K)

    105

  • 0 20 40 60 80 100

    0

    20

    40

    60

    80

    100P

    redic

    ted A

    mm

    on

    ia C

    on

    ve

    rsio

    n

    Experimental Ammonia Conversion

    6% Ru/-Al2O

    3

    4% Ru/-Al2O

    3

    3% Ru/-Al2O

    3

    2% Ru/-Al2O

    3

    1% Ru/-Al2O

    3

    Putting all Data Together

    Data used for model development

    106


Recommended