+ All Categories
Home > Documents > Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical...

Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical...

Date post: 18-Jan-2018
Category:
Upload: marjorie-hampton
View: 221 times
Download: 0 times
Share this document with a friend
Description:
Importance of Biological Sulfur Radicals Fragmentation, cross-linking, disulfide bond cleavage… Antioxidants Key role at active sites (Ribonucleotide reductases) Reversible radical storage α-carbon radicals (mostly glycine) J. Stubbe and P. Riggs-Gelasco, Trends Biochem. Sci. 1998, 23,
26
IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1 , J. Lawler 1 , G. Berden 2 , J. Oomens 2 , J.K.-C. Lau 3,4 , K.W.M. Sui 3,4 , A. C. Hopkinson 4 , V. Steinmetz 5 , P. Maitre 5 , V. Ryzhov 1 1 Northern Illinois University, Dekalb, IL (USA). 2 FELIX Radboud University, Nijmegen (NL). 3 University of Windsor, Ontario (CA). 4 York University, Ontario (CA). 5 Université Paris Sud, Orsay (FR).
Transcript
Page 1: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Combining the Power of IRMPD with Ion-Molecule

Reactions: The Structure and

Reactivity of Radical Ions of Cysteine and its

Derivatives M. Lesslie1, J. Lawler1, G. Berden2, J. Oomens2, J.K.-C. Lau3,4, K.W.M. Sui3,4,

A. C. Hopkinson4, V. Steinmetz5, P. Maitre5, V. Ryzhov1

1 Northern Illinois University, Dekalb, IL (USA). 2 FELIX Radboud University, Nijmegen (NL). 3 University of Windsor, Ontario (CA). 4 York University,

Ontario (CA). 5 Université Paris Sud, Orsay (FR).

Page 2: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Free Radicals & Oxidative Damage

Page 3: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Importance of Biological Sulfur Radicals

Fragmentation, cross-linking, disulfide bond cleavage…

Antioxidants

NH2

S

O

OH

cysteine

O

HN

OH

OS

NHNH2

HO

O O

glutathione

NH

S

O

OHO

n-acetyl cysteine

NH2

SO

OH

homocysteineKey role at active sites

(Ribonucleotide reductases)

Reversible radical storageα-carbon radicals (mostly glycine)

NH O

CHN

OS

HN

RNH O

CHN

OSH

HN

R

HAT

J. Stubbe and P. Riggs-Gelasco, Trends Biochem. Sci. 1998, 23, 438-443.

Page 4: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Cysteine & Homocysteine Alkali Adducts

Radical Rearrangement

Biological Perspective

How do alkali metal ions affect radical reactivity

and structure?

H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore and J. Darnell, 2000.

NH2

HS

O

OH

Cysteine (Cys)

NH2

HS

O

OH

Homocysteine (Hcy)

H3N

S

O

OHH2N

OH

OH

SH

X

H2N

S

O

OHH2N

O

M

OH

HS M?

Page 5: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Techniques• Sulfur Radical Formation

• Solution phase: Cys(SH) + R’ONO Cys(SNO) + R’OH⇌• Gas phase: [Cys(SNO)]+ [Cys(S•)]+ + •NO

• Ion-Molecule Reactions (IMR) • Differences in reactivity suggest differences in structure • Regiospecific IMRs: S• highly reactive / α-C• not reactive

• Gas-phase infrared spectroscopy • Infrared multiple photon dissociation (IRMPD)• [M+Hcy]•+ FELIX (FTICR) & [M+Cys]•+ CLIO (QIT)

• Theoretical calculations• DFT B3LYP/6-311++G(d,p)• Structural elucidation / barriers to rearrangement

CID

Page 6: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

6

Infrared Multiple Photon Dissociation

N. C. Polfer, Chemical Society Reviews, 2011, 40, 2211-2221.

Action spectroscopy:Dissociation indicates absorptionMonitor fragmentation yield vs. wavelength

*CLIO: ESI-QIT

Page 7: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Ion-Molecule ReactionsModified Bruker Esquire 3000 ESI-QIT

Page 8: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Protonated Cys Radical CationI. Captodatively stabilized α-carbon radical

II. Sulfur radical (initially formed) H3N

S

O

OHH2N

OH

OH

SH

Rearrangement (III) barrier: ~160 kJ mol-1

B3LYP/6-311++G(d,p) levelRelative energies in kJ mol-1 Sinha, R.; Maitre, P.; Piccirillo, S.; Chiavarino, B.; Crestoni, M.; Fornarini, S.,

Phys Chem Chem Phys 2010, 12,9794-9800.

J. Zhao, K. W. M. Siu and A. C. Hopkinson, Phys. Chem. Chem. Phys. 2008, 10, 281-288.

X

Page 9: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Probing Cys Radical Alkali Adducts with IMRs

NH3

S

O

OH

SSNH3

S

O

OH

S

SNH3

S

O

OH

NH3

S

O

OH

NO

NO

Disulfide bond transfer Radical Recombination

0

50

100

0

50

100

0

50

100

100 150 2000

50

100

+SCH3

121

168

127 174

H+

Li+

Na+

K++SCH

3

+SCH3

+SCH3

143 190

159

206

Rel

ativ

e In

tens

ity (%

)

m/z

50

100

50

100

50

100

100 150 2000

50

100

121 151

H++NO

+NO

+NO

+NO

127 157

Li+

143

173

Na+

Rel

ativ

e In

tens

ity (%

)

m/z

159

K+

189

175

Reactivity of all [M+Cys]•+ suggests sulfur-based radical – no rearrangement

Page 10: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

[Li+Cys]•+

[Na+Cys]•+

[K+Cys]•+

[H+Cys]•+

S-rad 3

αC-rad 1

Exp

S-rad 1

S-rad 2

S-rad 336.0

Li+

S-rad 227.6

Li+Li+

αC-rad 1-34.3

S-rad 10.0

Li+

IRMPD of Cys Metal Adducts

[Li+Cys]•+

*CLIO Facility B3LYP/6-311++G(d,p) level, FWHM = 30 cm-1

Relative energies in kJ mol-1

Page 11: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

S-rad 3

αC-rad 1

Exp

S-rad 1

S-rad 2

S-rad 215.1

Na+

S-rad 335.6

Na+

Na+

αC-rad 1-38.9

S-rad 10.0

Na+

S-rad 3

αC-rad 1

Exp

S-rad 1

S-rad 2

K+

S-rad 3

27.6

K+

αC-rad 1-48.1

K+

S-rad 27.1

K+

S-rad 10.0

[K+Cys]•+[Na+Cys]•+

Alkali metal adducts of cysteine radicals are tridentate sulfur-based radicals.

B3LYP/6-311++G(d,p) level, FWHM = 30 cm-1

Relative energies in kJ mol-1

Page 12: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Reactivity Analysis[X+Cys(S•)]+ + •NO [X+Cys(SNO)]+

X+ Rate Constant(cm3 molecules-1 s-1)

% of Collision Rate

X+…S• Distance(Å)

H+ 8.0 x 10-11 12 2.35Li+ 1.4 x 10-10 22 2.55

Na+ 2.2 x 10-10 34 2.92K+ 3.5 x 10-10 56 3.39

K+

Na+

Li+

2.35 Å

2.92 Å 3.39 Å2.55 Å

Increasing Reactivity

Increasing X+…S• Distance

Page 13: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Homocysteine Radical Cation

Rearrangement barrier (S•α-C•): ~130 kJ mol-1

S. Osburn, T. Burgie, G. Berden, J. Oomens, R. A. O’Hair and V. Ryzhov, J. Phys. Chem. A 2012, 117, 1144-1150.

[H+Hcy(S•)]+ does not rearrange

Difference in reactivity attributed to N-H…S• bond length

Reactivity with dimethyl disulfide

*FELIX Facility

Page 14: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

IMRs of [M+Hcy]•+

H2NO

OH

M

H2NO

OH

MS HS

Highly Reactive Minimal or No Reactivity

0

50

100

0

50

100

0

50

100

100 150 2000

50

100

+SCH3

135

182

K+

Na+

Li+

H+

+SCH3

+SCH3

+SCH3

141

157

Rel

ativ

e In

tens

ity (%

)

m/z

173

[M+Hcy]•+ + CH3SSCH3

0

50

100

0

50

100

0

50

100

100 150 2000

50

100

+NO

+NO

+NO

+NO

Rel

ativ

e In

tens

ity (%

)

K+

159

m/z

173

157

141

135

165

H+

Li+

Na+

[M+Hcy]•+ + •NO

[M+Hcy]•+ lack of reactivity suggests migration to the α-carbon.

Page 15: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

IRMPD of Hcy Radical Metal Adducts

[Li+Hcy]•+

[Na+Hcy]•+

[K+Hcy]•+

[H+Hcy]•+

S-rad

αC-rad 1

αC-rad 2

Exp

Li+

S-rad0.0

Li+

αC-rad 1-14.6

Li+

αC-rad 2-39.7

[Li+Hcy]•+

*FELIX Facility B3LYP/6-311++G(d,p) level, FWHM = 30 cm-1

Relative energies in kJ mol-1

Page 16: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

[K+Hcy]•+[Na+Hcy]•+

αC-rad 1

αC-rad 2

Exp

S-rad

Na+

S-rad0.0

Na+

αC-rad 1-36.0

Na+

αC-rad 2-43.1

S-rad

αC-rad 1

αC-rad 2

Exp

K+

S-rad0.0

K+

αC-rad 1-46.9

K+

αC-rad 2-51.9

Metal adducts of homocysteine radicals are bidentate α-carbon radicals.

B3LYP/6-311++G(d,p) level, FWHM = 30 cm-1

Relative energies in kJ mol-1

Page 17: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

[M+Hcy]•+ Isomerization

Relative energies in kJ mol-1

B3LYP/6-311++G(d,p) level

a S. Osburn, T. Burgie, G. Berden, J. Oomens, R. A. O’Hair and V. Ryzhov, J. Phys. Chem. A 2012, 117, 1144-1150.

M+ Critical TSaH+ 131.8

Li+ 98.7

Na+ 90.0

K+ 81.2

Alkali metal ions decrease TS energy to accessible level

H2NOH

OM

S

H

Page 18: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Summary• [M+Cys]•+ are sulfur-based tridentate species

• [M+Hcy]•+ rearrange to captodatively stabilized α-carbon structures

• Alkali metal adducts appear to lower rearrangement barrier

• Regiospecific IMRs provide quick insight on radical location

• IRMPD & DFT calculations confirm specific molecular structure

Li+

Li+

H2N

O

OH

M

H2NO

OH

MS HS

H2N

S

O

OHH2N

O

M

OH

HS M

X

Page 19: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

Acknowledgements• FELIX: Geil Berden, Jos Oomens

• CLIO: Vincent Steinmetz, Philippe Maitre

• Calculations: Justin Kai-Chi Lau, A.C. Hopkinson, K.W.M. Siu

• Department of Chemistry and Biochemistry, NIU:

• Victor Ryzhov• John Lawler,

Jarrod Ragusin

Page 20: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.
Page 21: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

B3LYP/6-311++G(d,p) level, scaling factor = 0.976, FWHM = 30 cm-1

Relative enthalpies in kcal mol-1

21

1657

16051476

1384

1294

1122

• Vibrational motion of [Li + Hcys]+

vibrational mode at 1657 cm-1

Li+

Page 22: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

B3LYP/6-311++G(d,p) level, scaling factor = 0.976, FWHM = 30 cm-1

Relative enthalpies in kcal mol-1

22

1657

16051476

1384

1294

1122

• Vibrational motion of [Li + Hcys]+

vibrational mode at 1605 cm-1

Li+

Page 23: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

B3LYP/6-311++G(d,p) level, scaling factor = 0.976, FWHM = 30 cm-1

Relative enthalpies in kcal mol-1

23

1657

16051476

1384

1294

1122

• Vibrational motion of [Li + Hcys]+

vibrational mode at 1476 cm-1

Li+

Page 24: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

B3LYP/6-311++G(d,p) level, scaling factor = 0.976, FWHM = 30 cm-1

Relative enthalpies in kcal mol-1

24

1657

16051476

13841294

1122

• Vibrational motion of [Li + Hcys]+

vibrational mode at 1384 cm-1

Li+

Page 25: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

B3LYP/6-311++G(d,p) level, scaling factor = 0.976, FWHM = 30 cm-1

Relative enthalpies in kcal mol-1

25

1657

16051476

1384

1294

1122

• Vibrational motion of [Li + Hcys]+

vibrational mode at 1294 cm-1

Li+

Page 26: Combining the Power of IRMPD with Ion-Molecule Reactions: The Structure and Reactivity of Radical Ions of Cysteine and its Derivatives M. Lesslie 1, J.

B3LYP/6-311++G(d,p) level, scaling factor = 0.976, FWHM = 30 cm-1

Relative enthalpies in kcal mol-1

26

1657

16051476

1384

1294

1122

• Vibrational motion of [Li + Hcys]+

vibrational mode at 1122 cm-1

Li+


Recommended